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1 Introduction

The scalar one-loop n-point integral is given by

I / d4 1
(2m)% (12 = m3 + ie) (I + p1)? — md +ie) ... (1 + )= p;)? — m2 + ie)
(1)

where

e [ is the loop momentum,
e p, the momentum of the j-th external particle,
e m, the mass carried by the j-th internal line.

e > 0 Is a real constant which is supplied to prevent the integral from
diverging. A physical scattering amplitude contains this type of inte-
grals and its value is defined at £ = 0.



We consider scalar one-loop integrals in the form (—1)"/(167%)I,, where

1
he |, T (2)

Is obtained from (1) by introducing Feynman parameters and integrat-
ing over the loop momentum /.

e The integration region S,,_; is the n — 1 dimensional unit simplex.

e D,(x)isaquadratic; 1/D,(x) may have a non-integrable singularity
if D, (x) vanishes in the domain of integration.

e For the simplest cases, the results can be obtained analytically. So
far, numerical techniques have been successful only after consider-
able analytic manipulation.

In this talk we present a method which has promise for an automatic
calculation of loop integrals, relying on multivariate integration and
extrapolation. We apply several variations of the method to sample
cases of one-loop vertex (n = 3), one-loop box (n = 4) and two-loop
planar vertex diagrams.
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Fig. 1. Vertex example

2 Numerical Extrapolation and Three-point Vertex Function

We consider the loop integral in the limit as ¢ — 0. For example, for
n = 3, the real part of (2) is given by

D3 (x y

il_f)l’(l) I(g) llil’(l)/ Dz )2 + 22 dxdy

Example: fermion vertex with Z° exchange (Figure 1) In this case,
Di(z,y) = —zys + (x +y)*m* + (1 — 2 — y) M”.

where s denotes the squared energy and m and M are particle masses
corresponding to the fermion and Z boson, respectively.



We construct a sequence of I(¢,), ¢ = 0,1,... and extrapolate to the
limit 7(0).

LINEAR EXTRAPOLATION

e Assume we obtain a sequence of approximations ()(e,) which sat-
isfy an expansion of the form

Q(e) = I(e) = 1(0) + Z ajipj(€) + Rus1(€) (3)

e We set ag = 1(0), po(e) = 1, and consider the ¢ functions ordered
so that llII(l) §0j+1(€)/§0j<€) = 0.
e—
e Denoting 5, = Q(¢,) and disregarding the remainder term in (3), we

solvea (v + 1) x (v + 1) linear system of equations ¢« = (3 of the
form

> %’(a)aﬁ”) =8, 1=0,...,1. (4)
j=0
e For successive v = 1,2, ..., this delivers ol ~ a; and, in particu-

J
lar, oz(()”) ~ ag ~ 1(0).



Geometric sequence (G) Harmonic sequence (H)

nu eps Q(eps) Extrapolated eps Q(eps) Extrapolated
256 0.2120319070127095E-03 20  0.2421479625475858E-03
1 128 0.2280362779518554E-03 0.2440406488910013E-03 10 0.2434730201795342E-03 0.2447980778114825E-03
2 64 0.2363491905451424E-03 0.2448692545542390E-03 20/3 0.2439151979858242E-03 0.2448002914918651E-03
3 32 0.2405610711989021E-03 0.2448014224054772E-03 5  0.2441363743331252E-03 0.2448002403715809E-03
4 16 0.2426777113780660E-03 0.2448002064167953E-03 4 0.2442691075095314E-03 0.2448002403543701E-03
5 8 0.2437382985741919E-03 0.2448002401471510E-03 20/6 0.2443576075549443E-03 0.2448002403553846E-03
6 4 0.2442691075095314E-03 0.2448002403568659E-03 20/7 0.2444208273439749E-03 0.2448002403552964E-03
7 2 0.2445346343652990E-03 0.2448002403554218E-03 2.5 0.2444682451604905E-03 0.2448002403558393E-03
8 1 0.2446674275837987E-03 0.2448002403554184E-03 2079 0.2445051274397318E-03 0.2448002403553095E-03
Analytic 0.244800240355414541E-03
nu 1 2 3 4 5 6 7 8
cond# G 3 5 6.4 7.3 7.8 8.0 8.1 8.2
cond# H 3 9 28 92 301 1007 3392 11506

Fig. 2. Three-point vertex diagram, extrapolated results for G and H

Considering an example (Oyanagi et al.) with m = 40 GeV, M =
93 GeV, s = 9000 GeV?, and assuming an expansion (3) in integer
powers of ¢, i.e., ¢;(e) = &7, solving (4) using a geometric sequence
(G)withe, =b"'¢p, t =0,1,..., b=2and gy = 256 gives the results
in the first half of the table in Figure 2.

The second half of Figure 2 shows the results obtained with a harmonic
type progression (H) using ¢, = €y/¢, ¢+ = 1,2,... and gy = 20. This
helps to construct sequences {Q(e,)} which may be easier to compute
since ¢, decreases slowly.

The integral approximations @)(e) were calculated (in double preci-
sion) to a relative tolerated error of 10~'2 using a multivariate inte-
gration routine for hyper-rectangular regions (DCUHRE by Genz et al.,
sequential predecessor of the adaptive algorithms in Parlnt), after a
transformation of the triangular domain.
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Fig. 3. Q(e) vs. € for m = 40 GeV, M = 93 GeV, s = 9000 GeV?

Allowing for a sequence of integer powers of ¢ in (4) corresponds to
assuming that 7(¢) satisfies a polynomial approximation. Figure 3 dis-
plays Q(¢e) as a function of ¢ for this example.

Notes:

The stability of the procedure can be checked by computing a condi-
tion number obtained by solving the same system as in (4) but with
the right hand side replaced by 5, = (—1)". It is expected that the
process is significantly less stable using H (Lyness). One can also
use sequences with properties in between those of G and H.

It emerges that the final results can be obtained to high accuracy as
long as the () calculations can be performed to high accuracy.

It is not necessary to solve a system for each v.

The computation for o;(e) = &’ using G can also be carried out by
a recursive procedure (cfr. Richardson extrapolation).



3 Extrapolation by the e-algorithm

For linear extrapolation it is required to know the nature of the func-
tions ¢;(e). Extrapolation by the e-algorithm does not require this spe-
cific information, as long as the extrapolation method is known to be
valid for the class of expansions of interest. The ¢-algorithm is a recur-
sive implementation (by Wynn) of a nonlinear sequence to sequence
transformation (by Shanks).

Given a sequence {5,},. = 0,1, ... of real numbers, a triangular table
Is computed as depicted in Figure 4, according to

Ty,—1 — 0
T = 6L
1
T+l = Ty+1,6+1 + .
T+l — Tk

Only the even-numbered columns have meaning; the odd-numbered
ones are to store temporary values.

Theorem 1 (Convergence) If the sequence {o,} satisfies a homoge-
neous linear difference equation of order v with constant coefficients,
> yco, =0andif 5, =S+0, ¢t=0,1,..., then 7,5, =S5
(pending 7,9, exists).



Too

0 T01

T10 To2
0 T11
0 Ty—1,1
T.0 T—1,2
0 Tl
Ti+1,0

Fig. 4. e-algorithm table

Theorem 2 (Sufficient condition) The sequence o, = u(:)e*, + =
0,1,...,where x > 0integer,c € R and the u(:) are periodic functions
with period p, satisfies a homogeneous linear difference equation with
constant coefficients of order v = (v + 1)p.

Corollary 3 (Extension) The sequence

poov
o, = Z Z wg() et 1 =0,1,...

k=0 j=1

where v > 1, ¢ > 0 integer, ¢; € &, and u,,(¢) are periodic functions
with period p, satisfies a linear homogeneous difference equation with
constant coefficients.



b=2 (eps = 27(9-p) ) b=1.2 ( eps = 1.27(41-p) )

p eps Q(eps) Extrapolated p Q(eps) Extrapolated

1 256 0.2120319070127095E-03 4 0.1528743894317701E-03 0.4316691758746829E-03
2 128 0.2280362779518554E-03 8 0.1941968510705258E-03 0.2311914999988003E-03
3 64 0.2363491905451424E-03 0.2453337696296586E-03 12 0.2191889439432741E-03 0.2451361661323442E-03
4 32 0.2405610711989021E-03 0.2448867967487399E-03 16 0.2322503791767422E-03 0.2448034893044764E-03
5 16 0.2426777113780660E-03 0.2448017954351509E-03 20 0.2387139036026090E-03 0.2448002168460955E-03
6 8 0.2437382985741919E-03 0.2448006914824931E-03 24 0.2418586009244202E-03 0.2448002405705739E-03
7 4 0.2442691075095314E-03 0.2448001658003823E-03 28 0.2433802831821293E-03 0.2448002405705739E-03
8 2 0.2445346343652990E-03 0.2448002390032324E-03 32 0.2441151680705952E-03 0.2448002403563278E-03
9 1 0.2446674275837987E-03 0.2448002403591474E-03 36 0.2444697959556787E-03 0.2448002403550793E-03
10 0.5 0.2447338315398706E-03 0.2448002403553692E-03 40 0.2446408673684701E-03 0.2448002403552772E-03

Analytic 0.244800240355414541E-03
Fig. 5. Three-point vertex, e-algorithm results for G with b = 2 (left) and b = 1.2 (right)

As a special case of Corollary 3 with x = 0 and constant u; = w;o(¢)
(p = 1), if furthermore

ﬁL -5 = Z ujgjL7 (5)
j=1

then 7,2, =S (pending 7,2, eXists).

Note the correspondence of (5) with (3) for a geometric sequence ¢; =
b=7. Indeed if we let u; = aj&‘()j, then Ujé‘jL = ajé‘(]jb_ﬂ = ajgpj(eb).

It should be noted that Corollary 3 allows extrapolation with the e-
algorithm for significantly more complicated expansions (3); for in-
stance ¢, () may be of the form ¢” log® ¢ where § > 0 integer and real
~ > 0 (as long as a geometric sequence is used for ¢).

Figure 5 gives results obtained for the sequences ¢, = epb™, + =
0,1,...,withb = 2ande; = 256 (left),and withb = 1.2 and g = 1.2%°
(right). The integrals I(<) were approximated to a relative tolerance of
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Fig. 6. Feynman diagram fore et — ¢t ¢

4 Four-point function

Here the integral is I, given by (2), over the three-dimensional unit
simplex S;3. The quadratic D, is expressed as

Dy= "xAx+2v-x+ C,

where A; =q, - qj, g1 = —p1, @ =p2, 3 =p2+p3, C = M(? = mj
and v, = %<—qb2 + ME — Mg) with M, = ml,Mg = mg,Mg = My
(Fujimoto et al.)



eps Q(eps)

Real part

64 -0.6144285e-09
32 -0.5822585e-09
16 -0.5660866e-09
8 -0.5580768e-09
4 -0.5541097e-09
2 -0.5521396e-09
1 -0.5511587e-09

0.5 -0.5506695e-09

Imaginary part

64 0.1212204e-08
32 0.1209017e-08
16 0.1203859e-08
8 0.1199841e-08
4 0.1197203e-08
2 0.1195593e-08
1 0.1194648e-08

0.5 0.1194106e-08

extrapolated results

-0.5497390e-09
-0.5502165e-09
-0.5502169e-09
-0.5501958e-09
-0.5501862e-09
-0.5501829e-09

0.1217354e-08
0.1185690e-08
0.1192165e-08
0.1193069e-08
0.1193304e-08
0.1193381e-08

-0.5502169e-09
-0.5502165e-09
-0.5501784e-09
-0.5501811e-09

0.1193325e-08
0.1193381e-08
0.1193413e-08
0.1193424e-08

-0.5501814e-09
-0.5501814e-09

0.1193449e-08
0.1193430e-08

analytic

-0.550181e-09

0.119343e-08

#evals

5.9e07
8.7e07
1.2e08
1.6e08
2.2e08
2.8e08
3.5e08
4._.4e08

6.3e07
9.1e07
1.3e08
1.7e08
2.3e08
2.9e08
3.6e08
4.5e08

Table 7 illustrates the use of the e-algorithm for the integral computa-
tion. Here m; = m3 = Mz = 91GeV, my = m, = 0.511MeV, my =
m; = 150 GeV, /s = 500 GeV and 6 = /(p1, p4). In this table the

Fig. 7.e~et — t ¢ extrapolation table for cos§ = —0.5

results are given for cos§ = —0.5.

Notes:

e The integrals were approximated to an accuracy of 10~ (in each
coordinate direction) using an iterated integration with DQAGE.
e The final extrapolation results agree to the 6-digit accuracy of the

analytic results reported by Fujimoto et al.

e In this case, DCUHRE was not able to approximate the integrals to
the desired accuracy. Significant portions of the domain appeared to
be neglected, which may be due to inaccurate error estimates near

the singularity.
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Fig. 8. Feynman diagram for vertex correction of top quark with two Z° boson exchanges

5 Two-loop vertex

A general Feynman loop diagram for n external particles, N internal
lines and L independent loops is proportional to

/H ( ;1;41'14@) 1 (kh---,kN)=< : )Lf[@], (6)

e 1k2—m2+26 1672

where the momenta on the «-th propagator and the according masses
are denoted by k, and m,, respectively, for . = 1,..., N; the inde-
pendent loop momentaare [,, a = 1,..., L; the external momenta are
pj, J = 1,...,n;and the internal momentum &, is a linear combination
of the {, and the external momenta.

We treated the scalar integral (with o = 1) for which corresponds to
(6) with L = 2, N = 6 internal lines and n = 3 external lines.



Introducing of the Feynman parameters and integrating over the loop
momenta leads to the 5-dimensional integral

] =

1
/55 (D) + e (7)

with

D = C(a1(pi — m]) + za(py — m3) — z3m;
+ z4(p] — my) + x5(p; — mz) — wemg)
— C’l(xgpg + :L’Zp% — 374£U5<p§ - p% - pg))
— Cy(x3p5 + x1p; — z122(p3 — Pi — P3))
— 2wo3T5ps — 201T3L4P] + T3(woxy + T125) (p3 — PT — P3)

and where

Tg=1—21—T9 — T3 — x4 — T5
Ci=z1+ 29+ 23

Co=1—21— 29
C=x3(l—x1— 20— 23)+ (1 +22)(1 — 21 — 29)

In view of the fact that D in (7) vanishes for z; = 29 = 23 = 0 we
perform a regularizing transformation,



14 T T T T T T

T T
"Fujimotol"”

12 | "Extrapolation”

+

10

Fig. 9. Approximations to I (real part) as a function of 2 ~ Miop = 150 GeV and Mz = 91.17 GeV

r1 = x1(ro, 1) = rot
Ty = xo(rg, €1) = ro(1 — Z7)
x3 = x3(r0, L1, T2) = 1o(1 — 1 — L)

(8)

Denoting the integrand of (7) by f(x), the transformation (8) results

I —/ drg 7‘0/ dz; /21 . /1 T dzy /01_3:1_3:2_373_3174 dxs f.

in

___:1;1



Using 2o =2 — % — T+ (% — 1)t3 to map the outer 3-dimensional
integral to the 3d unit hypercube we obtain

I = /01 d?"() ?"()(1 — 7’()) /01 d:fl /01 dtg /01—201—372—:153 d:l?4 /01—£U1—£U2—£U3—£U4 dZE5 f (9)

Notes:

e To approximate the integral (9) we can transform it to the 5-dim.
unit hypercube and use DCUHRE.

e Alternatively, we used DCUHRE for the outer 3-dimensional integra-
tion and DQAGE for the inner two dimensions, in order to generate
the results displayed on the curve labeled “Extrapolation” in Fig-
ure 9, which represents the integral approximations to (9) as a func-
tion of ’“22 pertaining to the vertex correction of the top quark with

mtop

two Z° boson exchanges. Also shown (as points) are corresponding
results from Fujimoto et al.
e We used the e-algorithm for the extrapolation, using a sequence of
g; = 2.1°°77 for j = 0 to about 14 on the right of and away from the
£’ threshhold, and e; = 2.125-7 near the threshhold.

mtop




6 Remarksregarding large massratios

It is clear that the success (or otherwise) of an extrapolation procedure
will depend on whether it is able to intrinsically model the behavior of
the entry sequence. For the three-point vertex function:

e Theratio % Is a determining factor. The problem is more pronounced
for higher values of the energy /s. In this case, while the e-algorithm
appears to become unstable when ¢ is relatively large, the polyno-
mial model delivers an extrapolated sequence only a little “ahead”
of the entry sequence but with a behavior similar to the latter.



0.00032 T T T T T T T 0.00035
a +

0.0003 | 0.00034  *

I
0.00028 -
[t 0.00033

:
0.00026 [+
T 0.00032 |
"
0.00024 |-+
0.00031
000022 |+
0.0003
0.0002 -

0.00029
0.00018 -

0.00016 |- 0.00028 -

0.00014 L L L L L L L 0.00027 L L L L
0 5 10 15 20 25 30 35 40 0 0.05 0.1 0.15 0.2 0.25

0.00035

0.000345

0.00034

0.000335

0.00033 -

0.000325

0.00032

0.000315 L L L L L L
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Fig. 10. (a-c) Q() vs. € for s = 9000 GeV?, m = 150 GeV, M = 0.1 GeV and various ranges of ; (d)
Q(M, ) for s = 9000 GeV?, m = 40 GeV

e Figure 10 shows Q(¢) as a function of ¢ for s = 9000 GeV?*, m =
150 GeV, M = 0.1 GeV. The graph follows a logarithmic behavior
over a large range (see (a)). However note how in (b) and (c) the
curve gradually becomes as that of Figure 3 over ranges of smaller
e. The behavior transient for very small ¢ needs to be accurately
modeled in order to treat small values of M.

e For s = 9000 GeV%, m = 150 GeV, (d) depicts the divergence of the
integral as M decreases.



eps Q(eps) Extrapolated #evals. | eps Q(eps) Extrapolated #evals
0.381680e-03 -0.185652e-03 2.32e06 |
0.293600e-03 -0.181426e-03 -0.167341e-03 2.37e06 | 0.46790e-04 -0.989755e-04 -0.446396e-04 2.88e06
0.225847e-03 -0.174782e-03 -0.131318e-03 2.40e06 | 0.35992e-04 -0.878292e-04 -0.447056e-04  2.94e06
0.173728e-03 -0.165541e-03 -0.899977e-04  2.49e06 | 0.27686e-04 -0.785577e-04 -0.443406e-04 3.01e06
0.133637e-03 -0.153854e-03 -0.549082e-04 2.57e06 | 0.21297e-04 -0.710526e-04 -0.442841e-04  3.10e06
0.102798e-03 -0.140320e-03 -0.363915e-04 2.63e06 | 0.16382e-04 -0.650854e-04 -0.442955e-04  3.15e06
0.790751e-04 -0.125943e-03 -0.353284e-04 2.74e06 | 0.12602e-04 -0.603956e-04 -0.442976e-04 3.21e06
0.608270e-04 -0.111854e-03 -0.413304e-04 2.77e06 | 0.96938e-05 -0.567369e-04 -0.442978e-04 3.36e06

Fig. 11. One-loop vertex illustration of large m /M ratio: /s = 310 GeV, m = 150 GeV, M = 0.01 GeV.
This should be compared with the analytic value —0.442975219528810759¢ — 04

e With DQAGE we are able to calculate the integrals for the smaller
values of ¢ needed to handle fairly considerable mass ratios and
energy, for example, m = 150 GeV, M = 0.01 GeV and /s =
310 GeV. Convergence results for this case are given in the table of
Figure 11, based on the expansion (4) in integer powers of ¢ and
using a geometric sequence with b = 1.3 and gy = 1.37%°. For this
case, the method used yields results for mass ratios through about
five orders of magnitude.



Conclusions and future work

We presented a class of methods for the evaluation of loop integrals
based on extrapolation. The extrapolation is based on generating
a sequence of approximations which converge to the loop integral
value as a parameter ¢ introduced in the integrand tends to zero.
Using the e-algorithm for extrapolation this delivers an automatic
method.

Further work is needed to establish properties of the transient be-
havior as a function of ¢ as it relates to the convergence properties
of the extrapolation process.

As an alternative method, the generalized Richardson extrapolation
process by Sidi et al. should also be investigated.

Tailoring of multivariate integration codes is warranted to make these
calculations more efficient. Furthermore, the large granularity of the
integrands as well as the number of integrals involved makes the
application an excellent candidate for parallel approaches.
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