The Integrable Bootstrap Program at Large
N and its Applications in Gauge Theory

Axel Cortés Cubero

The Graduate School & University Center of The City University
of New York
Baruch College, The City University of New York
Thesis advisor: Peter Orland



The Principal Chiral Sigma Model (PCSM)

N
Action : S = 2—92/d2x Tvd, U'(2)0"U (),

U(x) e SUN) :

SU(N)xSU(N)symmetry : U(x) = VL U(x)Vg, Vi.r € SU(N).

Associated Noether currents:
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Theory of asymptotically free massive particles, with left and right
color.
We work in the tHooft (planar) limit.



Integrable Quantum Field Theory

Integrability: Equal number of conservation laws and degrees of
freedom (infinite in QFT)

In Quantum field Theory there is no particle production. Set of
momenta is conserved {p}tin = {p}our. Scattering is factorizable.

Yang-Baxter equation



The S-Matrix

Particles and antiparticles have two color charges (color dipoles).
Two-particle S-matrix determined by Yang-Baxter equation, uni-
tarity and crossing symmetry.
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f = rapidity : E = mcosh @, p=msinh6, E* = p*+m?
rapidity difference = 6; — 6,
1
Atlarge N : S(O,N)=1+0O (N2>
Particle-antiparticle related by crossing 8 — 0 =mi—0.
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Particle-antiparticle scattering
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General Form Factors
% Short-hand notation: ‘A1> — |A, (91, bl, CL1>, |P1> = |P, (91, ai, b1>

Form factor of operator O(x) :
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We eventually want to calculate correlation functions

(0]O(2)0(0)[0) = Y _(0]O0(x)|¥)(¥]O(0)]0)

v

6



The current operator ansatz
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o € Sy, takes{1,2,... , M} to{o(1),0(2),...,0(M)}



Smirnov’s form factor axioms

Scattering Axiom (Watson's theorem)

IS

O|J|P27A1 <O‘]|A17P2>

Perlodlclty axiom

[ B wi n h
6 Q-

(0[5 A1(601), Pa(02)) = (07| Pa(b2 — 2mi), A1(61))
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Smirnov’s form factor axioms

Annihilation pole axiom

A I}Aa by A K AR

The antiparticle Ay and the particle Py can annihilate. The four
particle form factor needs to have an annihilation pole at 654 = —71.



Underlying Abelian Structure at Large N
The excitations in the incoming state of the form factor only in-
teract with each other if they have color indices contracted together.

We can order incoming particle such that they only interact with
their two nearest neighbors. Particles now have the simple commu-
tation relation

Hk—Hjer'
Hk—Hj—m

AT(0;)2A1(0;) = AT(G)A7(6)), if k=7 +1

Behaves like colorless Abelian particles at large V.

This is not related to integrability, but to the large N limit.

Is a nonintegrable large N bootstrap possible?
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Solution from Smirnov’s axioms

Yot
H;\im;&la(@j — Os(j)+ar + i) HQ&(@I@ — O ()1 + m')’

FUT<9) —

From the annihilation pole axiom:

[ 2mi(dm)M L foro(g) # T(j), forally
Jor = 0 , else

unphysical double poles go away!
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The two-point function
We can calculate exactly the two-current correlator,
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(0175(2)age | V) are the form factors we know
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The energy-momentum two-point function

W 05(2) = <3 01T (2) s 0)]0)

51 (ifw)

X|p1+ps+- - Fpan—1— (P2t - +panr) o1+ - Hpani—1— D2+ - Fp2n)o
X |p14ps+- - Apanr—1—(pat- - F+pans)|alpr+ - FDP20r—1— (P2t - FP2anr)] 8
OM—1

1 1
101 = a2 + 72 H (0 — 011)% + 72

Jj=1

13



What do we know about finite N?

The S-matrix is known:

. 2
inh(¢ — 2 [T(i0/27 + DI(—if /2 — L
Spp(6, N) = — <g v) | Ltb/2m + DI(—i0/27 — ) % Spp(6, N — o)

sinh(§ + &) | T(i0/2m + 1 — +)T(—i6/2m)

There are r-particle bound states with mass

Sin (%)

sin (%) ’

The presence of bound states makes it impossible to calculate the
form factors. The possibility of incoming particles fusing must be
accounted. (Bound-state pole axiom)

m, =m r=1,...,N —1
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N=2
Form factors of this model have been known for a long time, solved
by virtue of

SU(2) x SU(2) ~ O(4),
or explicitly:

Ulw) =n()1+1i(z) - 7.
The SU(2) theory can be mapped into a vector model (instead of

a matrix model). The first form factors for the O(NV) sigma model
were found long ago by Karowski and Weisz (1978).
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Our less ambitious result for finite N

For arbitrary NV (2 < N < o0, only the two-particle form factors
can be found. This is possible essentially because there is only one
particle and one antiparticle, with no possibility of bound states.
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Anisotropic QCD

Longitudinal Rescaling: 2%! — g%t 2?3 — 2%

1
Apr — N Apa, Aoz — Ags

3

H=Hy+ )\2H1 + )\2H2

| & 92E2+i32 22| & 9 2| Pt
- Tlo T T gt o Y921

Examine the A — 0 limit

no Hy in 2+1 dimensions
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Longitudinal rescaling on the lattice
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Anisotropic Lattice, 2+1 dimensions
Gauge choice: Ay = A; = 0, make x? direction discrete.

Ho=" Hposu(a®), with SU(N) field U(z) = 42

x[jo (z', 2%) — joi(a’, 2* — a)] x [y (v, 2%) — o' (y", 2* — a)]

A
(3
X

We compute corrections from (W'|Hq|W) with our form factors
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Wait, does that say Ap =0 and A; =07

Eiis not O

This is OK as long as long as you deal with the weird NONLOCAL
Gauss’s law that is left.

The electric field in the 1 direction is not zero, but determined
from Gauss’s law:

1

D, Ef(z)¥ =0 — E(x) = —/ dy' Dy(y*, 2°) Es(y', 2%)
with the remaining condition

/d$1D2E2<ZE1, W =0

which in the anisotropic lattice becomes

[ sttt ) - it e~ a —o
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Form factor perturbation theory
We can define a ”transfer matrix” to evolve the system in the z?
direction:

T ooy, = o~ 3Ho(@?) =3 Ho(a*+a)—Hi(a? a*+a)
e, xr°+a

Truncated spectrum approach: Organize states of Hy by energy
1), 12), 3),..., |n).

E, is the truncation energy.

The (now finite) matrix Ty, = (j|T,2 2, ,|k) can be diagonalized
numerically.

Real space renormalization group: we can study the dependence

of physical quantities (mass gap, string tensions) on the truncation
energy I,
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