Exploring the Phase Structure and the Dynamics of QCD

RIKEN Lunch Seminar
12/04/14 BNL

Nils Strodthoff, ITP Heidelberg
Outline

QCD Phase Structure
- QCD phase structure from functional approaches
- Quenched QCD in the vacuum
Outline

QCD Phase Structure
- QCD phase structure from functional approaches
- Quenched QCD in the vacuum

Dynamics I Spectral functions
- Spectral functions from a Euclidean framework
- Mesonic spectral functions in simple models
QCD Phase Structure
- QCD phase structure from functional approaches
- Quenched QCD in the vacuum

Dynamics I Spectral functions
- Spectral functions from a Euclidean framework
- Mesonic spectral functions in simple models

Dynamics II Transport Coefficients
- Kubo formula with expansion in full propagators/vertices
- Transport coefficients in YM and QCD
QCD Phase Structure

The QCD phase diagram?

- Fukushima, Hatsuda Rept.Prog.Phys. 74 (2011) 014001
- adapted from GSI
The QCD phase diagram?

- Fukushima, Hatsuda Rept.Prog.Phys. 74 (2011) 014001

Phase structure at large chemical potentials largely unknown due to sign problem in lattice QCD...

- adapted from GSI
Continuum perspective
...using functional approaches

Functional relations between off-shell Green’s functions
Continuum perspective
...using functional approaches

Functional relations between off-shell Green’s functions

e.g. Dyson-Schwinger equation for quark propagator

\[
\begin{array}{c}
\begin{array}{c}
\text{Functional relations between off-shell Green’s functions}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{e.g. Dyson-Schwinger equation for quark propagator}
\end{array}
\end{array}
\end{array}
\]
Continuum perspective
...using functional approaches

Functional relations between off-shell Green’s functions

e.g. Dyson-Schwinger equation for quark propagator

✓ Easy access to mechanisms:
 • Chiral symmetry breaking
 • Confinement

✓ Complementary to the lattice
✓ No sign problem
✓ Effective models incorporated
Functional Approaches: finite T

PQM model, Nf=2+1, FRG

- Herbst, Mitter, Pawlowski, Schaefer, Stieble

Matter+Glue system, Nf=2, FRG

- Braun, Haas, Marhauser, Pawlowski
 PRL 106 (2011) 022002

Quark propagator, Nf=2+1, DSE

- Fischer, Luecker, Welzbacher
Functional Approaches: finite T & μ

PQM model, Nf=2, FRG

Quark propagator, Nf=2+1, DSE

Functional Approaches: finite T & μ

PQM model, Nf=2, FRG

But: so far all require additional phenomenological input

PQM-model: UV parameters, glue input (Polyakov-loop potential)
DSE calculation: vertex models e.g. for the quark-gluon vertex

Quark propagator, Nf=2+1, DSE

fQCD Collaboration

fQCD Collaboration (J. Braun, L. Fister, T. K. Herbst, M. Mitter, J. M. Pawlowski, F. Rennecke and N. Strodthoff)

- Mitter, Pawlowski, NSt arXiv:1411.7978
- Braun, Fister, Pawlowski, Rennecke arXiv:1412.1045
✓ Finite μ requires fluctuations to be **quantitatively** under control

✓ Mismatches in fluctuation scales lead to large systematic errors at finite μ
 - Helmboldt, Pawlowski, NSt arXiv:1409.8414
Finite μ requires fluctuations to be quantitatively under control.

Mismatches in fluctuation scales lead to large systematic errors at finite μ.

No phenomenological input (vertex models, running couplings...)

Input parameters only the fundamental parameters of QCD:

- $\alpha_s(20 \text{ GeV})$ strong running coupling
- $M_q(20 \text{ GeV}) \approx 1-2 \text{ MeV}$ current quark mass

at large perturbative momenta.
Finite μ requires fluctuations to be quantitatively under control.

Mismatches in fluctuation scales lead to large systematic errors at finite μ.

No phenomenological input (vertex models, running couplings...)

Input parameters only the fundamental parameters of QCD

$\alpha_s (20 \text{ GeV})$ strong running coupling

$M_q(20 \text{ GeV}) \approx 1-2 \text{ MeV}$ current quark mass

at large perturbative momenta.

Quantitative FRG approach towards the investigation of the phase diagram and the hadron spectrum.
Functional RG for QCD

- Spirit of **Wilson RG**: Calculate full quantum effective action Γ by integrating fluctuations with momentum k

\[k \rightarrow 0 \quad \Gamma \quad \Gamma_k \quad S \quad k \rightarrow \Lambda_{UV} \]
Functional RG for QCD

- Spirit of **Wilson RG**: Calculate full quantum effective action Γ by integrating fluctuations with momentum k

$$\Gamma_k \rightarrow 0 \Gamma \rightarrow \Lambda_{UV}$$

Functional Renormalization Group (FRG)

$$\partial_t \Gamma_k[\phi] = \frac{1}{2}$$
- Free energy/Grand potential
- gluon
- ghost
- quark
- hadrons
Functional RG for QCD

- **Spirit of Wilson RG**: Calculate full quantum effective action Γ by integrating fluctuations with momentum k

$$k \rightarrow 0 \quad \Gamma_k \quad \Gamma \quad k \rightarrow \Lambda_{UV}$$

Functional Renormalization Group (FRG)

$$\partial_t \Gamma_k[\phi] = \frac{1}{2}$$

Gluon - Ghost - Quark + $\frac{1}{2}$

Free energy / Grand potential

Dynamical hadronization

Store resonant 4-Fermi structures in terms of effective mesonic interactions
Truncation

Vertex expansion

FRG Yang-Mills results
Truncation

Vertex expansion

FRG Yang-Mills results

mom. dep.
classical tensor structure

mom. dep.
classical tensor structure
Truncation

Vertex expansion

FRG Yang-Mills results

mom. dep.
classical tensor structure

full mom. dep.
Truncation

Vertex expansion

FRG Yang-Mills results

mom. dep.
classical tensor structure

mom. dep.
classical tensor structure

full mom. dep.
all tensor structures
Truncation

Vertex expansion

FRG Yang-Mills results

mom. dep. classical tensor structure

mom. dep. classical tensor structure

full mom. dep. all tensor structures

STI-consistent dressing

-1

full mom. dep.
Truncation

Vertex expansion

FRG Yang-Mills results

-1
-1

full mom. dep.

full mom. dep.
all tensor structures

mom. dep.
classical tensor structure

mom. dep.
classical tensor structure

mom. dep.

STI-consistent dressing

Fierz-complete basis

at $p = 0$ and mom. dep.
Truncation

Vertex expansion

- FRG Yang-Mills results
- Full mom. dep.
- Fierz-complete basis at $p = 0$ and mom. dep.
- STI-consistent dressing
- Mom. dep.
- Mom. dep.
- Mom. dep. classical tensor structure
Truncation

Vertex expansion

- FRG Yang-Mills results
- mom. dep. classical tensor structure
- full mom. dep. all tensor structures
- STI-consistent dressing
- Fierz-complete basis at $p = 0$ and mom. dep.
- mom. dep.
- mom. dep.
- mom. dep.
Truncation

Vertex expansion

FRG Yang-Mills results

mom. dep. classical tensor structure

mom. dep. classical tensor structure

full mom. dep. all tensor structures

STI-consistent dressing

Fierz-complete basis at \(p = 0 \) and mom. dep.

mom. dep.

mom. dep.

full effective potential
Truncation

Vertex expansion

Computer-algebraic generation of equations using DoFun

Propagators (T=0)

Quenched gluon propagator (input)

\[\Gamma^{\mu\nu}_{A^2}(p) = Z_A(p)p^2 \Pi^{\mu\nu}_T(p) \]

- Fischer, Maas, Pawlowski Annals Phys. 324, 2408 (2009)
- Fister, Pawlowski in prep.
Propagators (T=0)

Quenched gluon propagator (input)

\[\Gamma_{A^2}^{\mu\nu}(p) = Z_A(p)p^2 \Pi_T^{\mu\nu}(p) \]

Quark propagator

\[\Gamma_{\bar{q}q}(p) = Z_q(p)(i\not{p} + M_q(p)) \]

Very good agreement with (quenched) lattice results!

- Fischer, Maas, Pawlowski Annals Phys. 324, 2408 (2009)
- Fister, Pawlowski in prep.
- Mitter, Pawlowski, NSt arXiv:1411.7978
Chiral symmetry breaking

β-function:

\[k \partial_k \hat{\lambda}_\psi = (d - 2) \hat{\lambda}_\psi - a \hat{\lambda}_\psi^2 - b \hat{\lambda}_\psi g^2 - cg^4 \]

Chiral symmetry breaking

\(\beta \)-function:

\[
k \partial_k \hat{\lambda}_\psi = (d - 2) \hat{\lambda}_\psi - a \hat{\lambda}_\psi^2 - b \hat{\lambda}_\psi g^2 - cg^4
\]

- reflects gluon mass gap
- area above the critical value decides

Effective model perspective

- Independence of initial scale and initial condition
Effective model perspective

- Independence of initial scale and initial condition
- only requirement: decoupling of gluons
- Low-energy models completely fixed by QCD flow
Unquenching: first qualitative results available

- Braun, Fister, Pawlowski, Rennecke arXiv:1412.1045
Outlook

Unquenching: first qualitative results available

Shopping list
✓ Quantitative results in the vacuum
☐ Full unquenching
☐ Quantitative investigations in the vacuum (YM vertices, 4-Fermi)
☐ Transition to low-energy effective models
☐ Finite temperature
☐ Finite Density (important: role of baryonic/diquark d.o.f.)

Braun, Fister, Pawlowski, Rennecke arXiv:1412.1045
Dynamics I
Spectral Functions

- Helmboldt, Pawlowski, NSt arXiv:1409.8414
Spectral Functions

Real-time observable from Euclidean framework

\[
\Gamma_R^{(2)}(\omega, \vec{p}) = -\lim_{\epsilon \to 0} \Gamma_E^{(2)}(-i(\omega + i\epsilon), \vec{p})
\]

\[
\rho(\omega, \vec{p}) = \frac{\text{Im} \, \Gamma_R^{(2)}(\omega, \vec{p})}{\text{Im} \, \Gamma_R^{(2)}(\omega, \vec{p})^2 + \text{Re} \, \Gamma_R^{(2)}(\omega, \vec{p})^2}
\]

requires analytical continuation from Euclidean to Minkowski signature numerically hard or even ill-posed problem
Spectral Functions

Real-time observable from Euclidean framework

$$\Gamma_R^{(2)}(\omega, \vec{p}) = -\lim_{\epsilon \to 0} \Gamma_E^{(2)}(-i(\omega + i\epsilon), \vec{p})$$

$$\rho(\omega, \vec{p}) = \frac{\text{Im} \Gamma_R^{(2)}(\omega, \vec{p})}{\text{Im} \Gamma_R^{(2)}(\omega, \vec{p})^2 + \text{Re} \Gamma_R^{(2)}(\omega, \vec{p})^2}$$

requires analytical continuation from Euclidean to Minkowski signature numerically hard or even ill-posed problem

Popular approaches (based on Euclidean data)
- Maximum Entropy Method (MEM)
- Padé Approximants
Spectral Functions

Real-time observable from Euclidean framework

\[
\Gamma_R^{(2)}(\omega, \vec{p}) = -\lim_{\epsilon \to 0} \Gamma_E^{(2)}(-i(\omega + i\epsilon), \vec{p})
\]

\[
\rho(\omega, \vec{p}) = \frac{\text{Im} \Gamma_R^{(2)}(\omega, \vec{p})}{\text{Im} \Gamma_R^{(2)}(\omega, \vec{p})^2 + \text{Re} \Gamma_R^{(2)}(\omega, \vec{p})^2}
\]

requires analytical continuation from Euclidean to Minkowski signature numerically hard or even ill-posed problem

Popular approaches (based on Euclidean data)

- Maximum Entropy Method (MEM)
- Padé Approximants

Alternative: analytic continuation on the level of the functional equation

- Floerchinger JHEP 1205 (2012) 021
- Strauss, Fischer, Kellermann PRL **109** (2012) 252001
Analytical continuation

Analytical continuation

- Compute flow equation for Euclidean 2-point function
 perform analytically for 3d regulator function

\[R = \bar{p}^2 r(\bar{p}^2) \]
• Compute flow equation for Euclidean 2-point function
 perform analytically for 3d regulator function
 \[R = \bar{p}^2 r(\bar{p}^2) \]

• Perform analytical continuation in ext. momentum
 \[p_0 \rightarrow -i(\omega + i\epsilon) \]
• Compute flow equation for Euclidean 2-point function perform analytically for 3d regulator function $R = \bar{p}^2 r(\bar{p}^2)$

$\Gamma^{(3)}_k$

$\Gamma^{(3)}_k$

$p + q$

• Perform analytical continuation in ext. momentum $p_0 \rightarrow -i(\omega + i\epsilon)$

• Ensure correct continuation $n_{B/F}(E + ip_0) \rightarrow n_{B/F}(E)$
Compute flow equation for Euclidean 2-point function perform analytically for 3d regulator function \(R = \vec{p}^2 r(\vec{p}^2) \)

Perform analytical continuation in ext. momentum
\[
p_0 \to -i(\omega + i\epsilon)
\]

Ensure correct continuation
\[
n_B/F(E + ip_0) \to n_B/F(E')
\]

For small but finite \(\epsilon \) compute real and imaginary part of
\[
-\Gamma^{(2)}_E(-i(\omega + i\epsilon), \vec{p})
\]
Analytical continuation

- Compute flow equation for Euclidean 2-point function perform analytically for 3d regulator function $R = \vec{p}^2 r(\vec{p}^2)$

- Perform analytical continuation in ext. momentum

- Ensure correct continuation

- For small but finite ε compute real and imaginary part of $-\Gamma^{(2)}_E (-i(\omega + i\varepsilon), \vec{p})$

Test cases: simple bosonic/ Yukawa models
Mesonic Spectral Functions

O(N) model (T=0)

- Kamikado, NSt, von Smekal, Wambach
Mesonic Spectral Functions

O(N) model (T=0)

Quark-meson (Yukawa) model

QM Model at $T>0$

ρ_σ

ρ_π

Λ_{UV}^{-2}

$T=10$ MeV

1: $\sigma^* \rightarrow \sigma\sigma$
2: $\sigma^* \rightarrow \pi\pi$
3: $\sigma^* \rightarrow \tilde{\psi}\tilde{\psi}$
4: $\pi^* \rightarrow \sigma\pi$
5: $\pi^*\pi \rightarrow \sigma$
6: $\pi^* \rightarrow \tilde{\psi}\tilde{\psi}$

QM Model at T > 0

QM Model at $T > 0$

QM Model at $T>0$

Outlook
Outlook

Generalization towards a fully numerical procedure

First step: Euclidean momenta (via an iterative procedure)

- Helmboldt, Pawlowski, NSt arXiv:1409.8414

<table>
<thead>
<tr>
<th>step</th>
<th>(m_{\text{cur}}) [MeV]</th>
<th>(m_{\text{pol}}) [MeV]</th>
<th>(\sigma_{\text{min}}) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>412.8</td>
<td>412.8</td>
<td>16.8</td>
</tr>
<tr>
<td>1</td>
<td>144.8</td>
<td>142 ± 2</td>
<td>83.5</td>
</tr>
<tr>
<td>2</td>
<td>136.4</td>
<td>135 ± 2</td>
<td>91.8</td>
</tr>
<tr>
<td>3</td>
<td>135.1</td>
<td>134 ± 2</td>
<td>93.1</td>
</tr>
<tr>
<td>4</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
<tr>
<td>5</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
</tbody>
</table>
Outlook

Generalization towards a fully numerical procedure

First step: Euclidean momenta (via an iterative procedure)

- Helmboldt, Pawlowski, NSt arXiv:1409.8414

<table>
<thead>
<tr>
<th>step</th>
<th>m_{cur} [MeV]</th>
<th>m_{pol} [MeV]</th>
<th>σ_{min} [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>412.8</td>
<td>412.8</td>
<td>16.8</td>
</tr>
<tr>
<td>1</td>
<td>144.8</td>
<td>142 ± 2</td>
<td>83.5</td>
</tr>
<tr>
<td>2</td>
<td>136.4</td>
<td>135 ± 2</td>
<td>91.8</td>
</tr>
<tr>
<td>3</td>
<td>135.1</td>
<td>134 ± 2</td>
<td>93.1</td>
</tr>
<tr>
<td>4</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
<tr>
<td>5</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
</tbody>
</table>

Second step: Minkowski external momenta

- Pawlowski, NSt in prep.
Outlook

Generalization towards a fully numerical procedure

First step: Euclidean momenta (via an iterative procedure)
- Helmboldt, Pawlowski, NSt arXiv:1409.8414

<table>
<thead>
<tr>
<th>step</th>
<th>m_{cur} [MeV]</th>
<th>m_{pol} [MeV]</th>
<th>σ_{min} [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>412.8</td>
<td>412.8</td>
<td>16.8</td>
</tr>
<tr>
<td>1</td>
<td>144.8</td>
<td>142 ± 2</td>
<td>83.5</td>
</tr>
<tr>
<td>2</td>
<td>136.4</td>
<td>135 ± 2</td>
<td>91.8</td>
</tr>
<tr>
<td>3</td>
<td>135.1</td>
<td>134 ± 2</td>
<td>93.1</td>
</tr>
<tr>
<td>4</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
<tr>
<td>5</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
</tbody>
</table>

Second step: Minkowski external momenta
- Pawlowski, NSt in prep.

Shopping list
- Continuation procedure set-up
- Tested in simple models
- Generalization towards a fully numerical procedure
- Quark & gluon spectral functions
- Vector meson spectral functions
- Charmonium spectral functions
Dynamics II
Transport Coefficients

- Christiansen, Haas, Pawlowski, arXiv:1411.7986
Transport Coefficients

- Evolution of the hot plasma well-described by hydrodynamics
- Extract viscosity from v_2
- Transport coefficients as important microscopic input
Transport Coefficients

- Evolution of the hot plasma well-described by hydrodynamics
- Extract viscosity from v_2
- Transport coefficients as important microscopic input

Transport Coefficients

- Evolution of the hot plasma well-described by hydrodynamics
- Extract viscosity from v_2
- Transport coefficients as important microscopic input

![Graph showing transport coefficients](image)

Kubo formula

$$\eta = \lim_{\omega \to 0} \frac{1}{20} \frac{\rho_{\pi\pi}(\omega, \vec{0})}{\omega}$$

Require

$$\rho_{\pi\pi}(\omega, \vec{p}) = \int_x e^{-i\omega x_0 + ip\vec{x}} \langle [\pi_{ij}(x), \pi_{ij}(0)] \rangle$$
DSE-like expansion formula

\[\langle \pi_{i,j} [\hat{A}] \pi_{i,j} [\hat{A}] \rangle = \pi_{i,j} [G_{A\phi_{k}} \frac{\delta}{\delta \phi_{k}} + A] \pi_{i,j} [G_{A\phi_{k}} \frac{\delta}{\delta \phi_{k}} + A] \]
Computing EM Correlators

DSE-like expansion formula

\[\langle \pi_{i,j} [\hat{A}] \pi_{i,j} [\hat{A}] \rangle = \pi_{i,j} \left[G A \phi_k \frac{\delta}{\delta \phi_k} + A \right] \pi_{i,j} \left[G A \phi_k \frac{\delta}{\delta \phi_k} + A \right] \]

Finite number of diagrams involving full propagators/vertices

All diagrams to 2-loop order
Computing EM Correlators

DSE-like expansion formula

\[\langle \pi_{ij}[\hat{A}]\pi_{ij}[\hat{A}] \rangle = \pi_{ij} [G A \phi_k \frac{\delta}{\delta \phi_k} + A] \pi_{ij} [G A \phi_k \frac{\delta}{\delta \phi_k} + A] \]

Finite number of diagrams involving full propagators/vertices

Input: **gluon spectral function** from Euclidean FRG data using MEM

η/s in Yang-Mills Theory

$T_{\text{min}} = 1.26 \, T_c$
Value = 0.14

Christiansen, Haas, Pawlowski, NSt arXiv:1411.7986
η/s in Yang-Mills Theory

Direct sum:
\[\eta_s(T) = \frac{a}{\alpha_s^{\gamma}} + \frac{b}{(T/T_c)^\delta} \]

High T: consistent with HTL-resummed pert. theory supporting quasiparticle picture

Small T: algebraic decay glueball resonance gas

T_{min} = 1.26 T_c
Value = 0.14

Christiansen, Haas, Pawlowski, NSt arXiv:1411.7986
More 2-Loop

- Consistent with 1-loop around T_c
- Dominant contribution from Maki-Thompson and Eight at large T
From YM to QCD in three simple steps

1. Replace α_s; impose equality at T_c
 $$\alpha_s^{N_f=0}|_{T_c} = \alpha_s^{N_f=3}|_{T_c}$$

2. Genuine quark contributions to η and s

3. Replace GRG by HRG
 ➤ Demir, Bass PRL 102 (2009) 172302

η/s in QCD
From YM to QCD in three simple steps

1. Replace α_s; impose equality at T_c
 $$\alpha_s^{N_f=0}|_{T_c} = \alpha_s^{N_f=3}|_{T_c}$$

2. Genuine quark contributions to η and s

3. Replace GRG by HRG

Demir, Bass PRL 102 (2009) 172302

$T_{\text{min}} = 1.3 \, T_c$
Value: 0.17
Outlook

Quark contributions

Require quark and gluon spectral functions in QCD
Outlook

Quark contributions

Require quark and gluon spectral functions in QCD

Shopping List

☑ Formalism set-up
☑ Quantitative results for \(\eta/s \) in YM
☐ Bulk viscosity
☐ Relaxation times
☐ Application to non-relativistic systems e.g. ultracold atoms
Summary

- QCD phase structure
towards a quantitative continuum approach to QCD
 ✓ Quantitative grip on fluctuation physics in the vacuum
 ❑ finite temperature and density
Summary

• **QCD phase structure**
 towards a quantitative continuum approach to QCD
 ✓ Quantitative grip on fluctuation physics in the vacuum
 ❑ finite temperature and density

• **Spectral Functions**
 new approach to analytical continuation problem
 ✓ tested in simple models (O(N), QM model)
 ❑ quark & gluon spectral functions, vector mesons, charmonium
Summary

• **QCD phase structure**
 towards a quantitative continuum approach to QCD
 ✓ Quantitative grip on fluctuation physics in the vacuum
 ❑ finite temperature and density

• **Spectral Functions**
 new approach to analytical continuation problem
 ✓ tested in simple models (O(N), QM model)
 ❑ quark & gluon spectral functions, vector mesons, charmonium

• **Transport Coefficients**
 from loop expansion involving full propagators and vertices
 ✓ Global quantitative prediction for η/s in YM theory
 ❑ Full QCD, bulk viscosity, relaxation times
Summary

• **QCD phase structure**
 towards a quantitative continuum approach to QCD
 ✓ Quantitative grip on fluctuation physics in the vacuum
 ❑ finite temperature and density

• **Spectral Functions**
 new approach to analytical continuation problem
 ✓ tested in simple models (O(N), QM model)
 ❑ quark & gluon spectral functions, vector mesons, charmonium

• **Transport Coefficients**
 from loop expansion involving full propagators and vertices
 ✓ Global quantitative prediction for η/s in YM theory
 ❑ Full QCD, bulk viscosity, relaxation times

Thank you for your attention!
More Matter system?

Quark-Gluon vertex

- Take into account all 8 tensor structures of the trans. projected vertex
- 5,7 most important (non-classical) tensor structures in the symmetric phase
- **but keep in mind gauge-invariance**

\[
\begin{align*}
[T_{\overline{q}Aq}^{(1)}]^{\mu}(p,q) &= \gamma^{\mu}, \\
[T_{\overline{q}Aq}^{(2)}]^{\mu}(p,q) &= -i(p-q)^{\mu}, \\
[T_{\overline{q}Aq}^{(3)}]^{\mu}(p,q) &= -i(\bar{q} - q)\gamma^{\mu}, \\
[T_{\overline{q}Aq}^{(4)}]^{\mu}(p,q) &= i(\bar{q} + q)\gamma^{\mu}, \\
[T_{\overline{q}Aq}^{(5)}]^{\mu}(p,q) &= (\bar{q} + q)(p-q)^{\mu}, \\
[T_{\overline{q}Aq}^{(6)}]^{\mu}(p,q) &= -(\bar{q} - q)(p-q)^{\mu}, \\
[T_{\overline{q}Aq}^{(7)}]^{\mu}(p,q) &= \frac{1}{2}[\bar{q}, q]\gamma^{\mu}, \\
[T_{\overline{q}Aq}^{(8)}]^{\mu}(p,q) &= -\frac{1}{2}[\bar{q}, q](p-q)^{\mu},
\end{align*}
\]
STI-consistent expansion

Setting up a sensible truncation scheme:
- Use an expansion in terms of gauge-invariant operators
- Construct from combinations of covariant derivatives
STI-consistent expansion

Setting up a sensible truncation scheme:

• **Use an expansion in terms of gauge-invariant operators**
• **Construct from combinations of covariant derivatives**

• e.g. for the dominant (non-classical) structure in the chirally symmetric regime: gauge invariant operator

\[i\sqrt{4\pi\alpha_s} \bar{q} \gamma_5 \gamma_\mu \epsilon_{\mu\nu\rho\sigma} \{ F_{\nu\rho}, D_\sigma \} q \]

gives rise to contribution proportional to

\[\frac{1}{2} T_{\bar{q}Aq}^{(5)} + T_{\bar{q}Aq}^{(7)} \]
STI-consistent expansion

Setting up a sensible truncation scheme:
- Use an expansion in terms of gauge-invariant operators
- Construct from combinations of covariant derivatives

- e.g. for the dominant (non-classical) structure in the chirally symmetric regime: gauge invariant operator

\[i \sqrt{4\pi \alpha_s} \bar{q} \gamma_5 \gamma_\mu \epsilon_{\mu \nu \rho \sigma} \{ F_{\nu \rho}, D_\sigma \} q \]

gives rise to contribution proportional to

\[\frac{1}{2} \mathcal{T}_{\bar{q}Aq}^{(5)} + \mathcal{T}_{\bar{q}Aq}^{(7)} \]

- Associated non-classical vertices are quantitatively important
(a) Renormalisation group scale dependence of dimensionless four-fermi interactions, see App. B 2 c and bosonised $\sigma-\pi$ channel. Grey: respects chiral symmetry, blue: breaks $U(1)_A$, red: breaks $SU(2)_A$, magenta: breaks $U(2)_A$.
(a) Renormalisation group scale dependence of dimensionless four-fermi interactions, see App. B2c and bosonised σ-π channel. Grey: respects chiral symmetry, blue: breaks $U(1)_A$, red: breaks $SU(2)_A$, magenta: breaks $U(2)_A$.

- Bosonizing the σ-π channel only is sufficient to remove divergence
- In the vacuum: other channels not quantitatively relevant
Euclidean Iteration

Why momentum dependence?

Quantitative precision
Why momentum dependence?

Quantitative precision

- QCD perspective on low-energy effective models:
 - **UV parameters fixed** by QCD flows
 - Talks by L. Fister, M. Mitter, J. Pawlowski, F. Rennecke
 - Increase in predictive power
Why momentum dependence?

Quantitative precision

• QCD perspective on low-energy effective models:
 ✓ **UV parameters fixed** by QCD flows
 ➢ Talks by L. Fister, M. Mitter, J. Pawlowski, F. Rennecke
 ✓ Increase in predictive power

• Models have to be treated **quantitatively**
 ✓ Full effective potential (grid or fixed Taylor expansion)
 ✓ Higher order quark-meson scattering ➢ Pawlowski, Rennecke arXiv:1403.1179
 ✓ **Momentum dependence**
Why momentum dependence?

Quantitative precision

• QCD perspective on low-energy effective models:
 ✓ **UV parameters fixed** by QCD flows
 ➢ Talks by L. Fister, M. Mitter, J. Pawlowski, F. Rennecke
 ✓ Increase in predictive power

• Models have to be treated **quantitatively**
 ✓ Full effective potential (grid or fixed Taylor expansion)
 ✓ Higher order quark-meson scattering ➢ Pawlowski, Rennecke arXiv:1403.1179
 ✓ **Momentum dependence**

• **Benchmark** of popular **truncation schemes** (LPA and LPA’)

Why momentum dependence?

Quantitative precision

• QCD perspective on low-energy effective models:
 ✓ **UV parameters fixed** by QCD flows
 ➢ Talks by L. Fister, M. Mitter, J. Pawlowski, F. Rennecke
 ✓ Increase in predictive power

• Models have to be treated **quantitatively**
 ✓ Full effective potential (grid or fixed Taylor expansion)
 ✓ Higher order quark-meson scattering ➢ Pawlowski, Rennecke arXiv:1403.1179
 ✓ **Momentum dependence**

• **Benchmark** of popular **truncation schemes** (LPA and LPA’)

• Momentum dependence crucial for critical physics
Euclidean Iteration I

Momentum dependence of 2-point functions in an iterative procedure
Example: mesonic propagators in a quark meson model

\[\partial_t U_k = \frac{1}{2} \]

\[\partial_t \Delta \Gamma_k^{(2)}(p^2) = \begin{bmatrix} p - q & q & q \\ p + q - \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} \rightarrow 0 \end{bmatrix} \]
Euclidean Iteration I

Momentum dependence of 2-point functions in an iterative procedure

Example: mesonic propagators in a quark meson model

\[\partial_t U_k = \frac{1}{2} \]

\[\partial_t \Delta \Gamma_k^{(2)}(p^2) = \]

momentum-independent vertices from eff. potential
Euclidean Iteration I

Momentum dependence of 2-point functions in an iterative procedure
Example: mesonic propagators in a quark meson model

\[\partial_t U_k = \frac{1}{2} \]

\[\partial_t \Delta \Gamma_k^{(2)}(p^2) = \]

Iteration procedure

\[\Gamma_{cl,k}^{(2)} \rightarrow U_k \rightarrow \Gamma_k^{(2)} \rightarrow U_k \rightarrow \Gamma_k^{(2)} \rightarrow \ldots \]
• **Numerically inexpensive upgrade** for existing Euclidean calculations

• Here: **Quark-meson model at finite T; fixed ren. Yukawa coupling**

• **4d exponential** regulator function
Euclidean Iteration II

- **Numerically inexpensive upgrade** for existing Euclidean calculations

- Here: **Quark-meson model at finite T; fixed ren. Yukawa coupling**

- **4d exponential** regulator function

- Convergence properties:

<table>
<thead>
<tr>
<th>step</th>
<th>m_{cur} [MeV]</th>
<th>m_{pol} [MeV]</th>
<th>σ_{min} [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>412.8</td>
<td>412.8</td>
<td>16.8</td>
</tr>
<tr>
<td>1</td>
<td>144.8</td>
<td>142 ± 2</td>
<td>83.5</td>
</tr>
<tr>
<td>2</td>
<td>136.4</td>
<td>135 ± 2</td>
<td>91.8</td>
</tr>
<tr>
<td>3</td>
<td>135.1</td>
<td>134 ± 2</td>
<td>93.1</td>
</tr>
<tr>
<td>4</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
<tr>
<td>5</td>
<td>134.9</td>
<td>133 ± 2</td>
<td>93.2</td>
</tr>
</tbody>
</table>
Mass Definitions

Renormalized 2-point function:

\[\bar{\Gamma}^{(2)}(p_0, \vec{p}^2) = \Gamma^{(2)}(p_0, \vec{p}^2) / \bar{Z} \]
Mass Definitions

Renormalized 2-point function:

\[\tilde{\Gamma}^{(2)}(p_0, \vec{p}^2) = \Gamma^{(2)}(p_0, \vec{p}^2) / \tilde{Z} \]

Pole mass:

\[\tilde{\Gamma}^{(2)}(im_{pol}, 0) = 0 \]

Temporal screening:

\[T \sum_{p_0} \Gamma^{(2)}(p_0, 0)^{-1} e^{ip_0 t} \sim e^{-m_{pol} |t|} \]
Mass Definitions

Renormalized 2-point function: \[\bar{\Gamma}^{(2)}(p_0, p^2) = \Gamma^{(2)}(p_0, p^2) / \bar{Z} \]

Pole mass:
\[\bar{\Gamma}^{(2)}(im_{pol}, 0) = 0 \]

Temporal screening:
\[T \sum_{p_0} \Gamma^{(2)}(p_0, 0)^{-1} e^{ip_0 t} \sim e^{-m_{pol} |t|} \]

Screening mass:
\[\bar{\Gamma}^{(2)}(0, -m_{scr}^2) = 0 \]

Spatial screening:
\[\int d^3 p \, \Gamma^{(2)}(0, p^2)^{-1} e^{ip\vec{x}} \sim e^{-m_{scr} |x|} \]
Mass Definitions

Renormalized 2-point function:
\[\bar{\Gamma}^{(2)}(p_0, \vec{p}^2) = \Gamma^{(2)}(p_0, \vec{p}^2) / \tilde{Z} \]

Pole mass:
\[\bar{\Gamma}^{(2)}(i m_{pol}, 0) = 0 \]

Temporal screening:
\[T \sum_{p_0} \Gamma^{(2)}(p_0, 0)^{-1} e^{i p_0 t} \sim e^{-m_{pol} |t|} \]

Screening mass:
\[\bar{\Gamma}^{(2)}(0, -m_{scr}^2) = 0 \]

Spatial screening:
\[\int d^3 p \ \Gamma^{(2)}(0, \vec{p}^2)^{-1} e^{i \vec{p} \cdot \vec{x}} \sim e^{-m_{scr} |x|} \]

Curvature mass:
\[\bar{\Gamma}^{(2)}(0, 0) = m_{cur}^2 \]

No physical observable; dependent on renormalization procedure, parameterization of the propagator.
Mass Definitions

Renormalized 2-point function: \(\bar{\Gamma}^{(2)}(p_0, \vec{p}^2) = \Gamma^{(2)}(p_0, \vec{p}^2)/\bar{Z} \)

Pole mass: \(\bar{\Gamma}^{(2)}(i m_{pol}, 0) = 0 \)

Temporal screening: \(T \sum_{p_0} \Gamma^{(2)}(p_0, 0)^{-1} e^{i p_0 t} \sim e^{-m_{pol} |t|} \)

Screening mass: \(\bar{\Gamma}^{(2)}(0, -m_{scr}^2) = 0 \)

Spatial screening: \(\int d^3 p \Gamma^{(2)}(0, \vec{p}^2)^{-1} e^{i \vec{p} \cdot \vec{x}} \sim e^{-m_{scr} |x|} \)

Curvature mass: \(\bar{\Gamma}^{(2)}(0, 0) = m_{cur}^2 \)

No physical observable; dependent on renormalization procedure, parameterization of the propagator

Onset mass: Silver Blaze property links mass to critical chemical potential; coincides with pole mass
Physics Results

From converged iteration

\[m_{\text{cur}} \]
\[m_{\text{pol}} \]
\[m_{\text{scr}} \]
Physics Results

From converged iteration:

\[m_{\text{cur}} \]
\[m_{\text{pol}} \]
\[m_{\text{scr}} \]

\[T=0: \quad m_{\text{pol}} = m_{\text{scr}} \quad \text{by O(4) invariance} \]

\[m_{\text{pol}} \approx m_{\text{cur}} : \quad m_{\text{cur}}^2 = \frac{Z\parallel(p_0=im_{\text{pol}},p^2=0)}{Z} m_{\text{pol}}^2 \]
Physics Results

From converged iteration

$T > 0$:

$m_{\text{pol}} = m_{\text{scr}}$ by O(4) invariance

$m_{\text{pol}} \approx m_{\text{cur}} : m_{\text{cur}}^2 = \frac{Z_{\parallel}(p_0=im_{\text{pol}}, \vec{p}^2=0)}{Z} m_{\text{pol}}^2$

$T = 0$:

$m_{\text{pol}} = m_{\text{scr}}$ by O(4) invariance

$\frac{m_{\text{pol}}^2}{m_{\text{scr}}^2} = \frac{Z_{\perp}(p_0=0, \vec{p}^2=-m_{\text{scr}}^2)}{Z_{\parallel}(im_{\text{pol}}, \vec{p}^2=0)}$
LPA: Mismatches of Fluctuation Scales

More than an academic exercise...

\[m_{\text{cur}} \approx m_{\text{pole}} = m_{\text{ons}} \]

\[
\left[\frac{\mu_c}{T_c} \right]_{\text{full}} / \left[\frac{\mu_c}{T_c} \right]_{\text{LPA}} \approx \left[\frac{m_{\text{cur}}}{m_{\text{ons}}} \right]_{\text{LPA}} \approx 1.4
\]
LPA: Mismatches of Fluctuation Scales

More than an academic exercise...

\[m_{\text{cur}} \approx m_{\text{pole}} = m_{\text{ons}} \]

in the full calculation
but large deviations in LPA

\[
\left[\frac{\mu_c}{T_c} \right]_{\text{full}} / \left[\frac{\mu_c}{T_c} \right]_{\text{LPA}} \approx \left[\frac{m_{\text{cur}}}{m_{\text{ons}}} \right]_{\text{LPA}} \approx 1.4
\]
LPA: Mismatches of Fluctuation Scales

More than an academic exercise...

\[m_{\text{cur}} \approx m_{\text{pole}} = m_{\text{ons}} \]

quantum fluctuations

density fluctuations

in the full calculation but large deviations in LPA

\[\left[\frac{\mu_c}{T_c} \right]_{\text{full}} / \left[\frac{\mu_c}{T_c} \right]_{\text{LPA}} \approx \left[\frac{m_{\text{cur}}}{m_{\text{ons}}} \right]_{\text{LPA}} \approx 1.4 \]
LPA: Mismatches of Fluctuation Scales

More than an academic exercise...

\[m_{\text{cur}} \approx m_{\text{pole}} = m_{\text{ons}} \]

- quantum fluctuations
- density fluctuations

Rough estimate:

\[\left[\frac{\mu_c}{T_c} \right]_{\text{full}} / \left[\frac{\mu_c}{T_c} \right]_{\text{LPA}} \approx \left[\frac{m_{\text{cur}}}{m_{\text{ons}}} \right]_{\text{LPA}} \approx 1.4 \]

- mismatch of fluctuation scales
 => large systematic errors at finite \(\mu \) (curvature, CEP)
- resolved by including momentum dependence
Comparison: Fixed UV

QCD perspective

- LPA with these initial conditions => no χ_{SB}
- Full calculation and LPA' in quantitative agreement
• LPA’ includes only a **scale-dependent Z**
• Very good approximation to the full calculation (**deviation < 3 %**)
• Upgrade: calculate momentum dependence on LPA’ solution (1 step)
Comparison: Fixed IR

Model perspective

- Reasonably good agreement at $\mu=0$ (in terms of relative scales)
- But in LPA still **large systematic error at finite μ**
Spectral Functions

- Tripolt, NSt, von Smekal, Wambach; Phys.Rev. D89 (2014) 034010
QM Model at $\mu > 0$
QM Model at $\mu > 0$

$\mu = 200$ MeV

Λ_{UV}^2

ρ_{π}

ρ_{σ}

ω [MeV]

1: $\sigma^* \rightarrow \sigma \sigma$
2: $\sigma^* \rightarrow \pi \pi$
3: $\sigma^* \rightarrow \bar{\psi} \psi$
4: $\pi^* \rightarrow \sigma \pi$
5: $\pi^* \pi \rightarrow \sigma$
6: $\pi^* \rightarrow \bar{\psi} \psi$
QM Model at $\mu > 0$

$\mu = 292$ MeV

1: $\sigma^* \rightarrow \sigma \sigma$
2: $\sigma^* \rightarrow \pi \pi$
3: $\sigma^* \rightarrow \bar{\psi} \psi$
4: $\pi^* \rightarrow \sigma \pi$
5: $\pi^* \pi \rightarrow \sigma$
6: $\pi^* \rightarrow \bar{\psi} \psi$
QM Model at $\mu > 0$

\[\mu = 292.97 \text{ MeV} \]

\[\mu = 292.8 \text{ MeV} \]

1: $\sigma^* \rightarrow \sigma \sigma$
2: $\sigma^* \rightarrow \pi \pi$
3: $\sigma^* \rightarrow \bar{\psi} \psi$
4: $\pi^* \rightarrow \sigma \pi$
5: $\pi^* \pi \rightarrow \sigma$
6: $\pi^* \rightarrow \bar{\psi} \psi$
QM Model at $\mu > 0$
Going beyond...

So far: 3d regulator function \[R = \vec{p}^2 r(\vec{p}^2) \]
Going beyond...

So far: 3d regulator function \(R = \vec{p}^2 r(\vec{p}^2) \)

Generalization:
- Either regulators which allow to perform Matsubara sums analytically
 - Floerchinger; JHEP 1205 (2012) 021
Going beyond...

So far: 3d regulator function \[R = \bar{p}^2 r(\bar{p}^2) \]

Generalization:
• Either regulators which allow to perform Matsubara sums analytically
 - Floerchinger; JHEP 1205 (2012) 021
• Or fully numerical procedure- perform Matsubara sum numerically
 • Require: analytical regulator function for complex momenta
 • for free: finite chemical potential
Going beyond...

So far: 3d regulator function \(R = \tilde{p}^2 r(\tilde{p}^2) \)

Generalization:

- Either regulators which allow to perform Matsubara sums analytically
 - Floerchinger; JHEP 1205 (2012) 021

- Or **fully numerical procedure**- perform Matsubara sum numerically
 - Require: analytical regulator function for complex momenta
 - for free: finite chemical potential

Shopping list:

- Proper regulator for complex external momenta
- Suitable for numerical applications
- Analytical functions
- Analytical structure of regularized propagator: as few poles as possible
 - Require pole procedures to obtain the correct real-time result
4d Spectral Functions

Preliminary

Pawlowski, NSt [in prep.]