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The Plot

Our discussion will be framed in
terms of the natural numbers
0,1,2,3,…

We’ll look at three different ways
to specify a set of natural numbers:
1. By an algorithm to decide

membership in the set.
2. By an algorithm that lists all

the members of the set.
3. As the parameter values for

which an equation has solutions.

This will yield remarkable results.



Example: The set of even numbers {0, 2, 4, . . .}
Algorithm to decide membership in this set:

Input n

Divide n by 2

Let q be the quotient and r the remainder

If r = 0 then Output ‘‘Yes’’

else Output ‘‘No’’
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• A set of natural numbers is decidable if there is
an algorithm that decides membership in it.

• A set of natural numbers is listable if there is an
algorithm that lists its members (in any order with
repetitions permitted).

• A set of natural numbers is Diophantine if there
is a polynomial equation p(a, x1, . . . , x`) = 0 with
integer coefficients which has natural number solu-
tions for exactly those values of a that are members
of the set.



Every decidable set is listable

Let A be an algorithm that decides membership in a

set S. The following algorithm lists the members of S:

n← 0

repeat forever

{Input n to A
if A Outputs ‘‘Yes’’ then OUTPUT n

n← n + 1}

The complement of a set S, written S̄, is the set of all

natural numbers that don’t belong to S.

If S, S̄ are both listable, then S is decidable

LetA,B be algorithms that list S and S̄, respectively.

The following algorithm decides membership in S:

Input n

N ← 100

{Run A and B for N steps

If A outputs n, then {OUTPUT ‘‘Yes’’

STOP}
If B outputs n, then {OUTPUT ‘‘No’’

STOP}}
N ← N + 100



Examples of Diophantine Sets

• a− (x+ 2)(y + 2) = 0 specifies the set of composite

numbers.

• a− (2x + 3)(y + 1) = 0 specifies the set of numbers
not powers of 2.

• The “Pell” equation x
2
−a(y+1)2−1 = 0 specifies

the set consisting of 0 and the numbers not perfect
squares.
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Is every listable set Diophantine?



TWO THEOREMS

Unsolvability Theorem: There is a listable

set K whose complement K̄ is not listable.

Therefore K is not decidable.

Proof. Later if time permits

MRDP Theorem: If a set is listable, then it

is also Diophantine.
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Corollary: There is a polynomial po(a, x1, . . . , x`)
such that the equation

po(a, x1, . . . , x`) = 0

specifies the set K. Hence, no algorithm

exists to determine of a given value of a

whether or not there exist natural numbers

x1, . . . , x` that satisfy this equation.

unsolvability of hilbert’s 10th problem

Corollary:No algorithm exists to determine

of a given polynomial equation with integer

coefficients whether or not it has a solution

in natural numbers.



LOGIC

A formal logical system provides

• a special language in which propositions are repre-

sented by strings of symbols

• a list of initial strings or “axioms”

• rules of inference for obtaining new strings from given

strings

The strings thus obtained are called the theorems of

the system. From our point of view a formal logical

system provides an algorithm that makes a list of its

theorems.





LOGIC (continued)
Let L be a particular formal system that, for each

a = 0, 1, 2, . . . uses a string we’ll call Πa to represent
the proposition: The equation

po(a, x1, . . . , x`) = 0 (1)

has no solutions in natural numbers x1, . . . , x`.

[This proposition is equivalent to saying that a ∈ K̄.]

We say that L is sound if whenever a string Πa is a
theorem of L, the proposition that it represents is true.
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We say that L is sound if whenever a string Πa is a
theorem of L, the proposition that it represents is true.

Gödel Incompleteness Theorem. Let L be

sound. Then there is a number a for which

equation (1) has no solutions in natural num-

bers although Πa is not a theorem of L.

Proof: Otherwise, it would be the case that a ∈ K̄

if and only if Πa is a theorem of L. So by listing the
theorems of L and selecting the Πa as they appear, it
would be possible to list the members of K̄. But this
is impossible because K̄ is not listable.

Thus for every sound logic, there is a true

proposition not provable in that logic!



LOGIC and ROGER PENROSE

po(a, x1, . . . , x`) = 0 (1)

Gödel Incompleteness Theorem. Let L be

sound. Then there is a number a for which

equation (1) has no solutions in natural num-

bers although Πa is not a theorem of L.

Thus for every sound logic, there is a true

proposition not provable in that logic!

Roger Penrose claims that we can see that this propo-
sition is true whereas a programmed computer, no mat-
ter how powerful won’t have this ability. Therefore, he
argues:
Our minds surpass any mere mechanism.

BUT: what we can truly see is that IF the logic is
sound, then the proposition is true, and a suitably
programmed computer can see exactly the same thing.

For logics satisfying some additional conditions, the hy-
pothesis of soundness can be replaced by the weaker
condition of consistency, meaning that no pair of
propositions that contradict one another should both
be provable. But to see that even this weaker condi-
tion holds can be very difficult to verify.



A PROOF

Unsolvability Theorem: There is a listable

set K whose complement K̄ is not listable.

Therefore K is not decidable.

Proof: Let us fix a particular programming language

in which to write algorithms for listing the members of

a set. Then all possible programs in that language can

be written in a sequence:

P0,P1,P2, . . .

For i = 0, 1, 2, . . ., let Si be the set listed by Pi.

Now, let K consist of those numbers i such that

i ∈ Si. Then we claim:

• K is listable. For each n = 1, 2, 3, . . . run each

of the programs P1,P2, . . .Pn for n steps. Make a

list as follows: Whenever a particular program Pi

outputs the very number i, put i on the list.

• K̄ is not listable. Suppose that K̄ is listed by

program Pi0
. We ask: is i0 ∈ K̄? If so, it would be

listed by Pi0
, and hence would be in K. Contradic-

tion. So i0 must be in K. By definition, i0 ∈ Si0
,

i.e., i0 is listed by Pi0
. But then i0 ∈ K̄. Again, a

contradiction.


