iet quenching:
towards medium probing

José Guilherme Milhano

CENTRAIST (Lisbon) & CERN PH-TH

guilherme.milhano@cern.ch

hitp:/www.qgcdlhc.ist.utl.pt

CEN| B
TRA|BE

Physics Colloquium, BNL, 11th December 2012


mailto:guilherme.milhano@cern.ch
mailto:guilherme.milhano@cern.ch
http:/www.qcdlhc.ist.utl.pt
http:/www.qcdlhc.ist.utl.pt

the study of jets
[reconstructed jets and their high-p: hadronic content]

in heavy ion collisions aims at their use as probes of
the properties of the hot, dense and coloured matter

created in the collisions
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the study of jets
[reconstructed jets and their high-p: hadronic content]

in heavy ion collisions aims at their use as of
the of the hot, dense and coloured matter

created in/the collisions

#1 establishing the probe

#2 probing the medium

not covered in this talk:
® mass effects [heavy quarks]
® strongly coupled approaches



#1 establishing the probe



jets in heavy ion collisions

vacuum jets under overall excellent theoretical control
* reliable baseline and template for inclusion of medium effects
e factorization of initial and final state

jet :: collimated spray of hadrons resulting from the QCD branching of a hard [high-p:]
parton and subsequent hadronization of fragments and grouped according to given
procedure [jet algorithm] and for given defining parameters [eg, jet radius]



jets in heavy ion collisions

in HIC jets traverse sizable in-medium pathlength

jet :: collimated spray of hadrons resulting from the QCD branching of a hard [high-p:]
parton and subsequent hadronization of fragments and grouped according to given
procedure [jet algorithm] and for given defining parameters [eg, jet radius]



jets in heavy ion collisions

same factorizable structure [challengeable working hypothesis]




jets in heavy ion collisions
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sufficiently constrained in
relevant kinematical domain
[turther improvement from
future pA data]



jets in heavy ion collisions

nPDF i nPDF hard scattering
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sufficiently constrained in
relevant kinematical domain
[turther improvement from
future pA data]

localized on point like scale
oblivious to surrounding matter
[calculable to arbitrary pQCD order]



jets in heavy ion collisions

factorized initial state
~ [insensitive to produced medium]




jets in heavy ion collisions

nPDF i nPDF hard scattering QCD branching

very well [und perturbatively] understood in vacuum
* coherence between successive splittings leads to angular ordering

o faithfully implemented in MC generators
medium modified

e induced radiation [radiafive energy loss’
* hroadening of all partons traversing medium

* energy/momentum transfer to medium [elastic energy loss]
e sirong modification of coherence properties

e modification of colour correlations




jets in heavy ion collisions
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in vacuum

o effective description in MC [Lund strings, clusters, ...]
o FF for specific final state [jet, hadron class/species, ...]
in medium

e time delayed [high enough p:] thus outside medium

* colour correlations of hadronizing system changed

fragmentation outside medium = vacuum FFs 2??



jets in heavy ion collisions
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jet reconstruction

very well [and perturbatively] understood in vacuum
* coherence between successive splittings leads to angular ordering

o faithfully implemented in MC generators

medium modified

* induced radiation [radiative energy loss]

* hroadening of all partons traversing medium

* energy/momentum transfer to medium [elastic energy loss]

* strong modification of coherence properties

e modification of colour correlations

in vacuum
o effective description in MC [Lund strings, clusters, ...]
o FF for specific final state [jet, hadron class/species, ...]
in medium

o time delayed [high enough p:] thus outside medium

* colour correlations of hadronizing system changed

fragmentation outside medium = vacuum FFs 22?



jets in heavy ion collisions
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jet quenching ::

observable consequences [in jet and jet-like hadronic observables] of the effect of the medium

very well [and perturbatively] understood in vacuum
* coherence between successive splittings leads to angular ordering

o faithfully implemented in MC generators

medium modified

* induced radiation [radiative energy loss]

* hroadening of all partons traversing medium

* energy/momentum transfer to medium [elastic energy loss]

* strong modification of coherence properties

e modification of colour correlations

in vacuum o

o effective description in MC [Lund strings, clusters, ...]
o FF for specific final state [jet, hadron class/species, ...]
in medium

o time delayed [high enough p:] thus outside medium

* colour correlations of hadronizing system changed

fragmentation outside medium = vacuum FFs 22?

jet reconstruction



to establish quenched jets
[their hadron ‘jet-like’ and full jet observables]
as medium probes requires a full theoretical account of

® QCD branching

e effect on hadronization [if any]

in the presence of a generic medium

and

a detailed assessment of the sensitivity of observables
to specific medium effects

:: probe ::

physical object/process under strict theoretical control for which a
definite relationship between its observable properties and those
of the probed system can be established



ing

observation of jet quench

CMS Experiment at LHC, CERN

Datare

S

CM

orded: Sun Nov 14 19:31:39 2010 CEST

~
W

-~

2

o

/ 1328520

Run/Event: 151076
Lumi section: 249

ot

e

—

>
Q
o
o
&
g
S
g
xr

Jet 1, pt: 70.0 GeV

: ﬁ—’ﬁ’/‘



hadron spectra
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correlations
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correlations
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suppression of back-to-back

hadrons in AA
but not in dA

hadronic observables intrinsically sensitive to hadronization and oblivious to
broadening effects on radiation



dijet asymmetry

imbalance of jet energy within a cone of radius R for
‘back-to-back’ di-jets

12 fm




dijet asymmetry
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dijet asymmetry
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dijet asymmetry
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dijet asymme

try
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photon-jet correlations
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fragmentation functions
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[personal view] major caveat for phenomenological interpretation: jets with
same final energy are compared

very wide binning: all jets above 100 GeV



jet shapes
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medium induced radiation

single gluon emission understood in 4 classes of pQCD-based formalisms
Baier-Dokshitzer-Mueller-Peigné-Schiff-Zakharov
Gyulassy-Levai-Vitev
Arnold-Moore-Yaffe
Higher-Twist [Guo and Wang]
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Poissonian ansatz [BDPMS and GLV]; rate equations [AMY]; medium-modified
DGLAP [HT]



medium induced radiation

single gluon emission understood in 4 classes of pQCD-based formalisms
Baier-Dokshitzer-Mueller-Peigné-Schiff-Zakharov
Gyulassy-Levai-Vitev
Arnold-Moore-Yaffe
Higher-Twist [Guo and Wang]
differ in modeling of the medium and some kinematic assumptions [most shared]

all build multiple gluon emission from [ad hoc] iteration of single gluon kernel

Poissonian ansatz [BDPMS and GLV]; rate equations [AMY]; medium-modified
DGLAP [HT]

Monte Carlo implementations [HIJING, Q-PYTHIA/Q-HERWIG, JEWELL, YaJEM,
MARTINI]



medium induced radiation [BDMPS-Z]
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medium induced radiation

Daa (z)/Dpp(z)
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systematic comparison in a simple common model medium [the BRICK]

large discrepancies [mostly due to necessary extension of formalism beyond
strict applicability domain]



medium induced radiation

Daa (z)/Dpp(z)
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medium modification of quark fragmentation function

Majumder & van Leeuwen [1002.2206]

systematic comparison in a simple common model medium [the BRICK]

large discrepancies [mostly due to necessary extension of formalism beyond
strict applicability domain]

none necessarily right or wrong, all incomplete




relaxing approximations

energy of radiated gluon assumed [not in AMY] much smaller than that of emitter
[x=w/E«1] but emission spectrum computed for all allowed phase space with
violation of energy-momentum conservation cured by explicit cut-offs



relaxing approximations

energy of radiated gluon assumed [not in AMY] much smaller than that of emitter
[x=w/E«1] but emission spectrum computed for all allowed phase space with
violation of energy-momentum conservation cured by explicit cut-offs

large-x limit computed in path-integral formalism, explicitly in the multiple soft
scattering approximation, and small-large x interpolating ansatz

Apolindrio, Armesto, Salgado [1204.2929]
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relaxing approximations

energy of radiated gluon assumed [not in AMY] much smaller than that of emitter
[x=w/E«1] but emission spectrum computed for all allowed phase space with
violation of energy-momentum conservation cured by explicit cut-offs

general case computed in SCET d'Eramo, Liu, Rajagopal [1006.1367]
Ovanesyan & Vitev [1103.1074, 1109.5619]

application for jet quenching pioneered by
Adilbi & Majumder [0808.1087]

® promising powerful framework
* elastic and inelastic [+broadening] energy loss within same formalism
e same aim in different approach [Zapp, Krauss, Wiedemann [1111.6838]]
* recoils

* based on scale hierarchy
* hard scale [~ Vs~ 1] > jet scale [~ p: ~ A1] > soft radiation scale [~ A?]

* degrees of freedom
e collinear modes: p. ~ [A% A%, 2]
* soft modes: ps ~ [A?, A2, A?]
* Glauber modes [jet-medium interaction]: q ~ [A%, A2, 4]




[de]coherence of multiple emissions

bona fide description of multiple gluon radiation requires understanding of emitters
interference pattern



[de]coherence of multiple emissions

bona fide description of multiple gluon radiation requires understanding of emitters
interference pattern

qgbar antenna [radiation much softer than both emitters] as a TH lab

MAJOR EFFORT
Mehtar-Tani, Salgado, Tywoniuk [1009.2965 ... 1205.5739]
Casalderrey-Solana & lancu [1105.1760]

kL,w



[de]coherence of multiple emissions

bona fide description of multiple gluon radiation requires understanding of emitters

interference pattern
qgbar antenna [radiation much softer than both emitters] as a TH lab

MAJOR EFFORT

kJ— )y Mehtar-Tani, Salgado, Tywoniuk [1009.2965 ... 1205.5739]
Casalderrey-Solana & lancu [1105.1760]

Armesto, Ma, Martinez, Mehtar-Tani, Salgado[1207.0984]

also for initial/final state

(4
a challenge for factorization 222
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® qgbar colour coherence survival probability

L
Ameq = 1 —exp {—Eqﬁgth}

]{J_, W ® time scale for decoherence

dN A
qq

e total decoherence when L > T4

colour decoherence open up phase space for emission

large angle radiation [anti-angular ordering]
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[de]coherence of multiple emissions

bona fide description of multiple gluon radiation requires understanding of emitters
interference pattern

qgbar antenna [radiation much softer than both emitters] as a TH lab

® qgbar colour coherence survival probability

L
Ameq = 1 —exp {—Eqﬁgth}

]{J_, W ® time scale for decoherence

dN A
qq

e total decoherence when L > T4

colour decoherence open up phase space for emission

large angle radiation [anti-angular ordering] | \ o
12 1
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scales

physics driven by characteristic transverse scales
antenna separation: r = Oqgq L

medium colour correlation length: 1/Q; = (ghat L)'/2

[dipole regime] r: < Q;

pair unresolved by medium: single em

vacuum-like radiation at angles larger

[decoherence] ri > Q;

medium probes antenna structure

strong suppression of interferences

independent radiation from each cons
Qhard = max(ri', Q;) : maximum transverse momentum of induced gluon

vacuum coherence recovered for ki > Qhard



[de]coherence of multiple emissions

bona fide description of multiple gluon radiation requires understanding of emitters
interference pattern

interferences suppressed by T¢ /L
only relevant for emissions during formation time of previous gluon
in the small formation times limit

probabilistic decohered branching process via master equation for
generating functiondl Blaizot, Dominguez, lancu, Mehtar-Tani [soon]

in-medium spitting function
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[de]coherence of multiple emissions

bona fide description of multiple gluon radiation requires understanding of emitters
interference pattern

interferences suppressed by T: /L
only relevant for emissions during formation time of previous gluon
in the small formation times limit

probabilistic decohered branching process via master equation for
generating functiondl Blaizot, Dominguez, lancu, Mehtar-Tani [soon]

in-medium spitting function

2 . [(g— zp)? (q — 2p)?
’Cgc(q — ZP, Z) — p—+PAB(z) S111 [ 2k12,r €xXp | — 2k§r

kgr — \/Z(l o Z)p+quH

emerging full account of medium effect on QCD coherence




broadening

medium induced radiation off a single quark in a dense medium BDMPS-Z revisited

oooooooooooooooooooooooooooo

d g / d’k' / / : k" B kli .E
med - Lo 2k2
R, ~4w/0 dt /(277)2P(k_k’L_t)ésm (2—]{2>e f

ooooooooooooooooooooooooooooo

quantum emission/broadening
during formation time

classical broadening

Q:=4qL

-—em == mpem == == =

M 1=V

Tr = w/q

AN IMPORTANT LESSON FROM DATA

large broadening [beyond quasi-eikonal] is a prominent

dynamical mechanism for jet energy loss [dijet asymmetry]



broadening [jet collimation]

AN IMPORTANT LESSON FROM DATA

W
large broadening [beyond quasi-eikonal] is a prominent k9 (K2) ~ g7
dynamical mechanism for jet energy loss [dijet asymmetry]
® in-medium formation time for small angle and soft gluons
[vacuum] is very short (k1) ~ /4L

® democratic broadening is a large effect for soft partons

* soft radiation decorrelated from jet direction/transported w < \/qL
to large angles

e enhancement of soft fragments outside the jet

Casalderrey-Solana, Milhano, Wiedemann [1105.1760]
Qin & Muller [1012.5280]
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AN IMPORTANT LESSON FROM DATA

large broadening [beyond quasi-eikonal] is a prominent
dynamical mechanism for jet energy loss [dijet asymmetry]

® in-medium formation time for small angle and soft gluons
[vacuum] is very short

® democratic broadening is a large effect for soft partons
* soft radiation decorrelated from jet direction/transported
to large angles
e enhancement of soft fragments outside the jet

Casalderrey-Solana, Milhano, Wiedemann [1105.1760]
Qin & Muller [1012.5280]

- W

~ 79
2,

(ki) ~

w < \/qL

— (1) ~

)~

=

qL

N

T

N

12 fm




jet collimation

.ET1 —o sufficiently soft modes decorrelated [lost] from jet

w < /gL
1 i

12 fm
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jet collimation

Ero<Ery
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does not disturb azimuthal correlation



jet collimation

Event Fraction

01F
0.01 3

0.001 g

.. ET1
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O pp Vs=7.0 TeV (CMS) Q ]

PYTHIA (CMS) R I
A glL= 25 GeV2 (all jets) &
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(o]
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v
&
Vi
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&

w < \/qL

sufficiently soft modes decorrelated [lost] from jet

4
3 3 ,”,, \\\\
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Ol e -
0005101520253035
&=logl/z

does not disturb azimuthal correlation
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jet collimation

geometry

path length fluctuations with realistic nuclear profile

all distances density weighed and account for 1/ expansion

parametrized NLO jet spectrum

energy loss fluctuations

average number of vacuum gluons from MLLA [spectrum at Qo= 1 GeV]

event-by-event number of gluons with Poissonian assumption
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even
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jet collimation

geometry
path length fluctuations with realistic nuclear profile
all distances density weighed and account for 1/ expansion
parametrized NLO jet spectrum
energy loss fluctuations
average number of vacuum gluons from MLLA [spectrum at Qo= 1 GeV]
event-by-event number of gluons with Poissonian assumption
additional medium induced gluons from Gaussian distributed ‘BDMPS’ formula

path length dependent
. dl  C [ GL?
event-by-event with [independent] Poissonian assumption ~ w—— = —— v, qT

dw s
ghat is the ONLY variable parameter /
[=0.3

vacuum baseline from data [CMS]




energy dependence of dijet imbalance

dN

Nevents diL‘

ghat =17 GeV/ 2/fm

PbPb [CMS] -

PYTHIA+HYDJET [CMS]
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broadening [jet collimation]
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interplay of branching and hadronization

colour of all jet components rotated by interaction with medium

colour correlations modified with respect to vacuum case

theoretically controllable within a standard framework [opacity expansion]
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* colour properties of hadronizing system vacuum-like
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first steps towards fully colour differential framework
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interplay of branching and hadronization

colour correlations modified with respect to vacuum case

Equark=50 GeV, E_ .. gluon=5 GeV, q)gluon:O.l , T=200 MeV
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generic [robust] effects:
* softnening of hadronic specira
* |ost hardness recovered as soft multiplicity

e af work even if radiative energy loss
kinematically unviable

e survives branching after medium escape

modification of jet hadrochemistry
Aurenche & Zakharov [1109.6819]



interplay of branching and hadronization

colour correlations modified with respect to vacuum case

essential input for realistic hadronization schemes

E =50GeV, E

=5GeV, ¢ =0.1, T=200 MeV
quark gluon

radiated gluon

generic [robust] effects:

'\ I | I | I | I | I | I . .
0} — 3 * softnening of hadronic spectra
Fy -~ In-medium ISR (leading+subleading swrings)| 1 o |ost hardness recovered as soft multiplicity
! . —- In-medium ISR (only leading string) ]
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modification of jet hadrochemistry

py primary hadrons (GeV) Aurenche & Zakharov [1109.6819]

fragmentation in vacuum NOT the same as using vacuum FFs
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® prior to medium formation [T ~ 0.1 fm]
® hard skeleton defined [3-jet rates, hard frag, ...]
¢ effect of Glasma @
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life story of an in-medium jet

very appealing pQCD based overall picture

BUT

can we confidently exclude a conceptually different
scenario in which strong jet-medium coupling effects
drag energy from all jet ‘propagators’ and ‘vertices’

remain pQCD like ¢2¢

Can Gulhan, Casalderrey-Solana, Milhano, Pablos, Rajagopal

most [all?] questions asked, many [most?] being unswered



are there quasi-particles ¢

do hard probes have finite mean free paths?
all pPQCD based approaches assume so
in AdS/CFT [strong coupling] constructions

heavy quarks propagate without mean free path :: lost energy goes into Mach
cone and wake

light quarks/jets propagate towards thermalization :: no collinear structure
[hedgehog jets]



are there quasi-particles ¢

do hard probes have finite mean free paths?
all pPQCD based approaches assume so
in AdS/CFT [strong coupling] constructions

heavy quarks propagate without mean free path :: lost energy goes into Mach
cone and wake

light quarks/jets propagate towards thermalization :: no collinear structure
[hedgehog jets]

probability of large broadening larger for pQCD [~1/k¢*] than for strong coupled

[gCIUSSICIn] Prob(k™™", o)

0.06 -
rare but measurable events 005!

Weak, g=2
7 Strong, g=2
0.04 -
0.03F
0.02"

0.01"

Eramo, Lekaveckas, Liv, Rajagopal [1211.1922] 30 40 50 60 70 80 90



the truth is in data [and data is out there]

theory validation [constraining dynamics] requires

multi-observable description [Raa, Iaa (jets, hadrons), jet asym, shapes, FFs, ...]

understand specific biases [pathlength, etc.] and sensitivities to dynamical
mechanisms

AuAu 200 AGeV 0-5% centrality
trigger 8 - 15 GeV

1 T T |

‘[@ STAR data
e YalJEM-D
08l e YaJEM-DE|
. ASW
I AdS -
0.6 n
<
=
04f s
¢ -y
02r - 1 1 T J; j': 7
T 1
1 | 1 | 1 | 1
%.2 0.4 0Z 6 0.8 1 sensitivity of Iax to weight of elastic energy loss

Renk [1110.2313,1112.2503,1202.4579.1212.0646



consistency

theory validation [constraining dynamics] requires

RHIC to LHC description

n° WHDG RHIC Constrained
n° WHDG LHC Extrapolation

B ° PHENIX 0-5%
hey PHENIX 0-5%

%  hg, STAR 0-5%
® hg, ALICE 0-5% —T
o

1l@m — hen ALICE 70-80% __ % T i

Gyulassi, Horowitz [ 1104.4958]
Betz, Gyulassi [1201.0281]



consistency

theory validation [constraining dynamics] requires

assessment of importance of NLO corrections

0.8

I 0.=0.27, 6-5% centrallity —_—
0=0.27, 0-5% centrality, ?inite-size dependence
0=0.27, 0-5% centrality, finite-size dependence, running coupling ssrss

0.7 -

Raa of all charged particles

0.1 -

| | | | | | | | |
20 30 40 50 60 70 80 90 100
pr [GeVic]

MARTINI running coupling

jet reconstruction [as in exp]
Cacciari, Salam, Soyez, Quiroga [1209.6086]

response of calculables to background Apolindrio, Armesto, Cunqueiro [1211.1161]

detector response [exp unfold/ph fold :: we need to decide]



#2 probing the medium



meaningful determination of medium properties
requires embedding of faithful jet dynamics
in realistic medium description

[partly constrained elsewhere]



realistic medium

establish relationship between properties of realistic medium and parameters
effecting jet quenching

first principle [SU(2) lattice] computation of

Majumder [1202.5295]
§ = dntas fdy dyrd®hy L ik, v (P|Tr [F{(y~,y ) U (007, y1;07,y1)
N, (27)?
T'(00™, 6013007, y1)T(007, 0015007, 0. U(oo_,OL;O_,Ol)Ff;] ‘ P>
for a weakly COUpled medium Eramo, Lekaveckas, Liv, Rajagopal [1211.1922]

full embedding of probe in dynamical hydro medium [Monte Carlo]
most complete effort :: MARTINI + MUSIC

hard partons from Pythia

McGill-AMY for radiative and elastic MC efforts reviewed by

K Zapp [QM2011
3+1 hydro medium app [QM2011]



outlook

® in just over ten years jet quenching has gone from ‘an idea’ to a robust
experimental reality

® recent efforts have established a clear pathway to conclude [soon] the
‘establish the probe’ programme

* recent efforts have readied the necessary [embedding] tools for realistic

medium probing
® pA as complementary baseline [CNM]

® time to think hard about ‘new’ observables
® direct sensitivity to formation times
® sensitivity to different time and spacial scales

® jsolation of ‘pure’ sample of strongly modified jets



