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Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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“The tension”

On quantifying and resolving the BICEP2/Planck tension over gravitational waves
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The recent BICEP2 measurement of primordial gravity waves (r = 0.2+0.07
�0.05) appears to be in

tension with the upper limit from WMAP (r < 0.13 at 95% CL) and Planck (r < 0.11 at 95%
CL). We carefully quantify the level of tension and show that it is very significant (around 0.1%
unlikely) when the observed deficit of large-scale temperature power is taken into account. We show
that measurements of TE and EE power spectra in the near future will discriminate between the
hypotheses that this tension is either a statistical fluke, or a sign of new physics. We also discuss
extensions of the standard cosmological model that relieve the tension, and some novel ways to
constrain them.

PACS numbers:

The BICEP2 collaboration’s potential detection of B-
mode polarization in the cosmic background radiation
(CMB) has justifiably ignited enormous excitement, sig-
nalling as it may the opening of a powerful new window
onto the earliest moments of the big bang [1]. The impli-
cations are profound, including a possible confirmation
of cosmic inflation and exclusion of rival explanations for
the origin and structure of the cosmos.

As the BICEP2 collaboration were careful to empha-
size, there is some tension between their value of the pa-
rameter r which controls the amplitude of the gravita-
tional wave signal, relative to other experiments. BI-
CEP2 detected B-mode polarization corresponding to
r = 0.2+0.07

�0.05 (or r = 0.16+0.06
�0.05 after foreground subtrac-

tion), as compared to upper bounds from the large-scale
CMB temperature power spectrum: r < 0.13 (WMAP)
or r < 0.11 (Planck) at 95% CL [2, 3]. It is the pur-
pose of this note to quantify this discrepancy in a simple
manner, to point out that measurements of CMB polar-
ization E-modes will either sharpen or resolve it in the
near future, and to explore cosmological interpretations.

In Fig. 1, we show current measurements of the tem-
perature power spectrum CTT

l , illustrating a deficit of
power at low `. This deficit was highlighted as an impor-
tant anomaly by the Planck team [4]. However, taken
alone, it is still compatible (at the 1% level) with cosmic
variance and thus may be explained as a statistical fluc-
tuation due to our only having access to a limited sample
of the universe. BICEP2’s detection of B-mode polariza-
tion, if correctly interpreted as being due to primordial
gravitational waves, implies an additional contribution to
the large-scale temperature anisotropies. This makes it
harder to explain away the observed deficit as a statistical
fluke.

We quantify this problem as follows. We compute
likelihood functions L(r) for r inferred from WMAP,
Planck, and BICEP2 (Fig. 2). Throughout this paper,
we use “WMAP” as a shorthand for the combination
of datasets WMAP+SPT+BAO+H0, and “Planck” as

FIG. 1: Current measurements of the CMB temperature
power spectrum, from Planck (open circles), WMAP (closed
circles), ACT (squares) and SPT (triangles). Error bars in-
clude noise variance only; the shaded region represents cosmic
variance. There is a small deficit of power on large angular
scales relative to an r = 0 model (solid curve) which becomes
more statistically significant if r = 0.2 as BICEP2 suggests
(dashed curve).

a shorthand for Planck+(WMAP polarization). Notice
that the Planck likelihood peaks at negative r. Of course,
r < 0 does not make sense physically, but negative values
of r may be taken to provide a reasonable parameteriza-
tion of a possible deficit in low ` power, which avoids a

posteriori choices in the weighting in `.

We find that the Planck r-likelihood peaks 1.6� below
zero, indicating a deficit of large-scale power. The power
deficit has been extensively studied by the Planck collab-
oration [3, 4]; its formal statistical significance can be as
high as 3� if an a posteriori choice of `-range is made.
Note that the preference for negative r is hidden when
an r � 0 prior is imposed throughout the analysis (as
is typically done when quoting upper limits on r from
WMAP/Planck). Indeed, a primary purpose of this note
is to point out that the tension between Planck and BI-
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FIG. 2: 1D probability distribution functions for the
tensor-to-scalar ratio r using Planck+WP data (blue/left),
WMAP+SPT+BAO+H

0

data (green/middle), and BICEP2
data (red/right). We use the CosmoMC [5] code with the
six cosmological parameters {⌦bh

2, ⌦mh2, ⌦
⇤

, A⇣ , ⌧ , ns}
marginalized. As discussed in the text, we allow r to be nega-
tive in order to parameterize a possible power deficit on large
angular scales.

r � 0 assumed r < 0 allowed

WMAP Planck WMAP Planck

No cleaning 0.048 0.007 0.017 < 0.001

BSS cross 0.054 0.009 0.019 < 0.001

BSS auto 0.067 0.012 0.024 < 0.001

DDM1 cross 0.054 0.009 0.020 < 0.001

DDM1 auto 0.095 0.020 0.034 0.001

DDM2 cross 0.089 0.018 0.032 < 0.001

DDM2 auto 0.189 0.057 0.066 0.003

FDS cross 0.040 0.006 0.015 < 0.001

FDS auto 0.059 0.010 0.021 < 0.001

LSA cross 0.052 0.008 0.019 < 0.001

LSA auto 0.059 0.010 0.021 < 0.001

PSM cross 0.046 0.007 0.017 < 0.001

PSM auto 0.114 0.026 0.041 0.001

TABLE I: Probability measure of the tension between
Planck/WMAP and BICEP2 results, computed from the r
likelihoods using Eq. (1). (Low probabilities indicate ten-
sion). The probability depends on whether we use Planck or
WMAP data, whether we integrate over r < 0, and which of
the polarized dust models described in [1] is used. As we have
argued in the text, integrating over r < 0 takes the observed
deficit of large-scale power into account, and gives ⇡ 3� ten-
sion with Planck regardless of the dust model.

CEP2 is larger than would be expected by comparing the
r constraints with an r � 0 prior imposed.

To quantify the level of tension, we temporarily imag-
ine that our cosmological model contains two indepen-
dent parameters rT and rB , such that rT determines the
gravitational wave contribution to CTT

` and rB deter-
mines the amplitude of CBB

` . We obtain a likelihood

FIG. 3: E-mode power spectrum CEE
` (top) and dimension-

less TE correlation CTE
` /(CTT

` CEE
` )1/2 (bottom) compared

for r = 0 and r = 0.2. An r = 0.2 signal boosts CEE
` by

⇡ 30% in the range 15 ⇠< ` ⇠< 30, making E-modes more
sensitive to the tensor-to-scalar ratio r than temperature.

 L(rT ) from Planck (or WMAP) and a likelihood  L(rB)
from BICEP2, as shown in Fig. 2. Treating these likeli-
hoods as independent, which is justified since T and B
are uncorrelated, the joint likelihood in the (rB , rT )-plane
is obtained by multiplying them. If the joint likelihood
has most of its support below the diagonal rT = rB , this
provides a statistically significant detection of a deficit
in rT relative to rB . Thus we quantify the statistical
significance of the tension by computing the probability

R
rT>rB

drT drB  L(rT ) L(rB)R
drT drB  L(rT ) L(rB)

(1)

The closer this probability is to zero, the larger the ten-
sion between Planck/WMAP and BICEP2.
The results of this analysis are shown in Tab. I. It is

seen that if we integrate over negative values of r and
use Planck data, then the statistical significance of the
tension is around 3�. Our perspective is that integrat-
ing over negative r is sensible, since the observed deficit
of TT power (relative to an r = 0 model) should con-
tribute to the statistical significance of the tension. In-
deed, we will see shortly that the Planck/BICEP2 tension
can be interpreted as ⇡ 3� evidence for certain exten-
sions of the 7-parameter model: either nonzero running
↵ = dns/d log k, a blue tensor tilt nt, or a higher e↵ec-
tive number of relativistic species, which suggests that
the “true” tension is around 3�.
While this level of tension is not so high that a definite

conclusion can be drawn, it is high enough to be worth ex-
ploring further. Since large-scale temperature measure-
ments are already sample variance limited, the only way
to improve statistical errors is by measuring additional
large-scale modes. A natural source of such modes is the

10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the



• Running (unacceptably large, “rules out slow-roll inflation”) 

• A brake in the spectrum (Evidence for Bubble-nucleation event)

• Additional relativistic species (does not really look like the signal)  

Parameter Constraints

V / �

V / �2
What is agreement to some 
is tension to others.

Recall that foregrounds 
were not subtracted, and 
that there are additional 
indications r may decrease. (Spectra, covariance matrix from 

       Spergel, Flauger, Hlozek 2013)

“The tension”

Planck numbers 
may move 
around.

BiCEP numbers 
do not correct 
for foregrounds 

r ⇠ 0.2 ! 0.16

Premature discussion



Are the B modes primordial? Defects

2

improved by adding a cosmic string contribution to the
inflationary B-modes? 3) What are the implications of
the new B-mode data for the properties of cosmic string
networks?

In this paper we will refer to the tensor-to-scalar ratio
r evaluated at the scale k = 0.002Mpc�1. To model the
strings, we use the unconnected segment model (USM)
[64–68], which o↵ers the ability to mimic the CMB spec-
tra from di↵erent types of strings. The USM model was
introduced in [29, 65], based on the approach suggested
in [64], developed into its present form in [66], and imple-
mented in a publicly available code CMBACT [67]. The
string unequal time correlators of the USM model can
be derived using analytical expressions developed in [68],
which we use in this work.

In the USM, in addition to the dimensionless string
tension Gµ, there are two important parameters – the
scaling parameter ⇠, which sets the e↵ective inter-string
distance2, and the root-mean-square (RMS) velocity v.
On cosmological scales, probed by the CMB measure-
ments, the fine details of the string evolution do not play
a major role. It is the large-scale properties, such as the
scaling distance and the rms velocity, that determine the
shape of the string-induced spectra. The overall normal-
ization of the spectrum depends on Gµ as well as the
string number density, controlled by ⇠.

The advantage of working with the USM is that one
can quickly scan over spectra of many di↵erent types
of cosmic defects to see if any of them happen to be
favoured by data. Of course, this requires that USM is
able to provide a satisfactory fit to the CMB spectra or,
equivalently, to the stress-energy unequal time correla-
tors (UETC), derived from available numerical simula-
tions. For instance, it was shown in [36] that the USM
can reproduce the CMB spectra derived from the sim-
ulations of local strings by [49, 51, 52]. Fits to UETC
from simulations by other groups [69–71] can also be per-
formed, but are not available at this time.

The thin red short dashed line in Fig. 1 shows a typical
B-mode spectrum generated by local strings. It is primar-
ily sourced by vector modes and has two peaks. The less
prominent peak at ` ⇠ 10 is due to rescattering of pho-
tons during reionization, while the main peak, at higher
`, is the contribution from last scattering. Both peaks
are quite broad because a string network seeds fluctua-
tions over a wide range of scales at any given time. The
position of the main peak is determined by the most dom-
inant Fourier mode stimulated at last scattering, which
is set by the values of ⇠ and v [50]. The power tends
to move to lower multipoles (larger angular scales) when

2 ⇠ ⌘ La/⌘, where L is the mean inter-string distance (related to
the string energy density via ⇢s = µ/L2), and ⌘ is the conformal
time. We stress that ⇠ is an e↵ective parameter in the USM
model, and ⇠ > 1 does not necessarily imply presence of super-
horizon correlations in the model whose spectra are reproduced
by the USM.
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FIG. 1. The thick blue long dashed line is the best fit lens-
ing+strings model (r=0), with the thin blue long dashed line
showing the corresponding string contribution alone. The
thick red short dash is the best fit lensing+strings+inflation
model (r=0.15), with the corresponding string contribution
plotted as a thin red short dashed line. The lensing contri-
bution is shown separately with a thin black dot-dashed line.
The BICEP2 best fit inflationary model (r=0.2) contribution
is shown with a thin black dotted line, and the solid thin black
line is the sum of r=0.2 and lensing contributions. The circles
show the band powers measured by BICEP2 and the triangles
are the POLARBEAR data (the third band is negative with
its absolute value plotted as an inverted triangle).

either v or ⇠ are increased. Increasing v also increases
the width of the peak. In fact, because v < 1 sets a
maximum scale, it takes a large increase in ⇠ to move the
peak to the left (to lower `) even by a small amount.
Let us briefly comment on how we quantity the string

contribution to CMB. Bounds on cosmic string are often
quoted solely in terms of Gµ. Such bounds implicitly
assume the scaling configuration of local strings in the
Abelian Higgs model, where at any time there is roughly
one Hubble length string per Hubble volume. More gen-
erally, the bound on strings depends on the combination
of Gµ and the string number density3 Ns / ⇠�2. Typ-
ically, ⇠ . 1, but can be much smaller in models with
lower intercommuting probabilities. Moreover, di↵erent
types of observations probe di↵erent combinations of ⇠
and µ. As shown in [42], CMB power spectra (and other
two-point correlation functions) constrain µ

p
Ns ⇠ µ/⇠,

while gravity wave probes essentially constrain the string
energy density given by µ/⇠2. To avoid the model-
dependence when interpreting the CMB bounds in terms

3 In the one-scale model, Ns / ⇠�3. However, the inter-string dis-
tance, which can be very small in models with lower intercom-
mutation probabilities, need not to be the same as the coherence
scale along the string, which remains of O(H�1).

Moss & 
Pogosian1403.6105
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Can topological defects mimic the BICEP2 B-mode signal?
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Université de Genève, Quai E. Ansermet 24, CH-1211 Genève 4, Switzerland
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We show that the B-mode polarization signal detected at low multipoles by BICEP2 cannot be
entirely due to topological defects. This would be incompatible with the high-multipole B-mode
polarization data and also with existing temperature anisotropy data. Adding cosmic strings to a
model with tensors, we find that B-modes on their own provide a comparable limit on the defects
to that already coming from Planck satellite temperature data. We note that strings at this limit
give a modest improvement to the best-fit of the B-mode data, at a somewhat lower tensor-to-scalar
ratio of r ! 0.15.

I. INTRODUCTION

The detection of low-multipole B-mode polarization
anisotropies by the BICEP2 project [1] opens a new ob-
servational window on models that generate the primor-
dial perturbations leading to structure formation. The
leading candidate to explain such a B-mode signal is pri-
mordial gravitational wave (tensor) perturbations gener-
ated by the inflationary cosmology. For a tensor-to-scalar
ratio r of around 0.2, these give a good match to the spec-
tral shape in the region ! ! 40 – 150, while falling some
way short of the observed signal at higher multipoles for
reasons yet to be uncovered.
An alternative mechanism of generating primordial B-

modes is the presence of an admixture of topological de-
fects (see e.g. Refs. [2–6] for reviews). Many inflation
scenarios, particularly of hybrid inflation type, end with
a phase transition. Defect production at such a transi-
tion is natural and plausibly a sub-dominant contributor
to the total temperature anisotropy. Many papers have
used recent data to impose constraints on the fraction of
defects, typically obtaining limits of a few percent contri-
bution to the large-angle temperature anisotropies [7–13].
The tensor and defect spectra were previously compared
in Refs. [14, 15].
An important question then arises: does the observed

B-mode polarization confirm the existence of a primor-
dial gravitational wave background due to inflationary
dynamics in the early Universe, or could it instead be
entirely due to the presence of topological defects? In
this Letter we show that topological defects alone cannot
explain the BICEP2 data points.

II. B-MODE CONSTRAINTS FROM BICEP2

As with inflationary tensors, a distinctive signature
of topological defects lies in the B-mode polarization,
where the signal is not masked by a dominant contri-
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FIG. 1: The CMB temperature and polarization power spec-
tra contributions from inflationary scalar modes (black solid),
inflationary tensor modes (black dashed), and cosmic strings
(blue dot-dashed) [16]. The inflationary tensors have r = 0.2
while the string contribution has f10 = 0.03.

bution from inflationary scalars. Figure 1 shows a com-
parison of cosmic microwave background (CMB) spec-
tra predicted from inflation with those of cosmic strings
as computed via field theory simulations1 by Bevis et
al. [16, 20], for a particular value of f10 near the Planck

upper limit (where f10 is the fractional contribution of
defects to the temperature anisotropies at ! = 10). The
scalar B-mode spectrum being the one inevitably pro-
duced by lensing of the scalar E-modes. In the B-mode
channel the string spectrum has a quite different shape to
the inflationary tensors, peaking towards smaller scales.

1 Strings can also be studied in the Nambu–Goto approximation,
most recently in Ref. [17]. However, the shapes of the cosmic
string CMB spectra are reasonably generic and can be under-
stood from simple modelling [9, 18, 19]. There are significant
differences in other observational constraints: for a review see
Ref. [6].
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FIG. 2: B-mode polarization power spectra for textures
(dashed black), semilocal strings (solid red), and Abelian
Higgs strings (dot-dash blue). All the curves are normalized
to make the temperature spectra match the Planck ! = 10
value. We see that all these types of topological defects pre-
dict similar shapes in the BICEP2 data range 30 ! ! ! 300.

Figure 2 shows the B-mode polarization spectra for sev-
eral classes of defects (textures, semilocal strings, and
Abelian Higgs strings [21]), showing that they share the
same general shape in the multipole range of interest. We
focus on cosmic strings (using the Abelian Higgs model)
as a specific example for the remainder of this work.
We first attempt to match the cosmic string B-mode

spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ! < 100 by substantially over-
predicting the high multipole data (! > 100). In detail,
we see that we need f10 ! 0.3 to generate the necessary
power at ! = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher !.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ! = 10 far larger than the maximum allowed
by Planck, as shown in the upper panel of Figure 3. We
show the defect contributions to the temperature spec-
trum as the blue-dotted curves, with the required con-
tributions to match the B-mode polarization amplitude
at ! = 80 as the highest blue-dotted curve (which corre-
sponds to f10 = 0.3). The solid back line is the best-fit
ΛCDM model, while the grey dashed line shows the sum
of the f10 = 0.3 string prediction with the Planck best-
fit ΛCDM model. The model in which strings match
the B-mode polarization amplitude at ! = 80 is clearly
incompatible with the temperature data. Allowing the
parameters of the ΛCDM model to vary does not help:
the 95% upper limit from Planck is around 0.03 to 0.055
depending on the type of defect [13].
We can therefore immediately conclude that defects

do not provide an alternative to inflationary tensors in
explaining the observed data.
We can also use the B-mode data to constrain the con-

tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ! = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model.

contribute significantly, as anticipated in Refs. [22, 23].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ! ! 200 (as an alterna-
tive to the more prosaic possible explanations of a fore-
ground contribution or undiscovered systematic), while
a fraction above about 0.06 is disfavoured. It is note-
worthy that the first detection of the B-modes already
gives a limit on defects which is competitive with that
from the temperature spectrum. This conclusion can of
course only strengthen if some or all of the BICEP2 signal
turns out not to be cosmological.

lations,

CT l = 2π
∫ π

0
θdθ CT (θ) J0(lθ)

CEl = 2π
∫ π

0
θdθ {[CQ(θ) + CU(θ)] J0(lθ) + [CQ(θ) − CU(θ)] J4(lθ)}

CBl = 2π
∫ π

0
θdθ {[CQ(θ) + CU(θ)] J0(lθ) − [CQ(θ) − CU(θ)] J4(lθ)}

CCl = −2π
∫ π

0
θdθ CC(θ) J2(lθ). (2.29)

2.1.3 Analysis of All-Sky Maps

In this section we discuss issues related to simulating and analyzing all-sky polar-

ization and temperature maps. This should be specially useful for future satellite

missions [9, 10], which will measure temperature anisotropies and polarization over

the whole sky with high angular resolution. Such an all-sky analysis will be of partic-

ular importance if reionization and tensor fluctuations are important, in which case

polarization will have useful information on large angular scales (Chapter 4), where

Fourier analysis (i.e. division of the sky into locally flat patches) is not possible. In

addition, it is important to know how to simulate an all-sky map which preserves

proper correlations between neighboring patches of the sky and with which small

scale analysis can be tested for possible biases.

To make an all-sky map we need to generate the multipole moments aT,lm, aE,lm

and aB,lm. This can be done by a generalization of the method given in [5]. For each l

one diagonalizes the correlation matrix M11 = CT l, M22 = CEl, M12 = M21 = CCl and

generates from a normalized gaussian distribution two pairs of random numbers (for

real and imaginary components of al±m). Each pair is multiplied with the square root

of eigenvalues of M and rotated back to the original frame. This gives a realization of

aT,l±m and aE,l±m with correct cross-correlation properties. For aB,l±m the procedure

is simpler, because it does not cross-correlate with either T or E, so a pair of gaussian

random variables is multiplied with C1/2
Bl to make a realization of aB,l±m.

Once aE,lm and aB,lm are generated we can form their linear combinations a2,lm

and a−2,lm. Finally, to make a map of Q(n̂) and U(n̂) in the sky we perform the

26

Location of peak 
constrained by 

Causality. 

�✓ ⇡ 2o



Back to the 80’s

L(�) = �1

2
(@�)2 � 1

2
m2�2

V 1/4 ⇠ 1016 GeV

H ⇠ 1014 GeV

m ⇠ 1013 GeV

Mpl ⇠ 1018 GeV

• Flat Universe
• Primordial Fluctuations
• Almost scale invariant with red tilt (ns-1 = - 4/N)
• No fluctuations in the composition
•  Very small departures from Gaussianity, unobservable now
• Large tensor modes 
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The parameters of the scalar and tensor power spectra may
be calculated approximately in the framework of the slow-roll
approximation by evaluating the following equations at the value
of the inflation field �⇤ where the mode k⇤ = a⇤H⇤ crosses the
Hubble radius for the first time. (For a nice review of the slow-
roll approximation, see for example Liddle & Lyth (1993)). The
number of e-folds before the end of inflation, N⇤, at which the
pivot scale k⇤ exits from the Hubble radius, is

N⇤ =
Z te

t⇤
dt H ⇡ 1

M2
pl

Z �e

�⇤
d�

V
V�
, (12)

where the equality holds in the slow-roll approximation, and
subscript ‘e’ refers to the end of inflation.

The coefficients of Eqs. 10 and 11 at their respective leading
orders in the slow-roll parameters are given by

As ⇡ V
24⇡2M4

pl✏V
(13)

At ⇡ 2V
3⇡2M4

pl

(14)

ns � 1 ⇡ 2⌘V � 6✏V (15)
nt ⇡ �2✏V (16)

dns/d ln k ⇡ �16✏V⌘V + 24✏2V + 2⇠2V (17)

dnt/d ln k ⇡ �4✏V⌘V + 8✏2V (18)

d2ns/d ln k2 ⇡ �192✏3V + 192✏2V⌘V � 32✏V⌘2
V

� 24✏V⇠2V + 2⌘V⇠
2
V + 2$3

V ,
(19)

where the slow-roll parameters ✏V and ⌘V are defined in Eqs. 5
and 6, and the higher order parameters are defined as follows

⇠2V =
M4

plV�V���
V2 , (20)

and

$3
V =

M6
plV

2
�V����

V3 . (21)

In single field inflation with a standard kinetic term, as dis-
cussed here, the tensor spectrum shape is not independent from
the other parameters. The slow-roll paradigm implies a tensor-
to-scalar ratio, at the pivot scale, of

r =
Pt(k⇤)
PR(k⇤)

⇡ 16✏ ⇡ �8nt , (22)

referred to as the consistency relation. This consistency relation
is also useful to understand how r is connected to the evolution
of the inflaton:

��

Mpl
⇡ 1p

8

Z N

0
dN
p

r . (23)

The above relation, called the Lyth bound (Lyth, 1997), im-
plies that an inflaton variation of the order of the Planck mass
is needed to produce r & 0.01. Such a threshold is useful to
classify large and small field inflationary models with respect to
the Lyth bound.

2.3. Ending inflation and the epoch of entropy generation

The greatest uncertainty in calculating the perturbation spectrum
predicted from a particular inflationary potential arises in estab-
lishing the correspondence between the comoving wavenumber
today, and the inflaton energy density when the mode of that
wavenumber crossed the Hubble radius during inflation (Kinney
& Riotto, 2006). This correspondence depends both on the infla-
tionary model and on the cosmological evolution from the end
of inflation to the present.

After the slow-roll stage, �̈ becomes as important as the cos-
mological damping term 3H�̇. Inflation ends gradually as the
inflaton picks up kinetic energy so that w is no longer slightly
above �1, but rather far from that value. We may arbitrarily
deem that inflation ends when w = �1/3 (the value dividing
the cases of an expanding and a contracting comoving Hubble
radius), or, equivalently, at ✏V ⇡ 1, after which the epoch of
entropy generation starts. Because of couplings to other fields,
the energy initially in the form of scalar field vacuum energy
is transferred to the other fields by perturbative decay (reheat-
ing), possibly preceded by a non-perturbative stage (preheating).
There is considerable uncertainty about the mechanisms of en-
tropy generation, or thermalization, which subsequently lead to
a standard w = 1/3 equation of state for radiation.

On the other hand, if we want to identify some k⇤ today with
the value of the inflaton field at the time this scale left the hori-
zon, Eq. 12 needs to be matched to an expression that quantifies
how much k⇤ has shrunk relative to the size of the horizon be-
tween the end of inflation and the time that mode re-enters the
horizon. This quantity depends both on the inflationary potential
and the details of the entropy generation process, and is given by

N⇤ ⇡ 71.21 � ln
 

k⇤
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1
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+
1 � 3wint
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⇢end
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,

(24)

where ⇢end is the energy density at the end of inflation, ⇢th is
an energy scale by which the Universe has thermalized, a0H0 is
the present horizon scale, Vhor is the potential energy when the
present horizon scale left the horizon during inflation, and wint
characterizes the effective equation of state between the end of
inflation and the energy scale specified by ⇢th. In predicting the
primordial power spectra at observable scales for a specific in-
flaton potential, this uncertainty in the reheating history of the
Universe becomes relevant and can be taken into account by al-
lowing N⇤ to vary over a range of values. Note that wint is not
intended to provide a detailed model for entropy generation, but
rather to parameterize the uncertainty regarding the expansion
rate of the Universe during this intermediate era. Nevertheless,
constraints on wint provide observational limits on the uncertain
physics during this period.

The first two terms of Eq. 24 are model independent, with
the second term being roughly 5 for k⇤ = 0.05 Mpc�1. If ther-
malization occurs rapidly, or if the reheating stage is close to
radiation-like, the magnitude of the last term in Eq. 24 is . 1.
For most reasonable inflation models, the fourth term isO(1) and
the third term ⇠ �10, motivating the commonly assumed range
50 < N⇤ < 60. Nonetheless, more extreme values on both ends
are in principle possible (Liddle & Leach, 2003). In the figures
of Sect. 4 we will mark the range 50 < N⇤ < 60 to guide the
reader’s eye.

28.4.1 No Shift Symmetry

In the absence of any special symmetries, the potential in large-field inflation becomes sensitive

to an infinite series of Planck-suppressed operators. The physical interpretation of these terms

is as follows: as the inflaton expectation value changes, any other fields � to which the inflaton

couples experience changes in mass, self-coupling, etc. In particular, any field coupled with at least

gravitational strength to the inflaton experiences significant changes when the inflaton undergoes a

super-Planckian excursion. These variations of the � masses and couplings in turn feed back into

changes of the inflaton potential and therefore threaten to spoil the delicate flatness required for

inflation. Note that this applies not just to the light degrees of freedom, but even to fields with

masses near the Planck scale: integrating out Planck-scale degrees of freedom generically (i.e., for

couplings of order unity) introduces Planck-suppressed operators in the e↵ective action. For nearly

all questions in particle physics, such operators are negligible, but in inflation they play an important

role.

The particular operators which appear are determined, as always, by the symmetries of the low-

energy action. As an example, imposing only the symmetry � ! �� on the inflaton leads to the

following e↵ective action:

Le↵(�) = �1

2
(@�)2 � 1

2
m2�2 � 1

4
��4 �

1X

p=1

⇥
�p�

4 + ⌫p(@�)2
⇤✓ �

Mpl

◆2p

+ · · · . (357)

Unless the UV theory enjoys further symmetries, one expects that the coe�cients �p and ⌫p are of

order unity. Thus, whenever � traverses a distance of order Mpl in a direction that is not protected

by a suitably powerful symmetry, the e↵ective Lagrangian receives substantial corrections from an

infinite series of higher-dimension operators. In order to have inflation, the potential should of

course be approximately flat over a super-Planckian range. If this is to arise by accident or by fine-

tuning, it requires a conspiracy among infinitely many coe�cients, which has been termed ‘functional

fine-tuning’ (compare this to the eta problem which only requires tuning of one mass parameter).

28.4.2 Shift Symmetry

There is a sensible way to control this infinite series of corrections: one can invoke an approximate

symmetry that forbids the inflaton from coupling to other fields in any way that would spoil the

structure of the inflaton potential. Such a shift symmetry,

� ! � + const. , (358)

protects the inflaton potential in a natural way.

In the case with a shift symmetry, the action of chaotic inflation [108]

Le↵(�) = �1

2
(@�)2 � �p �p , (359)

with small coe�cient �p is ‘technically natural’. However, because we require that this symmetry

protects the inflaton even from couplings to Planck-scale degrees of freedom, it is essential that

the symmetry should be approximately respected by the Planck-scale theory – in other words, the
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Shift symmetry forbids these terms

Symmetry needs to be respected by quantum gravity
For a while there were no example in ST so it was conjectured that 
you could not get gravity waves. 
Now there is a counter example: axion monodromy

During slow-roll evolution, r(N) doesn’t evolve much and one may obtain the following approximate

relation [27]

��

Mpl
= O(1) ⇥

⇣ r

0.01

⌘1/2
, (221)

where r(Ncmb) is the tensor-to-scalar ratio on CMB scales. Large values of the tensor-to-scalar ratio,

r > 0.01, therefore correlate with �� > Mpl or large-field inflation.

13 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are

�2
s (k) ⌘ �2

R(k) =
1

8⇡2

H2

M2
pl

1

"

�����
k=aH

, (222)

�2
t (k) ⌘ 2�2

h(k) =
2

⇡2

H2

M2
pl

�����
k=aH

, (223)

where

" = �d ln H

dN
. (224)

The horizon crossing condition k = aH makes (222) and (223) functions of the comoving wavenumber

k. The tensor-to-scalar ratio is

r ⌘ �2
t

�2
s

= 16 "? . (225)

13.1 Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of the Hubble parameter and

is quantified by the spectral indices

ns � 1 ⌘ d ln �2
s

d ln k
, nt ⌘ d ln �2

t

d ln k
. (226)

We split this into two factors
d ln �2

s

d ln k
=

d ln �2
s

dN
⇥ dN

d ln k
. (227)

The derivative with respect to e-folds is

d ln �2
s

dN
= 2

d ln H

dN
� d ln "

dN
. (228)

The first term is just �2" and the second term may be evaluated with the following result from

Appendix D
d ln "

dN
= 2(" � ⌘) , where ⌘ = �d ln H,�

dN
. (229)

The second factor in Eqn. (227) is evaluated by recalling the horizon crossing condition k = aH, or

ln k = N + ln H . (230)
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Other sources of GW during inflation

�̇2 >> H4 Perhaps you can tap to this source of 
energy and create some GW.  

Be careful:  You also create scalars

r = 16✏ ! 16✏↵ ⇠ 16✏2
BICEP level so large that it is difficult to 
hide the scalars. They must be the ones we 
observe ! ✏ ⇠ 0.1

Need to worry about Gaussianity

Senatore, Silverstein and MZ, Mirbabayi

This kind of scenario can barely be made to work. 
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Effective theory of inflation: Chung, Creminelli, Fitzpatrick, Kaplan & Senatore. 0709.0293

Use the measured time in the clock as the time coordinate. 
The clock disappears from the action, everything is in the metric.  
Can still make time dependent transformations of the spatial 
coordinates but time has been fixed. Terms must respect the residual 
symmetry. 

1 Introduction

There are two kind of multifield inflation: the ones with other light fields, and the ones with
a gas of particles.

2 E�ective Field Theory of Single Clock Inflation

In this section we briefly review the e�ective action for single clock inflation. This e�ective
action was developed in [1, 2] and we refer the reader to those papers for a detailed explanation.
The construction of the e�ective theory is based on the following consideration. In a quasi
de Sitter background with only one relevant degree of freedom, there is a privileged spatial
slicing, given by the physical clock which allows us to smoothly connect to a decelerated
hot Big Bang evolution. The slicing is usually realized by a time evolving scalar ⇥(t). To
describe perturbations around this solution one can choose a gauge where the privileged slicing
coincides with surfaces of constant t, i.e. �⇥(⇣x, t) = 0. In this ‘unitary’ gauge there are no
explicit scalar perturbations, but only metric fluctuations. As time di�eomorphisms have
been fixed and are not a gauge symmetry anymore, the graviton now describes three degrees
of freedom: the scalar perturbation has been eaten by the metric. One therefore can build
the most generic e�ective action with operators that are functions of the metric fluctuations
and that are invariant under the linearly-realized time-dependent spatial di�eomorphisms. As
usual with e�ective field theories, this can be done in a low energy expansion in fluctuations
of the fields and derivatives. We obtain the following Lagrangian [1, 2]:

SE.H. + S.F. =

�
d4x

⇥
�g

⇥1

2
M2

PlR + M2
PlḢg00 �M2
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2
�Kµ

⇥�K
⇥
µ + ...

⇤
, (1)

where we denote by �Kµ⇥ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⇥ = Kµ⇥ � a2Hhµ⇥ with hµ⇥ being the induced
spatial metric, and where M2,3 and M̄1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. Together with
the second and third term, these are the only three terms starting linearly in the metric
fluctuations. The coe⌅cients have been carefully chosen to ensure that in the combination of
these three terms the linear terms in the fluctuations cancel, and the action start quadratic in
the fluctuations. The terms in the second line start quadratic in the fluctuations and there are
no derivatives acting on the metric fluctuations, while the terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or
in derivatives. In [1] it is proven that this action for single field inflation is the most general
one and it is indeed unique.

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time

2

Expansion in fluctuations and in derivatives. Coefficients in the first line are such 
that the action starts quadratic.

This Lagrangian is both general and unique. It describes 3 degrees of freedom.
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de Sitter background with only one relevant degree of freedom, there is a privileged spatial
slicing, given by the physical clock which allows us to smoothly connect to a decelerated
hot Big Bang evolution. The slicing is usually realized by a time evolving scalar ⇥(t). To
describe perturbations around this solution one can choose a gauge where the privileged slicing
coincides with surfaces of constant t, i.e. �⇥(⇣x, t) = 0. In this ‘unitary’ gauge there are no
explicit scalar perturbations, but only metric fluctuations. As time di�eomorphisms have
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of freedom: the scalar perturbation has been eaten by the metric. One therefore can build
the most generic e�ective action with operators that are functions of the metric fluctuations
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Has one more derivative. 
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1 Introduction

There are two kind of multifield inflation: the ones with other light fields, and the ones with
a gas of particles.

2 E�ective Field Theory of Single Clock Inflation

In this section we briefly review the e�ective action for single clock inflation. This e�ective
action was developed in [1, 2] and we refer the reader to those papers for a detailed explanation.
The construction of the e�ective theory is based on the following consideration. In a quasi
de Sitter background with only one relevant degree of freedom, there is a privileged spatial
slicing, given by the physical clock which allows us to smoothly connect to a decelerated
hot Big Bang evolution. The slicing is usually realized by a time evolving scalar ⇥(t). To
describe perturbations around this solution one can choose a gauge where the privileged slicing
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these three terms the linear terms in the fluctuations cancel, and the action start quadratic in
the fluctuations. The terms in the second line start quadratic in the fluctuations and there are
no derivatives acting on the metric fluctuations, while the terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or
in derivatives. In [1] it is proven that this action for single field inflation is the most general
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This Lagrangian is not quadratic, there are interactions. 

There is a minimum level of interactions coming from the terms that are 
fixed by the cosmic history. This level is small but not minuscule. 

Only get scale invariant fluctuations from the clock around an inflationary 
background. 



1 Introduction

There are two kind of multifield inflation: the ones with other light fields, and the ones with
a gas of particles.

2 E�ective Field Theory of Single Clock Inflation

In this section we briefly review the e�ective action for single clock inflation. This e�ective
action was developed in [1, 2] and we refer the reader to those papers for a detailed explanation.
The construction of the e�ective theory is based on the following consideration. In a quasi
de Sitter background with only one relevant degree of freedom, there is a privileged spatial
slicing, given by the physical clock which allows us to smoothly connect to a decelerated
hot Big Bang evolution. The slicing is usually realized by a time evolving scalar ⇥(t). To
describe perturbations around this solution one can choose a gauge where the privileged slicing
coincides with surfaces of constant t, i.e. �⇥(⇣x, t) = 0. In this ‘unitary’ gauge there are no
explicit scalar perturbations, but only metric fluctuations. As time di�eomorphisms have
been fixed and are not a gauge symmetry anymore, the graviton now describes three degrees
of freedom: the scalar perturbation has been eaten by the metric. One therefore can build
the most generic e�ective action with operators that are functions of the metric fluctuations
and that are invariant under the linearly-realized time-dependent spatial di�eomorphisms. As
usual with e�ective field theories, this can be done in a low energy expansion in fluctuations
of the fields and derivatives. We obtain the following Lagrangian [1, 2]:

SE.H. + S.F. =

�
d4x

⇥
�g

⇥1

2
M2

PlR + M2
PlḢg00 �M2

Pl(3H
2 + Ḣ) +

+
1

2!
M2(t)

4(g00 + 1)2 +
1

3!
M3(t)

4(g00 + 1)3 +

�M̄1(t)3

2
(g00 + 1)�Kµ

µ �
M̄2(t)2

2
�Kµ

µ
2 � M̄3(t)2

2
�Kµ

⇥�K
⇥
µ + ...

⇤
, (1)

where we denote by �Kµ⇥ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⇥ = Kµ⇥ � a2Hhµ⇥ with hµ⇥ being the induced
spatial metric, and where M2,3 and M̄1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. Together with
the second and third term, these are the only three terms starting linearly in the metric
fluctuations. The coe⌅cients have been carefully chosen to ensure that in the combination of
these three terms the linear terms in the fluctuations cancel, and the action start quadratic in
the fluctuations. The terms in the second line start quadratic in the fluctuations and there are
no derivatives acting on the metric fluctuations, while the terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or
in derivatives. In [1] it is proven that this action for single field inflation is the most general
one and it is indeed unique.

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
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Could there be more interesting dynamics ?



Lowering the braking scale

this does not necessarily need to be the case. To describe perturbations around this solution
one can choose a gauge where the privileged slicing coincides with surfaces of constant t, i.e.
��(~x, t) = 0. In this ‘unitary’ gauge there are no explicit scalar perturbations but only metric
fluctuations. As time di↵eomorphisms have been fixed and are not a gauge symmetry any-
more, the graviton now describes three degrees of freedom: the scalar perturbation has been
eaten by the metric. One therefore can build the most generic e↵ective action with operators
that are functions of the metric fluctuations and that are invariant under the linearly-realized
time-dependent spatial di↵eomorphisms. As usual with e↵ective field theories, this can be
done in a low energy expansion in fluctuations of the fields and derivatives. We obtain the
following Lagrangian [6, 15]:

S =

Z
d4x

p
�g

h 1

2
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Pl

R + M2

Pl

Ḣg00 � M2

Pl

(3H2 + Ḣ) +
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1
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�M̄
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2
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2
�Kµ

µ
2 � M̄

3

(t)2

2
�Kµ

⌫�K
⌫
µ + ...
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,(1)

where we denote by �Kµ⌫ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⌫ = Kµ⌫ � a2Hhµ⌫ with hµ⌫ being the induced
spatial metric, and where M

2,3 and M̄
1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. The first
three terms are the only ones that start linearly in the metric fluctuations. The coe�cients
have been carefully chosen to ensure that when combined the linear terms in the fluctuations
cancel. The action must start quadratic in the fluctuations. The terms in the second line start
quadratic in the fluctuations and have no derivatives. The terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or in
derivatives. This is the most general action for single field inflation and in fact it is unique [6].

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
di↵eomorphism (Stückelberg trick) to reintroduce the Goldstone boson which non-linearly
realizes this symmetry. In analogy with the equivalence theorem for the longitudinal com-
ponents of a massive gauge boson [19], the physics of the Goldstone decouples from the two
graviton helicities at high enough energies, equivalently the mixing can be neglected. The
detailed study of [6, 7] shows that in most situations of interest this is indeed the case and
one can neglect the metric fluctuations1.

As anticipated, we reintroduce the Goldstone boson (⇡) by performing a broken time-di↵.,
calling the parameter of the transformation �⇡, and then declaring ⇡ to be a field that under
time di↵.s of the form t ! t + ⇠0(x) transforms as

⇡(x) ! ⇡̃(x̃(x)) = ⇡(x)� ⇠0(x) . (2)

In this way di↵. invariance is restored at all orders. For example the terms containing g00 in

1Equivalently, the neglected e↵ects are suppressed by slow-roll parameters or by powers of H/MPl.
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pairs of rows in the table.

This “two-way” null test can be generalized to an N -way null test that tests mutual
consistency between f orth

NL estimates obtained in all N rows of the table. We represent the

f orth
NL estimates as a length-N vector fi, and compute the N -by-N covariance matrix Cij

using Monte Carlo simulations with shared CMB and noise realizations. We then compute

an overall best-fit f orth
NL value F which minimizes χ2 = (fi−F )C−1ij (fj−F ). If the N estimates

are mutually consistent, then the value of χ2 at the minimum will be distributed as a χ2

random variable with (N − 1) degrees of freedom.

We find that the channel-channel null tests are marginal. The N -way null test gives

χ2 = 16.3 with 8 degrees of freedom, corresponding to one-sided probability p = 0.038. The
most discrepant pair of rows in Table 16 is (W,W4), which differ by 3.2σ relative to Monte
Carlo simulations. This statistical significance should not be taken at face value since there

are 36 matrix entries in Table 16, and we have chosen the most anomalous one. However, if
we construct the same matrix for each member of an ensemble of simulations, we find that

the probability that at least one pair of rows is discrepant by > 3.2σ is 2.6%. Finally, we
observe that the discrepancy between V-band and W-band channels, which is in some sense

the most natural split, is 2.3σ, corresponding to probability p = 0.021.

We conclude that there is some tension in the channel-channel null tests, with p-value

around a few percent depending on which test is chosen. Since we have also considered
null tests that pass cleanly (i.e. the tests based on scale dependence and sky location),

our interpretation is that one failure at the few-percent level does not indicate systematic
contamination, although the discrepancy between V-band and W-band is a slight concern.
We therefore cautiously proceed to discuss the physical implications of the non-Gaussianity

constraints.

We opt to work in the context of single-field inflation, and use the effective field theory
developed in Cheung et al. (2008a,b). The EFT provides a master Lagrangian which is
general enough to describe almost all single-field models of inflation. The action consists of

a standard kinetic term, plus small interaction terms whose coefficients parameterize allowed
non-Gaussianity:

S =

∫
d4x

√
−g

[

−M2
PlḢ

c2s

(
π̇2 − c2s

(∂iπ)2

a2

)
+ (M2

PlḢ)
1− c2s
c2s

(
π̇(∂iπ)2

a2
+

A

c2s
π̇3

)
+ · · ·

]

(56)
Non-Gaussianity is parameterized by a dimensionless sound speed cs, and a dimensionless pa-
rameter A that represents the ratio between the coefficients the operators of π̇3 and π̇(∂iπ)2.

We treat cs and A as free parameters, but specific models will make predictions. For ex-



Energy ScalesEnergy

H

⇤b

⇤4
b = 2M2
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Enhanced scalar fluctuations

r = 16✏cs

Speed of sound

cs ⇠ 1BICEP 

cs > 0.02(non-G Planck) ✏ ⇠ 1

non-G no longer useful to constrain cs

ns � 1 ⇢ 6✏
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Could there be more interesting dynamics ?
Could the fluctuations we see not be those of the clock?

Additional light states



Other Light fields

Operator Dispersion Type Origin Squeezed L.

w = csk w / k2

�̇4 , �̇2(@i�)2 , (@i�)4 X Ad., Iso. Ab., non-Ab.

(@µ�)4 X Ad., Iso. Ab., non-Ab.

�̇p(@i@j�)(4�p) X Ad., Iso. Ab.

�4 X X Ad., Iso. Ab.s, non-Ab.s, S. X

�̇�3 X X Ad., Iso. Ab.†s, non-Ab.†s. X

�2�̇2 , �2(@i�)2 X X†? Ad.†?, Iso. non-Ab, Ab.†s
?, non-Ab.†s

?, X

�2(@µ�)2 X Ad.†?, Iso. non-Ab, Ab.†s
?, non-Ab.†s

?, S.? X

�(@�)3 X Iso. non-Ab.?s. X

�̇3 , �̇(@i�)2 X Ad., Iso. Ab., non-Ab.

�̇(@i�)2 , @2
j�(@i�)2 X Ad., Iso. Ab.

�3 X X Ad., Iso. Ab.s, non-Ab.s, S, R X

�̇�2 X X Ad., Iso. Ab.s, non-Ab.s X

��̇2 , �(@i�)2 X X Ad., Iso. Ab.†s
?, non-Ab.†s

? X

�(@µ�)2 X Ad., Iso. Ab.†s
?, non-Ab.†s

?. X

Table 1: Signatures in Multi-field Inflation. In the first column we give the operator generating the

non-Gaussian signal: operators quartic in the �’s lead to a four-point function, operators cubic in the

�’s lead to a three-point function. In the second and third columns we explain with which dispersion

relation the signal can be generated. In the third we explain if the signal can appear in the Adiabatic

(Ad.) or the Isocurvature (Iso.) fluctuations. In the fourth we state the potential origin of the signal.

Here Ab. stands for Abelian; non-Ab. stands for non-Abelian, S stands for supersymmetry, and

R stands for generated by non-linearities at reheating. The subscript s indicates that the term is

generated by soft-breaking terms. The symbol † represents that such a signal can be generated in the

case the soft symmetry breaking term is such that it forbids some of the lowest dimensional terms.

The symbol ? represents the fact that the signal is in general subleading, but still possibly detectable.

In the last column we explicitly mention if the induced signal has a non-vanishing squeezed limit

and is therefore detectable also in clustering statistics of collapsed objects.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. The first
three terms are the only ones that start linearly in the metric fluctuations. The coe�cients
have been carefully chosen to ensure that when combined the linear terms in the fluctuations
cancel. The action must start quadratic in the fluctuations. The terms in the second line start
quadratic in the fluctuations and have no derivatives. The terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or in
derivatives. This is the most general action for single field inflation and in fact it is unique [1].

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
di↵eomorphism (Stückelberg trick) to reintroduce the Goldstone boson which non-linearly
realizes this symmetry. In analogy with the equivalence theorem for the longitudinal com-
ponents of a massive gauge boson [26], the physics of the Goldstone decouples from the two
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• Local type non-Gaussianities
• wide range of behavior in the squeezed limit. 
• Different shapes than those that can be produced by single field
• 4-pt functions with large signal to noise

Table 1: Non-Gaussianity in Quasi-Single Field Inflation.

Interaction f
(1)

NL

f
(2)

NL
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operators proportional to 1 and (@µ')2 typically arise from fundamentally di↵erent terms in the

Kähler or superpotential, cf. §3.1. Cancelling the constant contribution from (@µ')2 only occurs

when the coe�cients of a priori independent operators are carefully chosen to cancel. With this

in mind we wrote the operators in eqs. (4.16)–(4.30) without the combination [(@µ')2 +1], unless

it was related to tadpole cancellation in either ⇡ or �.

It then follows immediately that the interactions L
1

– L
5

can’t lead to large non-Gaussianities,

unless the tree-level action is fine-tuned. Let us demonstrate this case-by-case:

• The interactions L
1a,b come from the same operator L̂

1

that leads to the mixing term

⇢⇡̇c�, where ⇢ ⌘ m3

a,b/(M2

pl

|Ḣ|)1/2. We therefore can’t make the interaction large without

inducing a large mixing term. This constrains the non-Gaussianity to be small, f
NL

< 1.

For L
1b, one may decouple the interaction and mixing terms, but this requires fine tuning.

freedom to choose initial conditions. However, beyond the cancelation of tadpoles, the cancelation of the constant

in (@µ')
2 = �1 + · · · will typically require tree-level fine-tuning. In some exceptional cases, there may be a

dynamical explanation for the cancelations. However, in general, we should be suspicious of exact cancelations

between operators.
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Did super-horizon modes  ever produce locally observable 
differences that modulate the equation of state?

Were fluctuations converted into curvature fluctuations at 
the beginning/during the hot big bang? 

“Inflation” Hot Big Bang - Radiation era

TodayDecouplingBBN

Reheating

Anything interesting here?
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⇣ $ � log a
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2 = �N

2 + a
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Robust signature: Local non-Gaussianty

The conversion into curvature perturbations happens outside the horizon. 
Gradients are negligible and thus it leads to local type of non-Gaussianity. 

Modulate the equation of state:

p(⇢) = p̄(⇢) + �p(�)

⇣(x) =
1

6

��

�

There are many contributions to the non-linearities. Friedman equation, relation 
between field and the change in the equation of state, etc. 

Only part of the pressure is modulated. Mechanism need not be perfectly efficient. 

Examples, translation between decay rate and expansion or fractional contribution to 
the energy density by the curvaton. 

⇣(x) = f(�(x)) = ✏(� + ↵�

2 + · · · ) f local

NL

⇠ 1

✏

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

where A = �(c2
s + (2/3)c̃3), and the coe�cients are com-

puted from the Fisher correlation matrix between the equilat-
eral and orthogonal template bispectra and the theoretical bis-
pectra arising from the two operators ⇡̇(r⇡)2 and ⇡̇3. Given
our constraints on f equil

NL and f ortho
NL , and the covariance matrix

C of the joint estimators, we can define a �2 statistic given by
�2(c̃3, cs) = uT (c̃3, cs)C�1u(c̃3, cs), where the vector u is given
by vi(c̃3, cs) = f i(c̃3, cs) � f i

P. f i
P, where i={equilateral, orthogo-

nal}, are the joint estimates of the equilateral and orthogonal fNL
measured by Planck and f i(c̃3, cs) is given by Eq. (98). Figure 22
shows the 68%, 95%, and99.7% confidence regions for f equil

NL and
f ortho
NL , obtained by requiring �2  2.28, 5.99, and 11.62 respec-

tively, as appropriate for a �2 variable with two degrees of free-
dom. The corresponding confidence regions in the (c̃3, cs) pa-
rameter space are shown in Fig. 23. After marginalizing over c̃3
we find the following conservative bound on the inflaton sound-
speed

cs � 0.02 95% CL . (99)

Note that we have also looked explicitly for the non-separable
shapes in Sect. 7.3.1, in particular the two e↵ective field theory
shapes and the DBI inflation shape (see Eqs. (5, 6, 7)) .

9.3. Multi-field models

Curvaton models: Planck NG constraints have interesting im-
plications for the simplest adiabatic curvaton models. They pre-
dict (Bartolo et al. 2004d,c)

f local
NL =

5
4rD
� 5rD

6
� 5

3
, (100)

for a quadratic potential of the curvaton field (Lyth & Wands
2002; Lyth et al. 2003; Lyth & Rodriguez 2005; Sasaki et al.
2006), where rD = [3⇢curvaton/(3⇢curvaton + 4⇢radiation)]D is the
“curvaton decay fraction” evaluated at the epoch of the curva-
ton decay in the sudden decay approximation. Assuming a prior
0 < rD < 1, given our constraint f local

NL = 2.7 ± 5.8 at 68% CL,
we obtain

rD � 0.15 95% CL . (101)

In Planck Collaboration XXII (2013) a limit on rD is derived
from the constraints on isocurvature perturbations under the as-
sumption that there is some residual isocurvature fluctuations in
the curvaton field. For this restricted case, they find rD > 0.98
(95% CL), compatible with the constraint obtained here.

Quasi-single field inflation: It is beyond the scope of this pa-
per to perform a general multi-field analysis employing the local
NG constraints. However, we have performed a detailed anal-
ysis for the quasi-single field models (see Eq. (12)). Quasi-
single field (QSF) inflation models (Chen & Wang 2010b,a;
Baumann & Green 2012) are a natural consequence of inflation
model-building in string theory and supergravity (see Sect. 2.2).
In addition to the inflaton field, these models have extra fields
with masses of order the Hubble parameter, which are stabilized
by supersymmetry. A distinctive observational signature of these
massive fields is a one-parameter family of large NG whose
squeezed limits interpolate between the local and the equilat-
eral shape. Therefore, by measuring the precise momentum-
dependence of the squeezed configurations in the NG, in prin-
ciple, we are directly measuring the parameters of the theory
naturally determined by the fundamental principle of supersym-
metry. These models produce a bispectrum (Eq. (12)) depending
on two parameters ⌫, f QSI

NL , with a shape that interpolates between
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Fig. 24. 68%, 95%, and 99.7% confidence intervals for ⌫ and
f QSI
NL for quasi-single field inflation. The best fit value of ⌫ = 1.5,

f QSI
NL = 4.75 is marked with an X. The contours were calculated

using MC methods by creating 2 ⇥ 109 simulations using the �
covariance matrix around this best fit model.

the local shape, where ⌫ = 1.5 and the equilateral shape, where
⌫ = 0.

Results are shown in Fig. 24 (see Sect. 7.3.6 for details of
the analyses). The best fit value corresponds to ⌫ = 1.5, fNL =
4.79 which would imply, within this scenario, that the extra field
di↵erent from the inflaton has a mass m ⌧ H. However, the
figure shows that there is no preferred value for ⌫ with all values
allowed at 3�.

Alternatives to inflation: Perhaps the most striking example is
given by the ekpyrotic/cyclic models (for a review, see Lehners
2010) proposed as alternative to inflationary models. Typically
they predict a local NG | f local

NL | > 10. In particular, the so-called
“ekpyrotic conversion” mechanism (in which isocurvature per-
turbations are converted into curvature perturbations during the
ekpyrotic phase) yields f local

NL = �(5/12) c2
1, where c1 is a param-

eter in the potential, requiring 10 & c1 & 20 for compatibility
with power spectrum constraints. This case was ⇠ 4� discrepant
with WMAP data, and with Planck it is decisively ruled out given
our bounds f local

NL = 2.7 ± 5.8 at 68% CL (see Table 9) yield-
ing c1  4.2 at 95% CL. The predictions for the local bispec-
trum from other ekpyrotic models (based on the so called “ki-
netic conversion” taking place after the ekpyrotic phase) yield
f local
NL = (3/2) 3

p
✏+5, where ✏ ⇠ 100 is natural (Lehners 2010).

Assuming a prior �1 < 3 < 5, we obtain �0.8 < 3 < 0.5 at
95% CL, dramatically restricting the viable parameter space of
this model.

9.4. Non-standard inflation models

Constraints on excited initial states: Results from Sect. 7.3 con-
strain a variety of models with flattened bispectra, often in
combination with a non-trivial squeezed limit. The most no-
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where A = �(c2
s + (2/3)c̃3), and the coe�cients are com-

puted from the Fisher correlation matrix between the equilat-
eral and orthogonal template bispectra and the theoretical bis-
pectra arising from the two operators ⇡̇(r⇡)2 and ⇡̇3. Given
our constraints on f equil

NL and f ortho
NL , and the covariance matrix

C of the joint estimators, we can define a �2 statistic given by
�2(c̃3, cs) = uT (c̃3, cs)C�1u(c̃3, cs), where the vector u is given
by vi(c̃3, cs) = f i(c̃3, cs) � f i

P. f i
P, where i={equilateral, orthogo-

nal}, are the joint estimates of the equilateral and orthogonal fNL
measured by Planck and f i(c̃3, cs) is given by Eq. (98). Figure 22
shows the 68%, 95%, and99.7% confidence regions for f equil

NL and
f ortho
NL , obtained by requiring �2  2.28, 5.99, and 11.62 respec-

tively, as appropriate for a �2 variable with two degrees of free-
dom. The corresponding confidence regions in the (c̃3, cs) pa-
rameter space are shown in Fig. 23. After marginalizing over c̃3
we find the following conservative bound on the inflaton sound-
speed

cs � 0.02 95% CL . (99)

Note that we have also looked explicitly for the non-separable
shapes in Sect. 7.3.1, in particular the two e↵ective field theory
shapes and the DBI inflation shape (see Eqs. (5, 6, 7)) .

9.3. Multi-field models

Curvaton models: Planck NG constraints have interesting im-
plications for the simplest adiabatic curvaton models. They pre-
dict (Bartolo et al. 2004d,c)

f local
NL =

5
4rD
� 5rD

6
� 5

3
, (100)

for a quadratic potential of the curvaton field (Lyth & Wands
2002; Lyth et al. 2003; Lyth & Rodriguez 2005; Sasaki et al.
2006), where rD = [3⇢curvaton/(3⇢curvaton + 4⇢radiation)]D is the
“curvaton decay fraction” evaluated at the epoch of the curva-
ton decay in the sudden decay approximation. Assuming a prior
0 < rD < 1, given our constraint f local

NL = 2.7 ± 5.8 at 68% CL,
we obtain

rD � 0.15 95% CL . (101)

In Planck Collaboration XXII (2013) a limit on rD is derived
from the constraints on isocurvature perturbations under the as-
sumption that there is some residual isocurvature fluctuations in
the curvaton field. For this restricted case, they find rD > 0.98
(95% CL), compatible with the constraint obtained here.

Quasi-single field inflation: It is beyond the scope of this pa-
per to perform a general multi-field analysis employing the local
NG constraints. However, we have performed a detailed anal-
ysis for the quasi-single field models (see Eq. (12)). Quasi-
single field (QSF) inflation models (Chen & Wang 2010b,a;
Baumann & Green 2012) are a natural consequence of inflation
model-building in string theory and supergravity (see Sect. 2.2).
In addition to the inflaton field, these models have extra fields
with masses of order the Hubble parameter, which are stabilized
by supersymmetry. A distinctive observational signature of these
massive fields is a one-parameter family of large NG whose
squeezed limits interpolate between the local and the equilat-
eral shape. Therefore, by measuring the precise momentum-
dependence of the squeezed configurations in the NG, in prin-
ciple, we are directly measuring the parameters of the theory
naturally determined by the fundamental principle of supersym-
metry. These models produce a bispectrum (Eq. (12)) depending
on two parameters ⌫, f QSI

NL , with a shape that interpolates between
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Fig. 24. 68%, 95%, and 99.7% confidence intervals for ⌫ and
f QSI
NL for quasi-single field inflation. The best fit value of ⌫ = 1.5,

f QSI
NL = 4.75 is marked with an X. The contours were calculated

using MC methods by creating 2 ⇥ 109 simulations using the �
covariance matrix around this best fit model.

the local shape, where ⌫ = 1.5 and the equilateral shape, where
⌫ = 0.

Results are shown in Fig. 24 (see Sect. 7.3.6 for details of
the analyses). The best fit value corresponds to ⌫ = 1.5, fNL =
4.79 which would imply, within this scenario, that the extra field
di↵erent from the inflaton has a mass m ⌧ H. However, the
figure shows that there is no preferred value for ⌫ with all values
allowed at 3�.

Alternatives to inflation: Perhaps the most striking example is
given by the ekpyrotic/cyclic models (for a review, see Lehners
2010) proposed as alternative to inflationary models. Typically
they predict a local NG | f local

NL | > 10. In particular, the so-called
“ekpyrotic conversion” mechanism (in which isocurvature per-
turbations are converted into curvature perturbations during the
ekpyrotic phase) yields f local

NL = �(5/12) c2
1, where c1 is a param-

eter in the potential, requiring 10 & c1 & 20 for compatibility
with power spectrum constraints. This case was ⇠ 4� discrepant
with WMAP data, and with Planck it is decisively ruled out given
our bounds f local

NL = 2.7 ± 5.8 at 68% CL (see Table 9) yield-
ing c1  4.2 at 95% CL. The predictions for the local bispec-
trum from other ekpyrotic models (based on the so called “ki-
netic conversion” taking place after the ekpyrotic phase) yield
f local
NL = (3/2) 3

p
✏+5, where ✏ ⇠ 100 is natural (Lehners 2010).

Assuming a prior �1 < 3 < 5, we obtain �0.8 < 3 < 0.5 at
95% CL, dramatically restricting the viable parameter space of
this model.

9.4. Non-standard inflation models

Constraints on excited initial states: Results from Sect. 7.3 con-
strain a variety of models with flattened bispectra, often in
combination with a non-trivial squeezed limit. The most no-
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The EFT view

this does not necessarily need to be the case. To describe perturbations around this solution
one can choose a gauge where the privileged slicing coincides with surfaces of constant t, i.e.
��(~x, t) = 0. In this ‘unitary’ gauge there are no explicit scalar perturbations but only metric
fluctuations. As time di↵eomorphisms have been fixed and are not a gauge symmetry any-
more, the graviton now describes three degrees of freedom: the scalar perturbation has been
eaten by the metric. One therefore can build the most generic e↵ective action with operators
that are functions of the metric fluctuations and that are invariant under the linearly-realized
time-dependent spatial di↵eomorphisms. As usual with e↵ective field theories, this can be
done in a low energy expansion in fluctuations of the fields and derivatives. We obtain the
following Lagrangian [6, 15]:

S =

Z
d4x

p
�g

h 1

2
M2

Pl

R + M2

Pl

Ḣg00 � M2

Pl

(3H2 + Ḣ) +

+
1

2!
M

2

(t)4(g00 + 1)2 +
1

3!
M

3

(t)4(g00 + 1)3 +

�M̄
1

(t)3

2
(g00 + 1)�Kµ

µ �
M̄

2

(t)2

2
�Kµ

µ
2 � M̄

3

(t)2

2
�Kµ

⌫�K
⌫
µ + ...

i
,(1)

where we denote by �Kµ⌫ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⌫ = Kµ⌫ � a2Hhµ⌫ with hµ⌫ being the induced
spatial metric, and where M

2,3 and M̄
1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. The first
three terms are the only ones that start linearly in the metric fluctuations. The coe�cients
have been carefully chosen to ensure that when combined the linear terms in the fluctuations
cancel. The action must start quadratic in the fluctuations. The terms in the second line start
quadratic in the fluctuations and have no derivatives. The terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or in
derivatives. This is the most general action for single field inflation and in fact it is unique [6].

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
di↵eomorphism (Stückelberg trick) to reintroduce the Goldstone boson which non-linearly
realizes this symmetry. In analogy with the equivalence theorem for the longitudinal com-
ponents of a massive gauge boson [19], the physics of the Goldstone decouples from the two
graviton helicities at high enough energies, equivalently the mixing can be neglected. The
detailed study of [6, 7] shows that in most situations of interest this is indeed the case and
one can neglect the metric fluctuations1.

As anticipated, we reintroduce the Goldstone boson (⇡) by performing a broken time-di↵.,
calling the parameter of the transformation �⇡, and then declaring ⇡ to be a field that under
time di↵.s of the form t ! t + ⇠0(x) transforms as

⇡(x) ! ⇡̃(x̃(x)) = ⇡(x)� ⇠0(x) . (2)

In this way di↵. invariance is restored at all orders. For example the terms containing g00 in

1Equivalently, the neglected e↵ects are suppressed by slow-roll parameters or by powers of H/MPl.

3

the Lagrangian give rise to the following terms:

g00 ! @(t + ⇡)

@xµ

@(t + ⇡)

@x⌫
gµ⌫ ! g00 + 2g0µ@µ⇡ + (@⇡)2. (3)

We refer to [6] for details about this procedure. If we are interested just in e↵ects that are
not dominated by the mixing with gravity, then we can neglect the metric perturbations and
just keep the ⇡ fluctuations. In this regime, a term of the form g00 in the unitary gauge
Lagrangian becomes:

g00 ! �1� 2⇡̇ � ⇡̇2 +
1

a2

(@i⇡)
2 . (4)

Further, we can assume that the ⇡ has an approximate continuous shift symmetry, which
becomes exact in the limit in which the space time is exactly de Sitter [6]. This allows us to
neglect to terms in ⇡ without a derivative that are generated by the time dependence of the
coe�cients in (1)2. Implementing the above procedure in the Lagrangian of (1), we obtain
the rather simple result:

S⇡ =

Z
d4x

p
�g


�M2

Pl

Ḣ

✓
⇡̇2 � (@i⇡)2

a2

◆
+ 2M4

2

✓
⇡̇2 + ⇡̇3 � ⇡̇

(@i⇡)2

a2

◆
� 4

3
M4

3

⇡̇3 + . . .

�
, (5)

where for simplicity we have neglected the terms originating from the extrinsic curvature as
they are usually important only in a regime where the space time is very close to de-Sitter
space [6]. In fact, notice that neglecting the terms in the last line in (1), we see that the
spatial kinetic term is the form of ḢM2

Pl

(@i⇡)2. In the limit Ḣ ! 0 the spacetime approaches
de Sitter and the coe�cient of the spatial kinetic term goes to zero. If we consider the terms
involving the extrinsic curvature in the last line of (1), upon reintroduction of ⇡ they give
a spatial kinetic term of the form either (M̄2

2

+ M̄2

3

)(@2

i ⇡)
2 or HM̄3

1

(@i⇡)2. In general these
terms are either higher derivative terms or suppressed by the Hubble scale, and so they are
in general negligible at energies of order H. However, in the de Sitter limit the leading term
ḢM2

Pl

(@i⇡)2 goes to zero, and they become relevant. See [7] for a precise definition of when
this is the case. We refer to this situation as the near de Sitter limit and we will explicitly
describe the phenomenology in this limit at the end of the next section.

We notice that when M
2

is di↵erent from zero and we are not in the de Sitter limit the
speed of sound of the fluctuations is di↵erent from one. We have the following relationship:

M4

2

= �1� c2s
c2s

M2

Pl

Ḣ

2
. (6)

In this limit there are two independent cubic self interactions, ⇡̇(@i⇡)2 and ⇡̇3 at this order
in derivatives, which can induce detectable non-Gaussianities in the primordial density per-
turbations. A small speed of sound (i.e. a large M

2

) forces large self-interactions of the form
⇡̇(@i⇡)2, while the coe�cient of the operator ⇡̇3 is not fixed because it depends also on M

3

.

2Notice that this is not always the case. Interesting inflation models, both single field and multifield,

have been recently proposed in which the ⇡ fluctuations are protected only by an approximate discrete shift

symmetry. See for example [10, 11, 12, 13, 8].
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4

By analysis of the cosmological data, one can therefore constrain (or measure) the parameters
of the above Lagrangian. This approach has been recently applied to the WMAP data in [7],
giving constraints on M

2

and M
3

, as well as on the higher derivative operators that we have
omitted in (5). This is the exact analogous of what happens for data from particle accelerators
when the Precision Electroweak Tests of the Standard Model are carried out [17, 18].

3 A detectable four-point function from single field in-

flation

It is by now well established that single field inflation can produce a large and detectable
level of non-Gaussianity in the three-point function. It is worth asking if it is also possible to
have a large and detectable four-point function without at the same time having a detectable
three-point function. The e↵ective Lagrangian of single field inflation of sec. 2 is the ideal
general set up to address this kind of questions.

Restricting ourselves to the case where the Goldstone boson is protected by an approximate
continuous shift symmetry, Ref.s [6, 7] show that in single field inflation there are only two
ways to have a large three-point function: either by having a very small speed of sound cs
for the fluctuations, or by the unperturbed solution being so close to de Sitter space that the
dispertion relation of the Goldstone boson is of the form !2 ⇠ k4/M2, where M is some mass
scale related to M̄

2,3 and M
2

.
In the case of a small speed of sound and away from the de Sitter limit, the large three-

point function is induced by the operators ⇡̇(@i⇡)2 and ⇡̇3 that are associated with the unitary
gauge operators (�g00)2 and (�g00)3. In particular, by estimating loop corrections reference [7]
showed that if the coe�cient of the operator (�g00)2 is M4

2

⇠ ḢM2

Pl

/c2s using the cs ⌧ 1 limit
of (6) then the operator (�g00)3 is naturally of order M4

3

⇠ M4

2

/c2s (and viceversa). Both
operators generate comparable three-point functions given by:

h⇣3i
h⇣2i3/2 ⇠ L

3

L
2

����
E⇠H

⇠ 1

c2s
⇣ , (7)

where to estimate the e↵ect we have taken the ratio of the cubic and the quadratic Lagrangian
at energies of order H. It is customary to define

h⇣~k1⇣~k2⇣~k3i = (2⇡)3�(3)(~k
1

+ ~k
2

+ ~k
3

)(2⇡)3
✓
� 9

10
fNLP 2

⇣

◆
1

k6

(8)

where we have taken the equilateral limit of the 3-point function in Fourier space |~k
1

| = |~k
2

| =
|~k

3

| = k and

h⇣~k1⇣~k2i = (2⇡3)�(3)(~k
1

+ ~k
2

)
P⇣

k3

, (9)

so that

fNL⇣ ⇠ L
3

L
2

����
E⇠H

⇠ 1

c2s
⇣ ) f

NL

⇠ 1

c2s
. (10)
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c2s



Given these general considerations, the presence of an extra scalar field � with a mass m ⇠ H

is a very natural consequence of SUSY in our universe. However, in order to produce measurable

deviations from the single-field consistency conditions, it must also couple to the inflaton, �, as

was first studied in [8] under the name quasi-single field inflation (QSFI). For our purposes it

su�ces to take the full Lagrangian for such a scalar field � to be

L� = �1

2

[@µ�@µ� + m2�2] � µ�3 +
�

⇤
[@µ�@µ� � h�̇i2] , (3.1)

where we expect m ⇠ H and otherwise remain agnostic about the size of µ and ⇤. We have

coupled � to � derivatively in order to protect the approximate scale invariance of the observed

power spectrum (which is enforced by an approximate shift symmetry, � ! � + c). During

inflation, �̇ acquires a vev that introduces a tadpole for �, which we have cancelled explicitly5

since we wish to study fluctuations around the minimum of the potential. Fluctuations in �

are converted into fluctuations in � through the ⇤-suppressed coupling. Self-interactions of

� therefore constitute the leading contribution to the bispectrum, with the shape of the non-

gaussianity interpolating between local (m ⌧ H) and equilateral (m ⇠ H). Furthermore, the

squeezed limit of the bispectrum bears the imprint of the nonzero � mass.

It is important to note that even Planck-suppressed interactions (i.e., ⇤ ⇠ M
pl

) are su�cient

to generate a measurable signal [10, 14]. The requisite couplings were studied carefully in [14],

where for weak mixing (
˙�
⇤

⌧ H) it was found that

f equil.
NL

75
⇠ 12

µ

H

⇣ r

0.2

⌘
1/2

✓
M

pl

⇤

◆
3

. (3.2)

The existing constraint on f equil.
NL

from Planck is given by f equil.
NL

= �42 ± 75 (at 1�), so we

are already capable of measuring Planck-suppressed couplings for su�ciently large µ, as was

emphasized in [14]. Large-scale structure surveys are expected to improve on these measurements

through the galaxy bispectrum with potential sensitivity of �f equil.
NL

⇠ 10 [28] (or optimistically

�f equil.
NL

< 1 [29]).

The natural question is then whether we generically expect additional scalars in split su-

persymmetry to possess the interaction terms in (3.1). Two very plausible, technically natural

scenarios in which the above action can be generated are:

• If inflation is described by a single chiral superfield, � and � can be the two real components

of the complex scalar [11]. The mass m ⇠ H for � is generated through gravity mediation

and/or curvature couplings. The self-interaction of � and the mixing between � and �

both arise through shift-symmetric irrelevant operators in the Kähler potential.6 If these

5In general, �̇ is time dependent and therefore the above formula is not correct as written. It is straightforward

to enforce tadpole cancelation at all times by embedding this model in the e↵ective field theory of inflation [27, 11].

See [14] for further discussion.
6The three leading irrelevant operators of interest are K � 1

⇤

(� + �†)3, 1

⇤

3X
†X(� + �†)3, and 1

⇤

3 (� + �†)5,

where � is the superfield containing �,� while X is a field seeding the value of the inflaton potential during

inflation, FX ⇠ M
pl

H (see [11] for further discussion). The first operator gives rise to the mixing term and also

generates a self-interaction of � via curvature couplings. The second and third operator give rise to self-interactions

for � directly. The contributions to µ/H from these operators are of order H/⇤, M2

pl

H/⇤3, and O(107)H3/⇤3,
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detection, we forecast our ability to find evidence for superpartners through the scaling behavior

in the squeezed limit of the bispectrum.
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Abstract

We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on

light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale ⇤.

We study a simple e↵ective field theory in which a hidden sector field is coupled to a shift-symmetric

inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead

to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local

non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must

be suppressed by a very high scale ⇤ > 105H. Even if the hidden sector has Gaussian correlations,

nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations.

In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data

requires ⇤ > 102H.
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Given these general considerations, the presence of an extra scalar field � with a mass m ⇠ H

is a very natural consequence of SUSY in our universe. However, in order to produce measurable

deviations from the single-field consistency conditions, it must also couple to the inflaton, �, as

was first studied in [8] under the name quasi-single field inflation (QSFI). For our purposes it

su�ces to take the full Lagrangian for such a scalar field � to be

L� = �1

2

[@µ�@µ� + m2�2] � µ�3 +
�

⇤
[@µ�@µ� � h�̇i2] , (3.1)

where we expect m ⇠ H and otherwise remain agnostic about the size of µ and ⇤. We have

coupled � to � derivatively in order to protect the approximate scale invariance of the observed

power spectrum (which is enforced by an approximate shift symmetry, � ! � + c). During

inflation, �̇ acquires a vev that introduces a tadpole for �, which we have cancelled explicitly5

since we wish to study fluctuations around the minimum of the potential. Fluctuations in �

are converted into fluctuations in � through the ⇤-suppressed coupling. Self-interactions of

� therefore constitute the leading contribution to the bispectrum, with the shape of the non-

gaussianity interpolating between local (m ⌧ H) and equilateral (m ⇠ H). Furthermore, the

squeezed limit of the bispectrum bears the imprint of the nonzero � mass.

It is important to note that even Planck-suppressed interactions (i.e., ⇤ ⇠ M
pl

) are su�cient

to generate a measurable signal [10, 14]. The requisite couplings were studied carefully in [14],

where for weak mixing (
˙�
⇤

⌧ H) it was found that
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◆
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The existing constraint on f equil.
NL

from Planck is given by f equil.
NL

= �42 ± 75 (at 1�), so we

are already capable of measuring Planck-suppressed couplings for su�ciently large µ, as was

emphasized in [14]. Large-scale structure surveys are expected to improve on these measurements

through the galaxy bispectrum with potential sensitivity of �f equil.
NL

⇠ 10 [28] (or optimistically

�f equil.
NL

< 1 [29]).

The natural question is then whether we generically expect additional scalars in split su-

persymmetry to possess the interaction terms in (3.1). Two very plausible, technically natural

scenarios in which the above action can be generated are:

• If inflation is described by a single chiral superfield, � and � can be the two real components

of the complex scalar [11]. The mass m ⇠ H for � is generated through gravity mediation

and/or curvature couplings. The self-interaction of � and the mixing between � and �

both arise through shift-symmetric irrelevant operators in the Kähler potential.6 If these

5In general, �̇ is time dependent and therefore the above formula is not correct as written. It is straightforward

to enforce tadpole cancelation at all times by embedding this model in the e↵ective field theory of inflation [27, 11].

See [14] for further discussion.
6The three leading irrelevant operators of interest are K � 1

⇤

(� + �†)3, 1

⇤

3X
†X(� + �†)3, and 1

⇤

3 (� + �†)5,

where � is the superfield containing �,� while X is a field seeding the value of the inflaton potential during

inflation, FX ⇠ M
pl

H (see [11] for further discussion). The first operator gives rise to the mixing term and also

generates a self-interaction of � via curvature couplings. The second and third operator give rise to self-interactions

for � directly. The contributions to µ/H from these operators are of order H/⇤, M2

pl
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Abstract

Split supersymmetry (SUSY) – in which SUSY is relevant to our universe but largely inaccessible

at current accelerators – has become increasingly plausible given the absence of new physics at

the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes

of split SUSY such as electric dipole moments (EDMs) and flavor violation o↵er hope for further

evidence but are ultimately limited in their reach. Inflation o↵ers an alternate window into SUSY

through the direct production of superpartners during inflation. These particles are capable of

leaving imprints in future cosmological probes of primordial non-gaussanity. Given the recent

observations of BICEP2, the scale of inflation is likely high enough to probe the full range of

split SUSY scenarios and therefore o↵ers a unique advantage over low energy probes. The key

observable for future experiments is equilateral non-gaussianity, which will be probed by both

cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a

detection, we forecast our ability to find evidence for superpartners through the scaling behavior

in the squeezed limit of the bispectrum.
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Abstract

We show that the recent Planck limits on primordial non-Gaussianity impose strong constraints on

light hidden sector fields coupled to the inflaton via operators suppressed by a high mass scale ⇤.

We study a simple e↵ective field theory in which a hidden sector field is coupled to a shift-symmetric

inflaton via arbitrary operators up to dimension five. Self-interactions in the hidden sector lead

to non-Gaussianity in the curvature perturbations. To be consistent with the Planck limit on local

non-Gaussianity, the coupling to any hidden sector with light fields and natural cubic couplings must

be suppressed by a very high scale ⇤ > 105H. Even if the hidden sector has Gaussian correlations,

nonlinearities in the mixing with the inflaton still lead to non-Gaussian curvature perturbations.

In this case, the non-Gaussianity is of the equilateral or orthogonal type, and the Planck data

requires ⇤ > 102H.
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Given these general considerations, the presence of an extra scalar field � with a mass m ⇠ H

is a very natural consequence of SUSY in our universe. However, in order to produce measurable

deviations from the single-field consistency conditions, it must also couple to the inflaton, �, as

was first studied in [8] under the name quasi-single field inflation (QSFI). For our purposes it

su�ces to take the full Lagrangian for such a scalar field � to be

L� = �1

2

[@µ�@µ� + m2�2] � µ�3 +
�

⇤
[@µ�@µ� � h�̇i2] , (3.1)

where we expect m ⇠ H and otherwise remain agnostic about the size of µ and ⇤. We have

coupled � to � derivatively in order to protect the approximate scale invariance of the observed

power spectrum (which is enforced by an approximate shift symmetry, � ! � + c). During

inflation, �̇ acquires a vev that introduces a tadpole for �, which we have cancelled explicitly5

since we wish to study fluctuations around the minimum of the potential. Fluctuations in �

are converted into fluctuations in � through the ⇤-suppressed coupling. Self-interactions of

� therefore constitute the leading contribution to the bispectrum, with the shape of the non-

gaussianity interpolating between local (m ⌧ H) and equilateral (m ⇠ H). Furthermore, the

squeezed limit of the bispectrum bears the imprint of the nonzero � mass.

It is important to note that even Planck-suppressed interactions (i.e., ⇤ ⇠ M
pl

) are su�cient

to generate a measurable signal [10, 14]. The requisite couplings were studied carefully in [14],

where for weak mixing (
˙�
⇤

⌧ H) it was found that
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⌘
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. (3.2)

The existing constraint on f equil.
NL

from Planck is given by f equil.
NL

= �42 ± 75 (at 1�), so we

are already capable of measuring Planck-suppressed couplings for su�ciently large µ, as was

emphasized in [14]. Large-scale structure surveys are expected to improve on these measurements

through the galaxy bispectrum with potential sensitivity of �f equil.
NL

⇠ 10 [28] (or optimistically

�f equil.
NL

< 1 [29]).

The natural question is then whether we generically expect additional scalars in split su-

persymmetry to possess the interaction terms in (3.1). Two very plausible, technically natural

scenarios in which the above action can be generated are:

• If inflation is described by a single chiral superfield, � and � can be the two real components

of the complex scalar [11]. The mass m ⇠ H for � is generated through gravity mediation

and/or curvature couplings. The self-interaction of � and the mixing between � and �

both arise through shift-symmetric irrelevant operators in the Kähler potential.6 If these

5In general, �̇ is time dependent and therefore the above formula is not correct as written. It is straightforward

to enforce tadpole cancelation at all times by embedding this model in the e↵ective field theory of inflation [27, 11].

See [14] for further discussion.
6The three leading irrelevant operators of interest are K � 1

⇤

(� + �†)3, 1

⇤

3X
†X(� + �†)3, and 1

⇤

3 (� + �†)5,

where � is the superfield containing �,� while X is a field seeding the value of the inflaton potential during

inflation, FX ⇠ M
pl

H (see [11] for further discussion). The first operator gives rise to the mixing term and also

generates a self-interaction of � via curvature couplings. The second and third operator give rise to self-interactions

for � directly. The contributions to µ/H from these operators are of order H/⇤, M2

pl

H/⇤3, and O(107)H3/⇤3,
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2

subtraction) [1]. Therefore, the current value of the LHS
of Eq. (1) is 0.01 ± 0.02. Optimistically we can assume
we will be able to measure r with a precision of 1% [8].
Regarding n

s

�1, future experiments like EUCLID [9] or
PRISM [10] should be able to go down to a 10�3 error.
Therefore the uncertainty on the quantity above will be
⇠ 10�3, dominated by the error on the spectral index.
Let us now study what these futuristic limits will imply
for deviations from the simplest model of the Universe.

Pseudo-Nambu-Goldstone boson (PNGB) potential. A
PNGB has a potential of the form V = ⇤4F (�/f) (4),
where ⇤ is the scale of breaking of the approximate shift
symmetry, F is a periodic function and f is the decay
constant. The simplest example is given by

V (�) = ⇤4

✓
1� cos

✓
�

f

◆◆
, (2)

where f has to be bigger than Mpl in order for the slow-
roll conditions to be satisfied and for very large f � Mpl

the model becomes indistinguishable from a �2 potential.
For this potential Eq. (1) will not be exactly zero. It is
easy to calculate the leading correction in slow-roll and
for Mpl/f ⌧ 1

n
s

�1 = � 2

N
+O

✓
Mpl

f

◆4

, r =
8

N
�4

✓
Mpl

f

◆2

. (3)

This gives a correction to Eq. (1)

(n
s

� 1) +
r

4
+

11

24
(n

s

� 1)2 = �
✓
Mpl

f

◆2

. (4)

If the error on the LHS is of order 10�3, this translates
into the limit f & 30Mpl. This would convincingly sug-
gest there is a parametric separation between the two
scales, which the UV theory would have to address. To
illustrate this point, in Fig. 1 we present a plausible fore-
cast for the future observations in the (n

s

, r) plane to-
gether with the predictions of natural inflation for di↵er-
ent values of f .

For a generic F expanding around the minimum we
get

V (�) = ⇤4

✓
1

2

�2

f2
+

F (3)

6

�3

f3
+

F (4)

24

�4

f4
+ · · ·

◆
. (5)

For the following analysis we assume F (n) to be of order
one. For the moment, let us assume the function F is
symmetric around the minimum. Notice that with pos-
itive F (4) we can get n

s

and r above the m2�2 curve,

4 For example in the extra-dimensional model of Ref. [5], the ex-
plicit form of F depends on the number of particles, their charges,
masses and boundary conditions.

FIG. 1: Future constraints on f assuming a simple cosine

potential. The dashed curve corresponds to Eq. (1) and the

black segment covers the interval of reheating temperatures

Trh 2 [10 MeV, 1015 GeV]. A wider range of N is allowed if

one considers non-standard cosmological evolutions after in-

flation. Red 1� contour corresponds to a futuristic measure-

ment with �ns�1 = �r = 10�3
, compatible with a quadratic

potential.

unlike the case of a simple cosine potential (see Fig. 1).
At leading order in slow-roll

(n
s

� 1) +
r

4
+

11

24
(n

s

� 1)2 = F (4) ·
✓
Mpl

f

◆2

, (6)

and one can constrain the combination on the RHS
f/

p
|F (4)| & 30Mpl. Therefore, for F (4) of order one,

this does not change the lower bound on f significantly.
If we now allow for nonzero F (3) and the cubic term

dominates, Eq. (1) reads

(n
s

� 1) +
r

4
+

11

24
(n

s

� 1)2 = ±2

3

p
2✏ F (3) · Mpl

f
, (7)

where the sign depends on whether inflation occurs for
positive or negative values of �. The constraint on the
RHS imposes5 f/F (3) & 86Mpl. Notice that in this case
the lower bound on f is even stronger.

General deviations from �2
. One can use the same

technique to constrain other deviations from the simplest
scenario: they will all contribute to the RHS of Eq. (1).
Let us first focus on small deviations from the m2�2 com-
ing from the shape of the potential. It is straightforward

5 Here and in the following estimates, to be conservative, we use
the minimal value of ✏ that corresponds to the maximal number
of efolds.
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where the sign depends on whether inflation occurs for
positive or negative values of �. The constraint on the
RHS imposes5 f/F (3) & 86Mpl. Notice that in this case
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General deviations from �2
. One can use the same
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Let us first focus on small deviations from the m2�2 com-
ing from the shape of the potential. It is straightforward

5 Here and in the following estimates, to be conservative, we use
the minimal value of ✏ that corresponds to the maximal number
of efolds.
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to obtain the corrections to Eq. (1) for a generic V (�) up
to second order in slow-roll parameters:
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Notice that on the RHS of Eq. (8) we keep only the first
non-vanishing correction.

Another kind of corrections come from derivative in-
teractions. Indeed, from the e↵ective field theory (EFT)
point of view quantum corrections will generate higher
dimensional operators suppressed by some scale ⇤. Par-
ticularly important are the operators compatible with an
approximate shift symmetry for �. For example, a term
of the form (@�)4/⇤4 in the Lagrangian corresponds to
a correction to the speed of propagation of the perturba-
tions
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Therefore, constraints on the speed of sound transfer into
constraints on ⇤. In models with c
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< 1 is important to
stress that r = 16✏c

s

, while n
s

� 1 is independent of
c
s

(it only depends on it through s ⌘ ċ
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/Hc
s

). In the
absence of cancellations, the current value for n
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� 1 and
the detection of a high level of primordial tensor modes
imply that c

s

cannot be much smaller than 1.
For the case of a quadratic potential, one can quan-

tify the bounds on c
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more precisely in a way which is
insensitive to N . The correction to Eq. (1) reads
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If the total error on the LHS is of the order 10�3, |c
s

�1|
is constrained to be . 3·10�2. In particular, we can put a
lower bound on the energy scale ⇤ to be ⇤ & 2 ·1016 GeV
which is as high as the inflationary scale.

Another way to constrain c
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is to use the standard
consistency relation for the tilt of tensor modes n
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This relation has the major advantage of being valid for
any potential, but it is di�cult to imagine we will be able
to verify it with a significant precision. Given that from
CMB experiments it will be hard to measure n

T

with a
precision better than �n

T

⇠ 0.1, the constraint on c
s

is weaker than the one obtained above. However, in the
very far future we might be able to constrain r and n

T

much better by the detection of primordial gravitational
waves with interferometers [11]. Optimistically the error
on n

T

could be as low as 5 · 10�3 and the relation (11)
could constrain c

s

even better than Eq. (10).
Another possible departure from the simplest model is

the presence of a subdominant component in the spec-
trum due to a second field. In these models (curvaton,

modulated reheating, . . . ) inflation is driven by the in-
flaton but a second scalar field � is contributing to the
curvature perturbation with a fraction
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where P x
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is the contribution of the field x to the power
spectrum of the curvature perturbation ⇣. The correction
to Eq. (1) up to first order in slow-roll is
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Assuming that the error on the LHS of Eq. (13) is 10�3

this relation constraints q . 0.06.
One may consider the case in which di↵erent correc-

tions to the RHS of eq. (1) cancel, so that we accidentally
get the same predictions as the �2 model. In this case
one can hope to break the degeneracy looking at the run-
ning of the power spectrum. For a quadratic potential
↵ = �(n

s

� 1)2/2 = �r2/32 ' 8 · 10�4.

Constraints on N . So far we focused on a combination
of observables which is N -independent. On the other
hand for a quadratic potential one will also get a good
constraint on the number of e-folds. With the numbers
quoted above the best constraint will most likely come
from r which will give �N ' 0.4. This translates into an
error on the reheating temperature

�Trh

Trh
' 1.2 , (14)

assuming we know the evolution after reheating. Notice
that while it is easy to reduce N (longer reheating, peri-
ods of matter domination or phase transitions in the late
universe, large number of relativistic degrees of freedom
g⇤), the upper bound on N corresponding to instanta-
neous reheating and conventional cosmological evolution
is very robust. In some sense it corresponds to the very
simplest Universe.

What if not �2
? All the discussion so far concentrated

on �2 inflation. If Nature has chosen another monomial
potential V / �p, we can still build an observable which
does not depend on N . It is easy to get
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s

� 1) +
2 + p

8p
r +

3p2 + 18p� 4

6(p+ 2)2
(n

s

� 1)2 = 0 . (15)

As before we will have errors of order 10�3 on this ex-
pression6. It is straightforward to generalise Eqs. (10)
and (13) to analyse the constraints on the speed of sound

6 Notice that in eq. (15) as we go to lower values of p the coe�cient
of r increases: the tensor contribution becomes more and more
important to discriminate the model.
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As before we will have errors of order 10�3 on this ex-
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The simplest inflationary model V = 1
2m

2�2 represents the benchmark for future constraints.
For a quadratic potential the quantity (ns � 1) + r/4 + 11(ns � 1)2/24 vanishes (up to corrections
which are cubic in slow-roll) and can be used to parametrize small deviations from the minimal
scenario. Future constraints on this quantity will be able to distinguish a quadratic potential from
a pseudo-Goldstone with f . 30Mpl, set limits on the deviation from unity of the speed of sound
|cs � 1| . 3 · 10�2 and on the contribution of a second field to perturbations (. 6 · 10�2). We
comment on the (ir)relevance of non-Gaussianity to constrain deviations from the minimal scenario.

Motivations. If confirmed, the recent detection of B-
modes in the polarization of the CMB by BICEP2 [1]
indicates a high level of primordial tensor modes. This
requires a large excursion of the inflaton during inflation,
�� & Mpl, which challenges the naive expectation that
higher-dimension operators suppressed by powers of Mpl

spoil the slow-roll conditions. While, before BICEP2, the
crucial question for inflation was “large or small r?”, we
are now facing a new dichotomy: “�2 or not �2?” The
two possibilities are qualitatively di↵erent. A large field
model which is not quadratic, say V / �2/3, suggests
an interesting UV mechanism, like monodromy inflation
[2] for instance. If data will, on the other hand, favor
a quadratic potential, the simplest explanation will be
that inflation occurs at a generic minimum of a poten-
tial whose typical scale of variation f is much larger than
the Planck scale. Indeed an approximate shift-symmetry
gives rise to potentials of the form V = ⇤4(1� cos(�/f))
[3], which reduce to a quadratic approximation when
f � Mpl. In string theory it seems di�cult to obtain
a parametric separation between f and Mpl, although
there is no issue at the level of field theory [4]. There-
fore, if quadratic inflation will remain compatible with
the data, it will be important to study small deviations
from it, to understand to which extent the quadratic ap-
proximation holds and to limit other possible deviations
from the simplest scenario of inflation.

Inflationary predictions must face our ignorance about
the reheating process and the subsequent evolution of the
Universe. All this is encoded in the number of e-folds N
between when the relevant modes exit the horizon and
the end of inflation. The dependence on N is rather
strong (see fig. 1) and it will become larger than the
experimental sensitivity on n

s

and r. To study small
deviations from V = 1

2m
2�2 we have to concentrate on

a combination of observables which does not depend on
N . At linear order in 1/N , given that for a quadratic
potential n

s

� 1 = �2/N and r = 8/N , a prediction
which is independent of N is obviously (n

s

�1)+r/4 = 0.
Since corrections at second order in slow-roll will not be

completely negligible in the future, it is worthwhile to
go to order 1/N2. Using the explicit formulas at second
order in slow-roll [5] it is straightforward to verify1 that
for a quadratic potential

(n
s

� 1) +
r

4
+

11

24
(n

s

� 1)2 = 0 , (1)

up to corrections of order N�3 (2), which we can safely
ignore. Assuming that data will favor a �2 potential we
can use the equation above to study how sensitive we
will be to small departures from the simplest scenario.
The best measurement of the tilt comes from Planck [6]
n
s

� 1 = �0.0397 ± 0.0073, while the recent value of r
measured by BICEP2 is r = 0.16+0.06

�0.05 (after foreground
subtraction) [1]. Therefore, the current value of the LHS
of Eq. (1) is 0.001±0.015. Optimistically we can assume
we will be able to measure r with a precision of 1% [7].
Regarding n

s

�1, future experiments like EUCLID [8] or
PRISM [9] should be able to go down to a 10�3 error.
Therefore the uncertainty on the quantity above will be
⇠ 10�3, dominated by the error on the spectral index.
Let us now study what these futuristic limits will imply

1 Up to second order in slow-roll we have

ns � 1 = 2⌘ � 6✏� 2C(12✏2 + ⇠) +
2

3
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3
+ 2C(2✏� ⌘)

◆
,

where C = �2 + ln 2 + �, with � = 0.57721 . . . the Euler-
Mascheroni constant, and the slow-roll parameters are defined
as

✏ =
M2

pl

2
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V
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pl
V 00

V
, ⇠ = M4

pl
V 000V 0
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.

2 Up to 1/N3 corrections we can equivalently write (ns � 1) +
r/4 + 11/384 · r2 = 0. This form can be useful in future given
that the error on (r/4)2 is expected to be smaller than the one
on (ns � 1)2.

Deviation from 
the line

• Running for consistency



Summary

We may have entered a complete new era 
with a new fossil from the early Universe to 

measure. 

The models from the 80s have stood the test 
of time remarkably well. 



This is related to but not the same as the signal discussed in [8].2 Here we propose the analogous
test for tensor superhorizon correlations

CB̃(✓) 6= 0 , for ✓ > ✓
c

⇡ 2� . (28)

Figure 3 shows the superhorizon signal from inflation. Its characteristics are a positive peak at
✓ & 2.5� and a negative peak at 2.0 . ✓ . 2.5�.
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Figure 3: CB̃(✓) = hB̃B̃i(✓): real space correlation function on superhorizon scales. CB̃(✓ & 2�) 6=
0 is a unique signature of inflationary tensor modes.

2Ref. [8] phrased the causality constraints on scalar modes directly in terms of correlations of the Stokes pa-
rameters Q and U and their cross-correlations with the temperature fluctuations: for causal theories CQQ(✓),
CUU (✓) and CTQ(✓) vanish for ✓ > 2�. The proof of the superhorizon nature of adiabatic scalar fluctuations
is now often associated with the negative peak of the TE angular power spectrum CTE

` for 50 < ` < 250
(e.g. [17, 18]), since causal theories (or inflationary models with a significant isocurvature component) tend
to predict positive correlations for those multipoles. However, in light of the present discussion superhorizon
TE correlations cannot always be unambiguously identified. For TẼ correlations this problem is absent.
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Figure 1: Causal structure of the universe. Correlations between any local variables at any two
spacetime points vanish if their backward light cones fail to intersect on the spacelike
hypersurface ⌃ corresponding to the phase transition at ⌧ = ⌧pt [14]. On the surface of
last-scattering at ⌧rec this corresponds to angular separations ✓ > ✓

c

⇡ 2�. Longer range
correlations are established during inflation at negative values of conformal time, ⌧ < 0.

is pushed to ⌧ = �1. Recombination takes place at ⌧rec and conformal time today is ⌧0. Let
the phase transition occur at a time ⌧pt shortly after reheating. The initial perturbation variables
induced by the phase transition are defined on a Cauchy surface ⌃ at ⌧pt. For causal theories, the
unequal time correlator of the source stress energy tensor T s

µ⌫

satisfies the following constraint

hT s
µ⌫

(0, ⌧) T s
⇢�

(r, ⌧ 0)i = 0 8 r > ⌧ + ⌧ 0 . (2)

At recombination the particle horizon is ⌧hor ⇡ ⌧rec, which today corresponds to an angle ✓hor ⇡ 1�

on the sky (see Appendix A). If we could observe fluctuations at recombination, their angular
correlations should therefore satisfy

C(✓) = 0 8 ✓ > ✓
c

⌘ 2✓hor ⇡ 2� . (3)

We recognize that CMB polarization (being generated only by scattering of CMB photons o↵ of free
electrons) o↵ers the opportunity to study correlations directly at recombination (this is in contrast

3
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Figure 7: ‘Signal detection’ (S/N � 10 or S/N � 3) as a function of total e↵ective noise �
P,e↵

(instrument noise plus lensing residuals) and tensor amplitude r: (a) if r = 0.1 (0.01),
then the experiment has to allow �

P,e↵ . 3.2 (1.0) µK-arcmin for S/N � 10 (⇠ 10�);
(b) if r = 0.1 (0.01), then the experiment has to allow �

P,e↵ . 6.5 (2.1) µK-arcmin for
S/N � 3 (⇠ 3�).

4 Conclusions

In this brief note we pointed out that B̃-mode correlations on angular scales ✓ > 2� are an un-
ambiguous signature of inflationary tensor modes. Since ordinary B-modes are defined non-locally
in terms of the Stokes parameters and therefore don’t have to respect causality, special care had
to be taken to define causal B̃-modes for this analysis. The signal can in principle be used to dif-
ferentiate between B̃-modes generated by inflation and B̃-modes arising from causally-constrained
phase transitions or cosmic strings. The unambiguous identification of inflationary tensor modes is
crucial since it relates directly to the energy scale of inflation. Wrongly associating tensor modes
from causal seeds with inflation would imply an incorrect inference of the energy scale of inflation.
In practice, we found that it will be challenging to measure the superhorizon B̃-mode signal since
it requires accurately resolving the recombination peak of the B-mode power spectrum. However,
with a future CMB satellite (CMBPol) the signal should be detectable if the tensor-to-scalar ratio
isn’t too small.

We should emphasize that our conclusions are extremely conservative since our analysis assumed
that only the superhorizon scales can be used to distinguish the inflationary signal from the signal
associated with causal seeds. In explicit physical models for B-modes from cosmic strings or phase
transitions one never finds this situation, but there is always a significant di↵erence also in the
subhorizon signal, e.g. [11–13]. For example, while the inflationary B-mode signal peaks on the
horizon scale, B-modes from causal seeds generically peak on a slightly smaller scale. For explicit
models this di↵erence can be used to distinguish inflationary B-modes from B-modes associated
with causal theories even with Planck [25]. However, the subhorizon di↵erence between inflationary
B-modes and causal B-modes is model-dependent and therefore not universal. In this paper we
have avoided this model-dependence by focusing exclusively on the unique superhorizon signature
of inflationary B̃-modes.
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Fig. 4.1. Mass spectra of inflationary models. Phenomenological models of infla-
tion frequently assume a large hierarchy between one or more light inflaton fields
and the extra states of the UV completion (I). On the other hand, concrete ex-
amples of inflation in string theory often contain fields with masses of order the
Hubble scale (II) arising from the spontaneous breaking of supersymmetry. Ro-
bust symmetries, or fine-tuning, are required to explain the presence of scalars with
masses m ⇠ p

⌘H.

masses of order H [239].1 These fields fluctuation quantum-mechanically
during inflation and therefore have to be included in the computation of
the primordial perturbations. The phenomenology of these models of quasi-
single-field inflation [490] has been explored in [118, 207, 208, 239, 255, 265,
267,491–497].

4.1.3 Inflaton Candidates

Models of string inflation can be classified by the nature of the field that
serves as the inflaton. A few of the leading candidates are:

. Brane moduli.—The positions of mobile, spacetime-filling branes2 in
the internal space can be moduli in the four-dimensional e↵ective the-
ory. Many leading models of string inflation are built on the time

1 Lighter moduli, with m ⌧ H, may be natural in certain circumstances: see e.g. [489].
2 The primary examples are Dp-branes with p � 3, NS5-branes, or M5-branes, wrapping
suitable cycles. Orientifold planes, in contrast, are non-dynamical: their positions are
not parameterized by light scalars.
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What to conclude

“Probably” fluctuations were not converted into curvature at the beginning of 
the HBB but the window is not completely closed. How do we close it?

This is particularly interesting because only inflationary backgrounds gives us 
scale invariant curvature perturbations. One can tune the two point function 
to be scale invariant around other backgrounds but interactions (higher order 
moments) are not scale invariant. In inflation, time translational is the origin of 
scale invariance and thus it is a very robust outcome, irrespective of the 
details of how the perturbations are generated or interact. 

To get scale invariant perturbations around other backgrounds people have 
to invoke a second field that converts later. 

Furthermore building a theory for some of the anomalies requires a second 
field so not seeing local non-G provides an interesting constrain. 

We are led to think about the adiabatic fluctuations during inflation. 




