


Matrix model for the “sQGP”

1. AA collisions at RHIC and the sQGP (strong Quark-Gluon Plasma)

Unambiguous signal(s) of new physics, from high momenta

AA collisions ≠ A (pp collisions): AA coll.’s strongly affect even heavy quarks.

2. “Strong” = strong coupling, right?  Not necessarily.

Lattice simulations + thermal field theory => moderate coupling down to Tc

3. Matrix model for the sQGP

sQGP = deconfined QCD, at temperatures T from Tc to ~ 3 Tc .  

Effective theory at large A0 = (not so) random matrix model.

Confinement from dynamical generation of eigenvalue repulsion



(Sometimes mythical creatures, like
unicorns and the Quark-Gluon Plasma,
do exist...)

QCD: “transition” to QGP at Tc ~ 200 MeV.  

So: natural to look at soft momenta as signal,
(transverse) momenta ~ Tc

RHIC experiments find, instead,
that the cleanest signals of new physics
are at hard momenta, ~ 2-20 GeV.

AA collisions at RHIC and the sQGP



RAA: robust signal of new physics
RAA= for a given pt, # particles central AA/( A4/3 # particles pp )

For π0’s, pt : 2 -> 20 GeV, RAA ~ 0.2.  As if jets emitted only from surface!
Due to “energy loss” in thermal medium?

A4/3:  experimentally: for γ’s, RAA ~ 1.0   π0’s “eaten”, γ’s not 

RAA: ↑ 

# particles
central AA/
# particles pp

A=200 =>

pt →
10 GeV↑ 



RAA  for heavy quarks: also suppressed!
PHENIX: RAA for charm quarks ~ light quarks!
Mass of charm quark mcharm  ~ 1.5 GeV; T ~ 200 MeV.  
Heavy quark less sensitive to medium by T/mcharm ~ 1/8.  No sign of that!  
Experimental evidence for “sQGP”: heavy quarks ~ same as light!

(3) q_hat = 14 GeV2/fm

(2) q_hat = 4 GeV2/fm

(1) q_hat = 0 GeV2/fm

(4) dNg / dy = 1000

pt →

RAA↑

3 GeV↑ 



Large # particles: try ideal hydrodynamics, with zero viscosity in QGP 

Need: initial time ~1 fm/c, hadronic “afterburner” (~ large hadronic viscosity)

Good fit to π’s, K’s, p’s.... for both single particle spectra and “elliptic flow” v2

Viscosity ~ 1/cross section:
small viscosity =>
strong coupling? 

N = 4 SUSY QCD + AdS/CFT:
At infinite coupling, & Nc = ∞,
viscosity/entropy = 1/(4 π).
Universal lower bound?

Exp.’y: charm quarks flow like
light quarks => sQGP
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Hydro calculations: P. Huovinen

EoS with phase transition

Hadron gas EoS

-! + +!

pp + 

v2↑
pt →

“Most Perfect Fluid on Earth”



New York Times, October 20, 2006:

The Universe on a String: by Brian Greene

....And in a recent, particularly intriguing development, data now emerging from 
the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory appear 
to be more accurately described using string theory methods than with more 
traditional approaches....

L. McLerran, Theory Summary at
Quark Matter 2006, Shanghai:

“Pinocchio” award to Brian Greene...

For me: N = 4 SUSY QCD + AdS/CFT =
thermal field theory of astounding beauty

vs Google: “most reactionary physicists”



  “Strong” = strong coupling, right?

 Hunting for the “unicorn” in heavy ion collisions:
Unicorn = QGP.  Hunters = experimentalists.  So: “all theorists are dogs...”

In QCD, for momenta below 1 GeV, the coupling αs is big,  
assuredly one is in a non-perturbative regime.

Transition to QGP at Tc ~ 200 MeV.   So strong coupling until ~ 5 Tc ?



“Helsinki” Program

Leff
=

1

2
trG

2
ij + tr |DiA0|

2
+ m

2
D trA

2
0 + κ trA

4
0

mDebye2 ~ g2 T2 ,  κ~ g4,  series in g2 .   
        (First step in three: then resum mDebye , mmagnetic )

One resummation of perturbation theory, amongst others.  Valid for small A0 

How does αseff run?  Braaten & Nieto ’96: αseff(2 π T)?  

Even better!  Laine & Schröder ’05: 2-loop calc. ⇒ αseff(9 T)! 

Tc ~ 175 MeV:  9 Tc ~ 1.6 GeV,    αseff(9 Tc) ~ 0.28 
 
                          9 (3 Tc)~ 4.8 GeV  :  Tc to  ~ 3 Tc not (so) strong coupling

Match original theory in 4D, to effective theory in 3D, for r > 1/T
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αs
eff  is not so big, even at Tc 

αs
eff(c T):  c ~ 2 π → 9.  Might have been 2 π → 2.  

           If so, then strong coupling below 3 Tc .  Not what happens.  

Tc↑
T/Tc →

3Tc↓
αs

eff(T)↑

0.30→
Laine & 
Schröder ’05
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4d lattice data

interpolation

Pressure: effective theory fails below ~ 3 Tc

p(T)/T4 ↑
      Eff thy: grey band

Points: lattice.

log(T/ΛMS bar)→

If αs
eff is not so big, why doesn’t effective thy work for the pressure?



“Fuzzy” bag picture

Bfuzzy “fuzzy” bag constant: dominates MIT bag constant, BMIT, away from Tc

Only perturbative terms contribute to fpert(g2): works down to Tc (Rebhan)

Perturbation theory fails because of non-perturbative terms, powers in 1/T2

Without dynamical quarks, can compute close to continuum limit for SU(3).

Looking at Bielefeld, lat/9602007, with new eyes: from T: 1.1 Tc to 4.0 Tc 

( fpert  = constant)

Suggests: with dynamical quarks: for T > 1.1 Tc , pressure a series in 1/T2:

pglue(T ) ≈ fpert(T
4
− T 2

c T 2) + . . .

p(T ) ≈ fpert T 4
− Bfuzzy T 2

− BMIT + . . .



Effective theory near Tc

Local quasiparticles?  Here: use nonlocal variable: straight, thermal Wilson line:

Under gauge transformations,

Trace gauge invariant.
= Polyakov loop, measures fraction of deconfinement.

Can extract renormalized Polyakov loop from lattice.
Need to extract lattice “mass” renormalization from bare loop.

Perturbative regime: loop near one, ~ complete deconfinement. g A0/T small.

Non-perturbative regime: loop < 1, partial deconfinement.  g A0/T large.

!(x) = tr L/3

τ ↑
L(x) = P e

ig

∫ 1/T

0

A0(x, τ) dτ

L(x) → Ω(x, 1/T )† L(x) Ω(x, 0)



sQGP:  partially deconfined
T > 3 Tc : loop ~ 1, ~ perturbative QGP, “pQGP”.  Eff. thy.: small A0

Tc → 3 Tc : loop < 1, partial deconfinement, “sQGP”  Eff. thy.: large A0

Ren’d
triplet
loop ↑

T/Tc → 

Heavy quark free energies and the renormalized Polyakov loop in full QCD 7
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Fig. 6. The renormalized Polyakov loop in full QCD compared to the quenched results1) .

will do so by renormalizing the free energies at short distances. Assuming that no
additional divergences arise from thermal effects and that at short distances the
heavy quark free energies will not be sensitive to medium effects, renormalization is
achieved through a matching of free energies to the zero temperature heavy quark
potential. Using the large distance behavior of the renormalized free energies we
can then define the renormalized Polyakov loop which is well behaved also in the
continuum limit.

Using the renormalized free energies from fig. 3, i.e. the asymptotic values in
fig. 5, we can define the renormalized Polyakov loop1) ,

Lren = exp

(

−
F1(r = ∞, T )

2T

)

. (4.1)

In fig. 6 we show the results for Lren in full QCD compared to the quenched
results obtained from Ref. 1). In quenched QCD it is zero below Tc by construction,
as the free energy goes to infinity in the limit of infinite distance. From the results of
different values of Nτ , it is apparent that Lren does not depend on Nτ and therefore
is well behaved in the continuum limit.

The renormalized Polyakov loop in full QCD is no longer zero below Tc. Due to
string breaking the free energies reach a constant value at large separations leading
to a non-zero value of Lren. The renormalized Polyakov loop is no longer an order
parameter for finite quarks mass, but still indicates a clear signal for a phase change
at Tc. It is small below Tc and shows a strong increase close to the critical tem-
perature. In the temperature range we have analyzed, Lren is smaller in full QCD

←pure glue, no quarks

←with quarks,
 ~ QCD

←  Confined  →←            sQGP             →←  pQGP →   

←Tc ~3Tc → 

1

2
→

1 → 

Petrecsky & Petrov ‘04



Effective theory for large A0

Symmetries?  Certainly, invariance under static gauge transf.’s.
Plus: “large” gauge transformations - spatially constant, time dependent.  For SU(N):

This Uc(τ) is only valid c/o quarks: Uc(1/T) = exp(2 π i/N) Uc(0) 
    Shows center symmetry of pure SU(N) glue: a global Z(N) symmetry

With quarks?  Consider Uc(τ) to Nth power!  Uc(1/T)N = exp(2 π i)Uc(0)N =  1.

All theories must respect invariance under such strictly periodic gauge transf.’s.
     For any gauge group, with any matter fields.
     With center symmetry, or not.  Even for QED.

Strictly periodic, but large gauge transf.’s place nontrivial constraints on a
nonabelian effective theory.

U c(τ) = e
2πi τT tN/N , tN =

(

1N−1 0
0 −(N − 1)

)



Z(N) interfaces 
One way to probe large A0: Z(N) interface related to gauge transformation, Uc(τ)
Take a long box:

Take A0 ~ tN, times “coordinate” q(z).
Even at large A0, the (original) electric field is abelian: Ei4D ~ ∂i A0 ~ dq/dz.  
Leff = classical + 1 loop potential, for constant A0

〈L〉 = 1

〈L〉 = e
2πi/N

1

z

Usual tunneling problem: action ~ transverse area  × # T2/(3√g2) 
Interface “fat”: width ~ 1/(gT), so can use derivative expansion.
# = 4 π2 (N-1)T2/ √(3N). Compute semiclassically, now (√g2 )3 × #  Korthals Altes

Leff = trE2

i /2 + V1 loop(A0) ∼ #(1/g2(dq/dz)2 + q2(1 − q)2)

A0 =
2πT

gN
q(z) tN



U(1) interfaces 
What if no center symmetry?   QCD: SU(3) with dynamical quarks, G(2)...
Use “U(1)” interface for strictly periodic gauge transf. In QCD, Uc(τ)3

Red: potential for constant A0 from SU(3) gluons
For integer q, <L> = exp(2 π i q/3) 1.  q = 0, 1, 2 are degenerate Z(3) vacua.

Blue: potential from quarks.  Potential at q = 1, 2 ≠ q = 0 , 3: no Z(3) symmetry
     Still have U(1) interface: <L>: 1 → 1, but q(z): 0 →3.

Use U(1) interfaces to probe large A0 .  Properties gauge invariant, physical.
Associated with U(1) topology in maximal torus.

q→
1 2 30

V(A0)↑



Effective electric field?

Want 3D effective thy. for large A0 ~ T/g.
Valid for r > 1/T, so A0 varies slowly in space, momenta p < T .

Original electric field Ei4D = Di A0 - ∂0 Ai .  So Ei3D = Di A0 ?

For large gauge transf. Uc(τ)N = exp(2 π i T τ tN):

Constant shift in A0 , time dependent rotation of Ai .   

Di A0 = (∂i  -  i g [Ai ,) A0  not invariant if  [Ai , tN] ≠ 0. 
Of course, Ei4D  invariant under Uc(τ) .

Ei3D =  Di A0  at small A0, but not at large A0!  Diakonov & Oswald ’03, ’04

      Form Ei3D from Wilson lines?

Adiag
0

→ Adiag
0

+
2πT

g
tN , Ai →

1

−ig
Ω†

c(τ)Ai Ω(τ)



Electric field of Wilson lines

Wilson line SU(N) matrix, so diagonalize:

Static gauge transf.’s: diagonal matrix λ invariant, Ω changes.

Strictly periodic Uc(τ)N :  λa → λa + 2 π × integer: λa  periodic.  Of course!

Use just eigenvalues, Ei3D ~ ∂i λ?  No, Ei3D ≠  Di A0 at small A0

Ei3D hermitean, so:

Small A0 OK, but does not fix c1, c2...

Large but abelian A0, Ai = 0: if Ei3D = ∂i A0,  must have c1=c2=...=0. 

Necessary for interfaces to match at leading order.  Beyond: c1, c2 ... ~ g2. 

In general, infinite number of terms enter.  
       Calculable perturbatively, match through interfaces, Z(N) or U(1).

L(x) = Ω(x)†e iλ(x) Ω(x)

E3D
i (x) =

T

ig
L
†(x)DiL(x)(1 + c1|trL|

2 + . . .)



Leff of Wilson lines at 0th order

To leading order, 

Gauge covariant “average” in time: 

Math.’y: left invariant one form (Nair).

Lagrangian continuum form of 
Banks and Ukawa ’83,  on lattice:

To 0th order, Lagrangian for SU(N) principal chiral field.  
Non-renormalizable in 3D, but only effective theory for r > 1/T.

Instanton number in 4D = winding number of L in 3D
Linear model: Vuorinen & Yaffe ’06  (Match by imposing extra symmetry)

E3D
i =

T

ig
L
† Di L

Leff
cl =

1

2
trG2

ij +
T 2

g2
tr |L†DiL|

2

L(τ) = e
ig

∫
τ

0
Ao(τ ′)dτ ′

; L = L(1/T )

E3D
i /T =

∫ 1/T

0

dτ L(τ)† ∂iA0(τ) L(τ) − L
†[Ai,L]



Confinement & adjoint Higgs phase?

Diagonalize L = Ω† e i λ  Ω  
Static gauge transf.’s U: e i λ  invariant, Ω not:

Electric field term:

1st term same as abelian
2nd term gauge invariant coupling of electric & magnetic sectors

<e i λ > = 1: no Higgs phase.  True in perturbation theory, order by order in g2

If <e i λ > ≠ 1, Higgs phase,
In weak coupling, diagonal gluons massless, 
off diagonal massive (a,b = 1...N)

But for 3D theory, gluons couple strongly.  Effects of Higgs phase?

N.B.: above ‘t Hooft’s abelian projection for Wilson line.

Ω → ΩU , Di → U
† Di U

m
2

ab = g
2|eiλa − e

iλb |2

tr |L†DiL|
2 = tr (∂iλ)2 + tr |[Ω Di Ω†, eiλ]|2



Loop potential, perturbative & not.

Leff
1 loop = −

2 T 4

π2

∞∑

m=1

1

m4
|trLm|2 .

U(N): constant L, 1 loop order:

Perturbative vacuum <e i λ > = 1,
stable to leading order, to any finite order in g2 . 

Can compute corrections to effective Lagrangian at next to leading order, NLO.
At NNLO, ~ g3  , need to resum mDebye .  Eventually, mmagnetic

SU(3) lattice: near Tc , pressure(T) ~ T4 and  ~T2 .

To represent: add, by hand:

Bf ~ # Tc2 “fuzzy” bag const.  Non-pert., infinity of possible terms.

Bf ≠ 0 ⇒ <e i λ > ≠ 1 ⇒ Higgs phase near Tc

                                             

Leff
non−pert.(L) = + Bf T

2 |trL|2



Confinement in Leff

SU(N), no quarks: in confined state, all Z(N) charged loops vanish:

Satisfied by “center symmetric” vacuum:

At finite N, perturbative pressure(Lconf) negative.  Not so good.

Large N: pressure(Lconf) ~ 1, vs. ~ N2 in deconfined phase.

At N=∞, center sym. state can represent confined vacuum.

Lconf familiar from random matrix models: 
      completely flat eigenvalue distribution, from eigenvalue repulsion.

Where does eigenvalue repulsion arise dynamically?  

〈trLj
conf

〉 = 0 , j = 1 . . . (N − 1)

Lconf = diag(1, z, z
2
. . . z

N−1) , z = e2πi/N
.



Dynamical eigenvalue repulsion
Small volume: on very small sphere (R = radius, g2(R) << 1 - Aharony et al.)
     Leff = random matrix model for constant mode.  Measure gives eig. repulsion:

Large volume: no sign of eigenvalue repulsion from perturbative loop potential.
     From measure?  But regularization dependent!

Eig. repulsion arises, naturally, from adjoint Higgs phase:

One loop order in 3D:

Two loop: LVandermondeeff ?  
But: 3D theory strongly coupled: magnetic glueballs heavy, not light.

In Leff, confinement arises uniquely from (dynamical) eigenvalue repulsion.
     Could study numerically.  Field theory of “not so” random matrices.

Leff
Vandermonde ∼ −

N∑

a,b=1

log(|eiλa − e
iλb |2)

m
2

ab ∼ |eiλa − e
iλb |2

Leff
1 loop ∼ −(m2)3/2 ∼ −

N∑

a,b=1

(g2|eiλa − e
iλb |2)3/2



How to tell if adjoint Higgs phase?
No absolute, gauge invariant measure.  Only differences qualitative.

But: usually magnetic glueballs and Wilson line mix very little.
Higgs phase should strongly mix glueballs and Wilson line.

Maybe: measure magnetic glueballs from plaquettes “split” in time:

τ ↑  
            r→

Usual spatial plaquette

τ = 0

τ = 1/T

“Split” spatial plaquette 



Fuzzy bags and Wilson lines: credits
1. Helsinki program & renormalized loops
     Resummation: Braaten & Nieto ’96.   Kraemmer & Rebhan ’03.  Andersen & Strickland ’04.  
           Kajantie, Laine, Rummukainen, & Schröder ’00, ’02, & ’03.
           Giovannangeli ’05.   Laine & Schröder ’05 & ’06.  Di Renzo, Laine +... ’06
      Renormalized loops: Kaczmarek, Karsch, Petreczky, & Zantow ’02  Dumitru, Hatta... below.
            Petreczky & Petrov ’04.   Gupta, Hubner, & Kaczmarek ’06

2. (Some) large gauge transformations & interfaces
      Large gauge transf.’s: Diakonov & Oswald ’03 & ’04.  Megias, Ruiz Arriola, & Salcedo ’03.
      Center symmetry, G(2): Holland, Minkowski, Pepe, & Wiese ’03.  Pepe & Wiese ’06.
      Z(N) interfaces: Korthals-Altes et al ’93, ’99, ’01, ’02, ’04

3. The electric field in terms of Wilson lines
 Before: RDP ’00. Dumitru & RDP ‘00-’02. Dumitru, Hatta, Lenaghan, Orginos & RDP ’03

                   Dumitru, Lenaghan, & RDP ’04.  Oswald & RDP ’05.
      Linear model: Vuorinen & Yaffe ’06.  Here, non-linear model: RDP ’06.
      Lattice action: Banks & Ukawa ’83.  Bialas, Morel, & Petersson ’04.   

4. Confinement as an (adjoint) Higgs effect
      Center symmetric vacuum: Weiss ’82.   Karsch & Wyld ’86.  Polchinski ’91.  Schaden ’04.
      Small sphere: Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk ’03 & ‘05

         


