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Planet detections: year 1995
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[Image credit: E. Kempton]




Planet detections: year 2015
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Various Detection techniques: Radial Velocity

Radial Velocity Method

The star and planet orbit their common center of mass

Spectral lines move Spectral lines move
towards the red as the star towards the blue as the
travels away from us star travels towards us
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As the star meves away from us
light waves leaving the star are
"stretched" and move towards the
red end of the spectrum.
vaves leaving the starare
" and move towards

Planet the blue end of the spectrum
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[Setiawan et al. 2008]




Various Detection techniques: Microlensing

[Image credit: LSST corp.]

Magnification

[Sumi et al. 2010]

The signature of a Neptune-mass planet orbiting a ~0.65 Solar Mass star

acts as lens
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Measurements are of the brightness of the lensed (background) star




Various Detection techniques: Transit
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[Knutson et al. 2007]




Various Detection techniques: Direct Imaging

[Image credit: NASA]

[Kalas et al 2008]
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A special class of Exoplanets...
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Hot Jupiter Atmospheres

Jupiters: similar to Jupiter but closer to star
 recent discovery of several of them

New regimes:

» Tidal Locking

* Asymmetric day/night
radiative forcing

* High day-side temperatures

» Day/night temperature
gradient

[Image credit: ESA- NASA]




Theoretical interpretation of the data
requires modeling the circulation pattern

Surplus Heat Energy Transferred
By Atmosphere And Oceans
To Higher Latitudes

[Showman, Cho &
Menou 2010]
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® Emergent properties result from combined
and (“radiation-
hydrodynamics”)




Modeling Hot Jupiters (1D)

Jupiter Hot Jupiters Deep Atmosphere:

Radiative region
‘weather layers’

Convective region
‘inert layers’

Fortney & Nettelmann (2010)
(1D averaged radiative equilibrium models)




Modeling Hot Jupiters (2D
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[Burrows et al.2010;
courtesy of D. Spiegel]

0= 6.2259e-08, 1.6716e-05, Central Longitude: -90




Connecting theory to observations
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Phase curves Atmospheric
Dynamics
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Spectra Atmospheric
Chemistry

[Swain et al. 2010]




Connecting theory to observations
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Observations show.....

O Strong
Day/Night
contrast
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What reqgulates this behavior?

Surplus Heat Energy Transferred
By Atmosphere And Oceans
To Higher Latitudes

= Net Shortwave
= Net Longwave [Showman, ChO

& Menou 2010]

Watts m-=2

ﬁ,
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Two counteracting effects:

@ Irradiation from the star heats one surface but not the other,
hence inducing temperature gradients

@® Temperature gradients induce circulation which tends to
redistribute heat




Results from numerical investigation
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[Perna, Heng & Pont 2012]

ForT.. > 2000 K,
redistribution breaks

down

Physical behavior
determined by interplay
between advective and
radiative timescales



~~
o
O
©
p—
&
°
@

o
o

o

Predictions for hot spot location
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HD 189733b
~ HD 209458

[Perna, Heng & Pont 2012]

HD 189733b:

Measured
offset between
16-34 deg
(Knutson et al.
2007, 2009),
In agreement
with our results




Connecting theory to observations

——— Planet core

——— Atmosphere
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[Figure credit: E. Kempton]
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We can learn about atmosphere chemistry
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Theoretical
spectra from
planets with
various degree
of irradiation
strength.

Information on

wind speeds
and on

atmospheric
composition

[Kempton, Perna & Heng, 2014]



Several open questions...

Zonal average of zonal (east-west) wind (m/s)

Weather layer
(heated)
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(large depository
v of angular momentum)
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* Are they really
inert!
« What are the factors limiting the wind speeds?

« ‘Other’ sources of heating besides direct irradiation?




An outstanding puzzle: the ‘Inflated radii’ of hot Jupiters
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Various Explanations...

Enhanced opacity or atmosphere stratification (Burrows et al 2007;
Baraffe et al. 2010)

Tidal dissipation of orbital eccentricity (e.g. Bodenheimer et al 2001;
Liu et al. 2008; Spiegel & Burrows 2012)

. Dissipation of thermal tides (Arras & Socrates 2009; 2010)

. Dissipation of gravity waves (Guillot & Showman 2002)

. Forced turbulent mixing in radiative layer (Youdin & Mitchell 2010)

@ Magnetic effects (Batygin & Stevenson 2010; Perna , Menou &
Rauscher 2010)

- Provide extra heat (Ohmic dissipation)
- Limit wind speed (magnetic drag)
- Dependon F,




MAGNETIC DRAG

£ ‘s induced polar
meridional % current

Y
-3 -/zozal wind

induded azimuthal

opposing forces
(Lenz’s law)

[Figure credit: K. Heng]

=) [/OW Speeds are reduced

* Irradiation frees
e from metals N, K

» Partially ionized
atmosphere advects
B field lines, inducing
currents

* Lorentz force
causes drag on
charged particles,
which are coupled to
neutrals




Dmg Time
Typical timescale to slow down

[Perna, Menou &

the flow by magnetic drag Rauscher 2010a]




Drag time comparable to

wind acceleration time in some regions
=» magnetic drag may play an
important role in limiting wind speeds

pressure [bar]

First results from simple
Implementation [Perna, Menou, Rauscher 2010a

pressure [bar]
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 Joule time <~ Irradiation time for p>~ a few bars
* Non-uniformity of Joule heating can lead to Joule-driven
circulation in the inert layers. [Perna, Menou & Rauscher 2010b]




Ohmic ‘Dissivation and the Radius Problem

[from Batygin & Stevenson 2010]
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Can Ohmic dissipation
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Ohmic power {>p) (W)

.1019

Extra heating amounts required to explain the radius of HD 209458b
[Guillot & Showman 2002]

100

no drag,

y, B

-—e— - - —— A AR

no arag,

B

10G

10G

30

.'3 :_)\:

OHMIC DISSIPATION
naturally provides an
extra source of heat

for magnetic fields
B>~ 10 G.

q

Ohmic dissipation may
provide the solution
to the radius problem

[Perna, Menou & Rauscher
2010b; Batygin & Stevenson
2010, but see Rogers &
Showman 2014 ]



How common is the radius problem?
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Observations show a clear dependence on the strength
of the irradiating flux




Ohmic dissipation as a function of irradiation flux
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[Perna,
Heng &
Pont 2012]
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Ohmic dissipation very strong function of irradiation strenght !




SUMMARY

O . we did not even know whether planet
existed beyond our solar system

O . we are able to detect planets with a variety
of techniques and characterize their atmospheric
dynamics and chemistry

. what will they bring us?




