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In this talk | will show you that the non-equilibrium dynamics of a gas with

- Ultrarelativistic particles (i.e., massless)

- In an expanding universe
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OUTLINE

- Boltzmann equation in Friedmann-Robertson-Walker spacetime
- General solution using scalar moments
- First analytical solution of the relativistic Boltzmann equation

- Conclusions and outlook



Relativistic Boltzmann Equation

- Dilute gases display complex non-equilibrium dynamics.

- The Boltzmann equation has been instrumental in physics and mathematics
(e.g., 2010 Fields Medal).

Relativistic Boltzmann equation

k'O, fr(x, k) =C|f(z, k)]

, S

Space-time variation Collision term

- It describes how the particle distribution function fk (;[;} k) varies in time and space
due to the effects of collisions (and external fields).



The relativistic Boltzmann equation has been applied in:

- Cosmology.

- Neutrino transport in supernovae.

And also in heavy ion collisions:

- Non-equilibrium processes involving quarks and gluons at sufficiently large
temperatures.

- Numerical models (BAMPS, MPC, ZPC, AMPT, URQMD).
- Calculation of transport coefficients (e.g., shear viscosity of a hadron gas).

- Determine the regime of validity of relativistic hydrodynamics in rapidly expanding
systems.



Example: Exact solution of the RTA Boltzmann equation for Gubser flow

PRL 113 (2014) 20, 202301

Boltzmann equation

p"0.f(z,p) = C[f](z,p)

Relaxation time approximation (RTA) m=ssss)p  The long wavelength, long time
limit should be

Clfl(z.2) = P22 (£(2,p) fuole. )
Trel(2) Viscous hydrodynamics

This is the “microscopic theory” Effective theory

What is the domain of applicability of relativistic viscous hydrodynamics

for rapidly evolving systems (such as the QGP)?




What we did: Phys.Rev.Lett. 113 (2014) 20, 202301

Key idea: Emergent Weyl symmetry.

RTA Boltzmann is Weyl invariant for massless particles.

Wey! transformation changes the curvature of spacetime:  9uv(2) = ¢ g, (z)

ﬂ

Complicated Gubser flow <) Trivial static flow in curved
pattern in flat spacetime Spacetime dS3 x R
Gubser, PRD82 (2010) 085027. ﬁ“ _ (_], 0’ 0, 0)

Gubser and Yarom, NPB846 (2011) 469-511.



ds* = —dr* +dr* + r*dg” + r°d¢’ —

Complicated kinetic dynamics 3d de Sitter space
ds? = —dp? + cosh? pdb? + cosh? p sin® 0 dgp? + dg?

What does the flow look like in flat space? Trivial flow

1—72 472 297
—_— tanf =
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Transverse flow velocity in flat spacetime — Gubser flow

Symmetry under SO(B)Q X SO(L 1) K Lo

2
u, = sinh tanh ! qarr Mink Ki
1 4 q272 + r272 INKOWSKI space

7=0.25fm/c T =2.25fm/c T=6.25fm/c

In the curved spacetime
Gubser, PRD82 (2010) 085027. description the flow is static !!!
Gubser and Yarom, NPB846 (2011) 469-511.
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In curved spacetime dS3 x R, the RTA Boltzmann equation becomes very simple
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Using this we can compute the energy density and etc and Weyl it back to flat space
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Checking the domain of applicability of different hydrodynamics theories

Hydro solution based on Marrochio et al., Phys.Rev. C91 (2015) 1, 014903

4mn/fs = 1 4mnfs = 10
1.0F : ' ' 1.0F - : :
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s s o S Bt . 7 S A o s SOOI Hydro breaks down

at very early times
and very large radius

Domain of applicability
of 2" order hydro is
surprisingly large !
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- Viscous hydrodynamics can match the underlying kinetic theory dynamics pretty
well even in this system that rapidly expands both in the longitudinal and transverse
directions.

t=0.25 fm/c t=2.25fm/c t=6.25 fm/c

— — 0 - —
X [fm] x [fm] x [fm]

- However, the large domain of applicability of hydrodynamics found in this particular
example may be an artifact of the assumptions regarding the collision term (RTA).

- A more realistic treatment of the collision term is needed ...

What is the simplest expanding kinetic system that can be studied taking into
account the inherent nonlinearities due to collisions?

A: Massless gas with a constant cross section in an expanding universe.




Boltzmann Equation in Friedmann-Robertson-Walker spacetime

We consider an isotropic and homogeneous expanding FRW spacetime
(zero spatial curvature)

metric d,SE — dﬁz — {12 (f;j (EE.’.EE + d‘yz + L'EEE)
C logical .
sc?asiem?a(c):’?olfa a’(t) ~ t1/2 Ip;l:rgt:rlweeter H = a,/a > 0

Distances get stretched
AZphys = a(t)Ax
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Due to the expansion, a locally static fluid #* = (1} 0,0, 0) pOSSesses a nonzero

Expansion rate: 6 =V u" = 3H (1)

We consider massless particles and elastic 2 — 2 scattering.

Symmetries imply that energy-momentum and particle currents obey the egs.

on+3nH(t) =0, Owe+4eH(t)=0.

Particle density Energy density

Solution: n(t) =n(tg)/a®(t) and e(t) =&(tg)/a*(t)

However, this does not imply that the system is in equilibrium.

fk(t) a feq 14



The Boltzmann equation in curved spacetime
See Debbasch, van Leuween, 2009

Ofk
ok

kMO, fr + Thka k¥

= C|f]

Y = a(t)a(t) 6; and Th; = &% H(t) No external forces

On-shell particle distribution  f(¢t) = f(¢, k) (covariant momenta)
kO =k/a(t) with k= |k|

In this particular case the equation becomes | k°0; fr = C[f]

Given that a(t) is known, a solution of the Boltzmann in fact is a solution of the
coupled Einstein-Boltzmann equations.
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Now we are ready to specify the collision term.

We assume classical statistics:

Wkk’—}pp’ (f;ufp’ _fkfk’)

k!ppf

[, = Jd3k/ [(2r)3/—g K°]

Here we only consider a constant cross section O

s=(kH+E")(k,+E;,)

Haf 64 (k-+k —p—0) (fo for — o fir

k' pp’ 16




Our Boltzmann equation:

2ﬂ')5

k20, fr =

e f 5 64 (k! —p—p) (fo for— fi fir)

k' pp’

This equation includes general relativistic effects + full nonlinear collision dynamics

We want to find the general solution for the distribution function

Given an initial condition: f(tq,k) and n(ty), e(to)

How does one solve this type of nonlinear integro-differential equation?

17



The moments method

- Originally introduced by Grad (1949) and used by Israel and Stewart (1979) in the
relativistic regime.
- Used more recently in Denicol et al. PRD 85, 114047 (2012).

The idea is simple.

Instead of solving for the distribution function itself directly, one uses the Boltzmann
eq. to find equations of motion for the moments of the distribution function.

Ex: The particle density — n(t) = /(uk)fk (t)  is ascalar moment
k

with equation Oyn + 3n H(t) =0
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Ex: The energy density €(t) = /('u,k)2fk(t) is a scalar moment
k

with equation 0 +4e H(t) = 0

Clearly, due to the symmetries, only scalar moments can be nonzero.

Thus, if we can find the time dependence of the scalar moments

po="mn, p1=¢

(m € Np)

via solving its exact equations of motion, one should be able to recover fi ()

19



This is how it is done.

where
m 2m)°
Céaigl(t) = (2m) V_ggf s (u-p)™6* (k+k'—p—p') fr.frr
2 kk'pp’
(2m)°

i) (t)

- T\/—_QU_/ s (u-k)™6* (k+k'—p—p) fr fr -

kk'pp’
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It is easy to show that CI(DES) (t) = opm(t)n(t)
However, the gain term is much more complicated. One first writes
(m)
Ceain(t) = 5 f S fxJx Pm
kk'

with

"’”Z“ (k+k')™ 1= kK[!
(m+1—j)! j!

Pr=(2m)° =g [ (wp)™ & (k+kK —p—p
R o 2a(t ™

which finally gives

C('m—) (t) _ 2(m+2 m;gz p.:r‘ t) Pm— j(t)

gain

(G+2)! (m—j+2)!
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Now we can write the exact equations for the moments.

It is convenient to define the scale time = t/ly where £g=1/(on(ty))

(constant mean free path)

pm (%)
pr(t

And the normalized moments  Af,, (ﬂ — which obey the exact set of egs:

(2)

arXiv:1507.07834 [hep-ph]

GR effect Simple recursive nonlinearity

Conservation laws require My = M; =1 22


http://arxiv.org/abs/arXiv:1507.07834

" ;
Defining the time variable 7 = fft‘u dt’ /a3(t') to account for the expansion of the
universe, one finds

- This equation is identical to the famous Bobylev-Krook-Wu equation found for the
non-relativistic Boltzmann equation with Maxwellian molecules nearly 40 years ago.

- The underlying symmetry of the non-relativistic Boltzmann (Galilean invariance)
is very different than our equation that was derived within GR.

- This shows that these very different physical systems are identical from a dynamical
systems perspective and they evolve towards equilibrium in an universal manner.

23



Equilibrium corresponds to  lim M,,(7) = 1
T— 00

The only issue is that for a radiation dominated universe  lim T(t) = finite
t—o0

There is never enough time for the system to achieve equilibrium, regardless
of the non-equilibrium initial conditions.

This is due to the fact that here hmf_}m f(t)@(t) —

A radiation dominated universe expands too quickly for this gas to “forget”
its initial data via collisions.

This is a feature of the constant cross section assumption.

24



Does this system exhibit exact self-similar behavior?

scaling exponents

7 X
Assuming exact self-similar Ansatz fk(f) = aﬂ}"(f) fg(aﬁ (E) uk)

_ _ A Fixed point distribution
Conservation laws impose that v=0 and g=1

_ i 1 Vi : S 0 4, 2
This Ansatz leads > (#) = m__ with ¢ = e fale

Thus, M> = p> /p% are time independent.

MS = Mig — 1 + time independence = There is only 1 fixed point (equilibrium)

System never truly equilibrates but exact self-similar behavior is not observed.




Ok, so in general one needs to solve the (simple) dynamical equations for M., (f)

But how do we go from the set {M,,(£)} — fi(f) 77?2

This can be done by introducing the series expansion using the orthogonal basis

fﬁc(f) — 9r2po—u.k/T Z (n ?pﬂ(t‘)
=0

+1)(n + 2) ﬂ'\

Associated Laguerre

- wﬂ(ﬂ __ Po - m[ T
Wi (n+1)(n+2) 273 (=1) (m)Mm(ﬂ

Therefore, the general solution of the problem can always be found.
26



Full Analytical Solution

Using the moments equations in this form T — ffi dt' o ()

One can show that

is an analytical solution of the moments equations

—7/6




Full Analytical Solution

Since M,,,(7) are known, one can show that

wﬂ(T) _Po n
(n+1)(n+2) 273 (L=n){I=K(7))

which can be used to find the 1st analytical solution of the relativistic Boltzmann
equation

arXiv:1507.07834 [hep-ph]

A= fugacity

Initial condition  f,(0) = 258 (k/Tp) A exp|—4k/(3T5)] > 0 28


http://arxiv.org/abs/arXiv:1507.07834

Full Analytical Solution

Time evolution Momentum dependence
14 et
—_
\.l: — T=()
S ]
W
g,_": S £
= _eemm 7210
A i N . 1
= |\ o~ T
S— .
040 50
-
. : , ~ A 0
Note that for radiation dominated universe T(t) =2t | 1 —14/ =
t

So higher order moments will certainly not erase the info about initial conditions.

The approach to equilibrium here depends on the occupancy of each moment. 29



Conclusions and Outlook

- In this talk we have derived the first analytical solution of the Boltzmann equation
for an expanding system using the method of moments.

- We considered massless particles, classical statistics, and a simple constant cross

section interaction.

- For arbitrary initial conditions, we have shown how the general solution of the
Boltzmann equation can be obtained once the moments are numerically computed.

- We found an intriguing equivalence between radically different systems:
Non-relativistic Maxwellian molecules x Massless particles in FRW spacetime

Even though the underlying symmetries are different, the dynamical moment
equations are the same and, thus, these systems approach equilibrium in the same

way.
30



Conclusions and Outlook

Our results can be generalized in many ways:

- It would be interesting to compare the differences between systems with different
cross sections (e.g., massless scalar x constant cross section).

- Inclusion of quantum statistic effects.
- Inclusion of mass effects (this switches on bulk viscosity).

- Generalize approach to include the case of rapidly expanding anisotropic systems
(e.g., Bjorken or Gubser expanding gases).

- Multi-particle systems (applications in cosmology and condensed matter systems).
- Inclusion of external fields (and possibly other background geometries).
- QED and QCD-like cross sections.

- More formal mathematical aspects about the relativistic Boltzmann equation. 3



EXTRA SLIDES
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