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Neutrinos: what do we know?

𝝼electron

flavor eigenstates

Pontecorvo 1957, 1958, 1967; Maki, Nakagawa, Sakata 1962

mass eigenstates

flavor eigenstates = mass eigenstates

𝝼mass1

𝝼mass3
𝝼mass2

𝝼muon

𝝼tau

𝜈e   

𝜈𝞃

𝜈𝝻

𝜈1   

𝜈3

𝜈2

Ue1 Ue2 Ue3
U𝝻1 U𝝻2 U𝝻3
U𝞃1 U𝞃2 U𝞃3

=



𝝼1

𝝼2

m22 - m12 = (7.5 ± 0.2) 10-5 eV2

|m32 - m22| = (2.32     ) 10-3 eV2+ 0.12
- 0.08

(solar neutrino oscillations)

(atmospheric neutrino oscillations)

Oscillation data gives mass splittings

Pontecorvo 1957, 1958, 1967; Maki, Nakagawa, Sakata 1962
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 at least one neutrino mass is  ≿ 0.05eV
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Sloan Digital Sky Survey

Hobby-Eberly Telescope 
Dark Energy EXperiment

Subaru Hyper Suprime Cam and 
Prime Focus Spectrograph 

South Pole Telescope

Atacama Cosmology 
Telescope

Planck

Dark Energy Survey Large Synoptic Survey 
TelescopeLarge-scale 

structure surveys

Cosmic 
microwave 
background 
experiments

Euclid

WFIRST

SPHEREX

e.g. Snowmass 2013 1309.5383

σ∑mν∼ 0.02eV
21 CM experiments

Future detection via astrophysical datasets 

CMB ``Stage IV’’
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Funny Stuff

LSND, MiniBooNE, reactor 
anomalies suggest a 
splitting Δm2 ~ 1eV2 

additional neutrino 
mass states and a 

sterile 𝝼?

⇒ 



Neutrinos: what do we know?

⇒ 

The three active neutrinos should be there, but 
let’s remain open to the possibility that 

additional, more massive neutrinos exist 

Funny Stuff

see e.g. Abazajian et al 2012; Conrad, Louis, Shaevitz 2013 
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Neutrino unknowns

• Where do neutrino masses come from? 
• What is the absolute mass scale? 
• Are there additional sterile neutrinos? 
• Can neutrinos generate matter-antimatter 
asymmetry of the universe?

Big Questions

Astrophysics has previously informed neutrino physics! 
(solar neutrino problem ⟹ neutrino oscillations)
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time
109 yearsPl

today! 14 billion years

neutrinos in  
equilibrium 

with photons e
+, e-

T ~ 1 MeV

neutrinos 
decoupled

photons 
decoupled

T ~ 0.2 eV

T𝝼 ∝ 1/a 

n𝝼 ≈  336/cm3

big bang nucleosynthesis

galaxy formation

T𝜸 ≈      T𝝼
11
4

1/3

decouple while relativistic

e+ e- annihilation, T𝜸 boosted 
relative to T𝞶 , T𝜸 ∝ 1/a

T𝝼 ≈  0.17 meV

hotter colder

Neutrinos in Thermal History of the Universe

(≈  2K)

n1𝝼 = 2 d3p
(2π)3 ep/T + 1∫ 1

𝝼

𝞀1𝝼 = 2 d3p
(2π)3 ep/T + 1∫ √p2 + m2

𝝼

~  T𝞶3

~  T𝞶4
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Neutrinos in Thermal History of the Universe
Total energy density in radiation:

(2Tγ +   (Neff x 2) 8
7— T4)ν𝞀radiation = π

2

30
__ 4

measurements of the 
radiation density in the 
early universe can be 

used to test the number 
of neutrino-like degrees 

of freedom

cosmic microwave background cosmic neutrino background

The expected number of neutrino species is seen in the CMB!

Planck 2015
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time
109 yearsPl

today! 14 billion years

T ~ 1 MeV

photons 
decoupled

T ~ 0.2 eV
big bang nucleosynthesis

galaxy formation

hotter colder

Neutrinos in Thermal History of the Universe

neutrinos 
become non-
relativistic

neutrino energy density, ρν ∝ Σ (number density) mν  

p𝝼 ∝ 1/a 
Neutrino momenta decrease with the expansion of the universe

a measurement of ρν yields Σmν

When pν << mν , neutrinos are non-relativistic  
and energy density is dominated by mass
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Neutrinos in Large-scale 
Structure

(Kravtsov)

massive neutrinos alter this process

time



matter distribution 𝝳m = 𝝳𝞀m/𝞀m

(Springel)

galaxy distribution 𝝳g = 𝝳ng/ng

(Springel)
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matter distribution 𝝳m = 𝝳𝞀m/𝞀m

(Springel)

galaxy distribution 𝝳g = 𝝳ng/ng

(Springel)

dark matter “halos”

galaxies live in 
halos

Large-scale Structure



Neutrinos in large-scale structure: Linear regime



time

small-scale density 
perturbations don’t retain 

neutrinos 

𝝳𝞀c
𝞀c

cold dark matter 
and baryons density 

perturbation 
growing 

𝝳𝞀𝞶
𝞀𝞶

neutrino density 
perturbation 

decaying

Neutrinos in large-scale structure: Linear regime



time

large-scale density 
perturbations do 
retain neutrinos

𝝳𝞀c
𝞀c

cold dark 
matter, 

baryons and  
neutrinos 
growing 


together

𝝳𝞀𝞶
𝞀𝞶

small-scale density 
perturbations don’t retain 

neutrinos 

Neutrinos in large-scale structure: Linear regime
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time

large-scale density 
perturbations do 
retain neutrinos

small-scale density 
perturbations don’t retain 

neutrinos 

Growth of matter 
perturbations is scale-

dependent
Relevant scale:



Typical distance a 
neutrino can travel 
in a Hubble time



 λfs ~ u𝞶/H

Neutrinos in large-scale structure: Linear regime



massive neutrinos reduce the typical amplitude of density perturbations

P(k) = ⟨δm(k)δm(k)⟩ where  δm(k) = 
δρmatter

ρmatter
—————

Hu, Eisenstein, Tegmark 1998
Bond, Efstathiou, Silk 1980

Fourier mode k (h/Mpc)
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massive neutrinos reduce the typical amplitude of density perturbations

Hu, Eisenstein, Tegmark 1998
Bond, Efstathiou, Silk 1980

Fourier mode k (h/Mpc)
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Neutrinos in large-scale structure: Linear regime

—> less gravitational lensing than a 
universe where all matter is 

gravitationally clustered



massive neutrinos reduce the typical amplitude of density perturbations

Hu, Eisenstein, Tegmark 1998
Bond, Efstathiou, Silk 1980

Fourier mode k (h/Mpc)
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Planck 2015

(SN + BAO)
(reconstruction)

Neutrinos in large-scale structure: Linear regime

Current constraints from CMB
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Neutrinos in large-scale structure: Linear regime

3 σ detection of Normal 
Hierarchy (0.06eV) 

M𝜈

Future:
σ “Stage IV CMB”
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angular scale

CMB S4, LSST (Large Synoptic Survey Telescope), DESI (Dark Energy 
Spectroscopic Instrument), Euclid (ESA mission), . . .

≈ 0.02 eV

Abazajian et al 2013



Neutrinos in Large-scale 
Structure

(Kravtsov)

time

easier harder

𝝳𝞀c
𝞀c << 1 𝝳𝞀c

𝞀c
≳ 1 𝝳𝞀c

𝞀c
>> 1

(halos)

much harder



Neutrinos in Large-scale Structure

Suppressed matter power spectrum (test via 
gravitational lensing, galaxy power spectra)

Fewer massive halos hosting galaxy clusters

Accreted neutrino halos around CDM

Neutrino feature in the halo bias 

✓

(halos)



Neutrinos in Large-scale Structure

Suppressed matter power spectrum (test via 
gravitational lensing, galaxy power spectra)

Fewer massive halos hosting galaxy clusters

Accreted neutrino halos around CDM

Neutrino feature in the halo bias 

✓

(halos)

new!



Scale-dependent halo bias 
from massive neutrinos
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Halo bias

matter distribution 𝝳m(x) = 𝝳𝞀m/𝞀m

(Springel)

galaxy distribution 𝝳g(x)= 𝝳ng/ng

(Springel)

For large separations, ⟨𝝳g(x1)𝝳g(x2)⟩ ≈ b2⟨𝝳m(x1)𝝳m(x2)⟩, where 
b is what astronomers call the bias

The value of b depends on the type of object you are looking at 
(e.g. the mass or luminosity of the galaxies you’ve measured) 
and rare objects have a larger value of b.



Halo bias

matter distribution 𝝳m(x) = 𝝳𝞀m/𝞀m

(Springel)

galaxy distribution 𝝳g(x)= 𝝳ng/ng

(Springel)

Galaxies live in halos, so I’m going to use halo bias and 
galaxy bias interchangeably but reality is more complicated.

dark matter “halos”

(Springel)
galaxies live in 

halos
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a dark matter halo forms when δρ/ρ is larger than the collapse threshold
δρ/ρ

δc

δc-δl
δρ/ρ

which is easier to reach on top of a long 
wavelength density perturbation

Halo bias - simplest model

initially over-dense regions occupy less volume at late 
times, so the number density there is increased
δρ/ρ



δρ/ρ
δc

δc-δl
δρ/ρ

Halo bias - simplest model

δρ/ρ
δn/n =       δl . . . ∂n

∂δ
1
n

(I)

(II)

Gunn & Gott 1972 Press & Schechter 1974

(I) and (II) predict how the number density of halos 
fluctuates with δl 



δρ/ρ
δc

δc-δl
δρ/ρ

Halo bias - simplest model

δρ/ρ
δn/n =       δl . . . ∂n

∂δ
1
n

(I) and (II) predict how the number density of halos 
fluctuates with δl 

≣ b  halo bias

(I)

(II)

Gunn & Gott 1972 Press & Schechter 1974
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Add neutrinos: 

- For low neutrino masses, can ignore neutrino contribution to halo 
mass (M𝜈 in halo ≪ Mhalo)

- BUT, neutrino effects on evolution of δl can’t be ignored — halos 
are forming in different background

ML and Zaldarriaga 2013

The k-dependent evolution of δl causes the threshold 
for collapse to depend on k also 

λ = 2π/k λ = 2π/k

( see also Hui & Parfrey 2008; Parfrey, Hui, Sheth 2011)

ML 2014b, ML in prep
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b(
k)

 =
 √

P h
h(k

)/
P m

m
(k

)

} ∼ 
ρν 
ρmatter 

In general, we find 

≈ fν +        (# fν)Δb
b

b - 1
b

ρν 
ρcdm+ρν  

where

fν = 
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≈ fν +        (# fν)Δb
b

b - 1
b

ρν 
ρcdm+ρν  

where

Observational consequences

The fraction of energy in neutrinos may be tiny (fν ≿ 0.5%)
Why care about such a small change to the halo bias?

Scale-dependent change in the halo bias: 

fν = 

• Because this may be a serious systematic for 
measurements of mν from galaxy clustering

•  Because the feature in the halo bias can be 
used to measure neutrino mass

(ML 2014)



(ML 2014)

A systematic for measurements of mν from galaxy clustering

Without scale-dependent bias neutrinos produce identical changes to 
Pgalaxy-galaxy(k) and Pmatter-matter(k), (Pgalaxy-galaxy(k) = b2Pmatter-matter(k))

k (wave number )
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With scale-dependent bias neutrinos don’t suppress Pgalaxy-galaxy(k) as 
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moreover, this 
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sources
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The feature in the halo bias can be used to measure 
neutrino mass

(LSST-like number density of sources, super-ideal lack of 
systematics)
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low velocity 
neutrinos end 
up bound in 

halos
shown are m𝞶 = 0.05eV neutrinos 

around M = 1014 Msun halo

the accreted neutrino 
halo is puffy in 

comparison with the cold 
dark matter!

see also Ringwald & Wong 2004; Brandbyge, Hannestad, Haugboelle, Wong 2010
Villaescusa-Navarro, Bird, Pena-Garay, Viel 2013 ML & Zaldarriaga 2013
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Neutrino Accretion

Mν ≈ ∑ 3 × 109 M⊙ 
mνi

0.05eV
Mhalo

1014 M⊙

1.52.6
_____ _____( () )i
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Neutrino Accretion - Relative Velocity Effects

Cold dark matter halos are not at rest w.r.t. cosmic frame!

Halos moving through neutrino “wind”
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(The Milky Way is moving at ∼ 550 km/s w.r.t the CMB)



Neutrino Accretion - Relative Velocity Effects

work in progress with TY Lin, Ben Safdi 

Qualitative difference between how halos acquire CDM and neutrino mass 
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Neutrino Accretion - Relative Velocity Effects

How does the relative velocity effect change the neutrino halos?

How does the relative velocity effect change the expected flux of 
cosmic background neutrinos for direct detection experiments?

How does the relative velocity effect change . . .?

work in progress with TY Lin, Ben Safdi 
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less power in small-scale density fluctuations

fewer massive halos 

scale-dependent halo bias
puffy neutrino halos around CDM halos

Neutrinos Effects in Cosmology



Summary 
• The cosmic neutrino background is key part of the standard 

cosmological model 

•  The energy density in the cosmic neutrino background has 
been detected at high significance in the early universe 

•Neutrino mass qualitatively changes the growth the structure in 
the universe — so far there are only upper limits on these 
changes but future experiments will detect them providing a 
measure of the neutrino mass scale 

•This opens a new era studying neutrinos and structure formation 
in the νCDM universe!  


