Two and three particle azimuthal correlations
and Mach shocks
Thorsten Renk
in collaboration with Jörg Ruppert

Introduction
- why Mach cones?
Modelling Correlations
- the trigger bias
- flow effects
- 3-particle correlations
Cone and Ridge
- dihadron triggers
Conclusions
Introduction

When I first saw this, to me it looked like a shockwave:

To other people apparently not:

"There’s only one collaboration at RHIC which believes in Mach cones.”
(R. Bellwied)

"I am very sceptical about these Mach cones.”
(J. Rak)
The model

hydrodynamics works ↔ existence of shockwaves

energy lost from a hard parton ↔ energy of the shockwave

Follow flow of energy and momentum:
⇒ dispersion relation

\[E = c_s p \quad \text{with} \quad c_s^2 = \frac{\partial p(T)}{\partial \epsilon(T)} \]

Thus:

\[\phi = \arccos \frac{\int_{\tau_E}^{\tau} c_s(\tau) d\tau}{(\tau - \tau_E)} \]

propagating in moving fluid

- strength and angle of Mach correlations: property of the bulk (fluid) medium
- strength and angle of near side, dijet: property of the hard parton + fragmentation
⇒ interplay between hydrodynamical processes and hard processes
Based on this picture, a number of qualitative predictions were made:

'trivial' expectations:

- correlation angle (approx.) independent of trigger or associate momentum
- correlation hadrochemistry equals bulk modulo a boost
 → enhancement of p/π ratio
- without energy loss, the large angle correlation is absent

'non-trivial' expectations:

- correlation signal observable at large y for trigger at $y = 0$
 → massive elongation in rapidity
- visible but weak off-diagonal peaks in 3-particle correlations

These expectations were published before relevant data came out!

Everything has been confirmed since, so we may have the right scenario.

or:

Why shockwaves come from peculiar regions

- understanding truly hard back-to-back correlations
- when does energy appear in the medium?
Do we understand the purely hard part where only punchthrough is seen?

THE TRIGGER BIAS

- Leading hadron (trigger)
- Intrinsic k_T
- Energy deposition
- Leading hadron
- Subleading hadrons
 - Near side
 - Away side

![Graphs showing energy deposition and particle distributions for different collision systems: d+Au, Au+Au, 20-40%, Au+Au, 0-5%](image-url)
Monte Carlo model

Near side:
• hard parton energy (and type)
 ⇒ parton spectra from LO pQCD
 ⇒ vertex sampling from nuclear overlap
 ⇒ probabilistic ΔE for in-medium path
 → fragment and check against near side trigger threshold

Away side:
• intrinsic k_T
 ⇒ chosen such that d-Au width of far side peak is reproduced
 ⇒ away side probabilistic ΔE from in-medium path
 ⇒ near and away side (N)LO fragmentation
 → count emerging hadrons above associate threshold

Contains all information on trigger bias, pathlength distribution, nuclear density. . .
Yes, we understand the hard correlations (same is true for γ-h)!

Near side: Calculations agree well with data
Away side: Deviations in the 4-6 GeV momentum bin \rightarrow recombination

Largely insensitive to details of the medium density evolution.

Surface bias

Probability density of triggered event vertices $8 \text{ GeV} < p_T < 15 \text{ GeV}$ (near side $\equiv -x$):

- Away side energy deposition and shockwave excitation happens
 - in special density regime
 - with a special orientation with respect to transverse flow

\Rightarrow Needs to be accounted for before any data comparison!

Time dependence of mean energy loss (quark jet for different vertex positions):

Initially: decoherence time
Finally: dropping density

For most situations, energy will enter the medium between 2 and 4 fm/c
Flow effects

or:

The difficulty of observing a large angle signal \textit{at all}

- rapidity of the away side parton
- longitudinal flow effects
- transverse flow effects
Away side parton at midrapidity

\[\theta_M = \arccos c_s \]

\[\eta = -\ln(\tan(\phi/2)) = 1.8 \]

\[\phi = 1.22 = 70 \text{ degrees} \]

Mach cone

Away side cone

\(P(y) = \delta(y) \)

PHENIX data

STAR

\(\frac{1}{N_A} dN^{AB}/d(\Delta \phi) \)
RAPIDITY-AVERAGED AWAY SIDE PARTON

$\theta_M = \arccos c_s$

$\eta = -\ln(\tan(\phi/2)) = 1.8$

$\phi = 1.22 = 70$ degrees

STAR

PHENIX

$\Delta \phi$

0.0
0.1
0.2
0.3
0.4

$1/N^A dN^{AB}/d(\Delta \phi)$

PHENIX data

$P(y) = \delta(y)$

no longitudinal flow
\[\theta_M = \arccos c_s \]
\[\eta = -\ln(\tan(\phi/2)) = 1.8 \]
\[\phi = 1.22 = 70 \text{ degrees} \]
Longitudinal elongation:

- *absolutely crucial* for observed large angle
- predicts *same* correlation angle at large y for trigger at $y = 0$

Intuitive picture: longitudinal flow drags radiated quanta to higher rapidity

Would work for Cherenkov radiation, medium modified jets...
LONGITUDINAL FLOW EFFECTS

This is a myth!

Position on hyperbola \leftrightarrow spacetime rapidity
Line slope \leftrightarrow momentum rapidity

For any emission after initial collision, local Bjorken flow is slower than emitted quanta

\Rightarrow collimation in rapidity, not widening
Only shockwaves go with the flow

This is not so for shockwaves:

Shockwaves propagate with c_s relative to the local medium

\[
\frac{dz}{dt} = \frac{u(z, R, t) + c_s(T(z, R, t))}{1 + u(z, R, t)c_s(T(z, R, t))}\bigg|_{z=z(t)}
\]

\Rightarrow longitudinal flow field at z_{final} determines boost in momentum space

\rightarrow this leads to propagation in rapidity space

Elongation only for excitation propagating relative to the medium!

- no longitudinal elongation for modified jets
- no longitudinal elongation for Cherenkov radiation

(also rules out most explanations for near side ridge)
Transverse flow

shockwave \Leftrightarrow additional boost for hadrons at freeze-out

Position space:

Momentum space:

$$
E \frac{d^3N}{d^3p} = \frac{g}{(2\pi)^3} \int d\sigma p^\mu \exp \left[\frac{p^\mu (u_{flow}^\mu + u_{shock}^\mu) - \mu_i}{T_f} \right]
$$

At 1 GeV, a Mach signal only appears if shockwave and flow are aligned

• at high p_T, if flow and shockwave are not aligned one of the wings vanishes
• due to momentum conservation, it reappears (broadened) at lower p_T

Strong bias towards events in which flow and shockwave are aligned
We find *surface bias* in position space and *alignment bias* in momentum space → but in hydrodynamics, position and flow are correlated! ⇒ wild event by event fluctuations, strong dependence on hydro background

Don’t even think of extracting c_s by simply inverting the angle!

→ requires self-consistent treatment of wave propagation and hydro background
Calculated as factorized 2-particle correlations (no true 3-particle correlations)

- calculated background subtracted
- each particle from shockwave is correlated with away side parton
- no correlations among particles in shockwave
 (in reality: momentum conservation shared among $O(20+)$ particles)
3-PARTICLE CORRELATIONS

Cone and Ridge

or:

A few things which can not cause a ridge

- connection to energy loss
- dihadron triggers
What is the ridge?

Difference between near and away side: average pathlength $\langle L \rangle$

If both ridge and cone are connected to energy loss, either

- Ridge and cone are the same phenomenon, i.e. the ridge is a cone which had too little time to develop (the bow shock). In this case, varying $\langle L \rangle$ should turn the ridge into the cone.

- Ridge and cone are separate phenomena. In this case, the ridge is hidden on the away side by the fact that the rapidity position of the away side parton is not known. In addition, there must be a minimum length $\langle L \rangle$ for the cone to develop, because it is not seen on the near side.

A back-to-back dihadron trigger can fix the rapidity of the away side parton and (for asymmetric momenta) allows to dial $\langle L \rangle$ on near and away side.
Dihadron triggers?

Shockwave strength scales with energy deposition *given the trigger*

\[4-5 \quad 5-6 \quad 6-7 \quad 7-8 \quad 8+\]

\[P_T \text{ bin } \text{[GeV]}\]

\[\Delta E \text{ [GeV]}\]

near side \(P_T\) 6-8 GeV

\[\rightarrow\] this is reduced drastically (\(\sim 1/6\)) for a dihadron trigger

\[\Rightarrow\] currently, away side NL fragmentation should dominate

Connecting the ridge with energy loss faces problems:

- **energy balance:**
 - energy in ridge: 'several GeV' $\leftrightarrow \langle \Delta E \rangle$ given near side trigger: ~ 0.5 GeV
 \Rightarrow impossible for direct radiation, but maybe boost of matter?

- **timescales:**
 - lost energy becomes available comparatively late (2-4 fm after medium production)
 \Rightarrow very difficult to get correlation to large y

- **rapidity width:**
 - no longitudinal elongation for radiated quanta (most mechanisms assume this!)
 \Rightarrow how does the correlation get to large y?

At this point, cone and ridge seem to be distinct phenomena.

Ridge \leftrightarrow initial state effect?
Qualitatively, Mach cones agree with findings

- independence of angle ↔ complicated bias
- widening in rapidity predicted and seen
- qualitative agreement for three-particle correlations

⇒ no other model has demonstrated this so far

Quantitative calculations are extremely tough!

- complicated simulation of trigger bias
- same EOS for density and shockwave evolution
- multiple shockwaves from minijets?
- proper hydro source term?

⇒ reasonably, we can only expect quantitative answers after solving the nature of energy loss (and a few other things)