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Motivation

• Simulate the Mach Cone at Weak coupling
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Mach Cone

diffusion wake moving forever

17

FIG. 3: Left—Position space plot of |x|∆E(x)/(T 3
√
λ) for v = 1/4. Right—Position space plot of |x|∆S(x)/(T 3

√
λ) for

v = 1/4. The flow lines on the surface are the flow lines of the energy flux ∆S(x). There is a surplus of energy in front of the
quark and a deficit behind it. Correspondingly, trailing the quark there is a stream of energy flux which moves in the same
direction as the quark. Note the absence of structure in ∆E(x) for distances |x| " 1/(πT ).

FIG. 4: Left—Plot of |x|∆E(x)/(T 3
√
λ) for v = 3/4. Right—Plot of |x|∆S(x)/(T 3

√
λ) for v = 3/4. The flow lines on the

surface are the flow lines of ∆S(x). There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly,
trailing the quark there is a narrow stream of energy flux which moves in the same direction as the quark. A Mach cone, with
opening half angle θM ≈ 50◦ is clearly visible in both the energy density and the energy flux. Near the Mach cone, the bulk of
the energy flux flow is orthogonal to the wavefront.

Strong coupling result:
What about weak?

• Solve the linearized Boltzmann equation

(∂t + vp · ∂x)f(p,x) = C[f,p] ,

We got stuck – find out why!



Spectral Densities with Boltzmann Equation – LOTS OF PHYSICS

• Lattice QCD
∫

d3x eik·x 〈J(τ,x)J(0,0)〉 =

∫
dω

2π
ρJJ(ω,k)

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
.

• Hydrodynamics

– How small do ω and k need to be actually

– Extract transport coefficients⇒ new ones τΠ, ξ5, ξ6, κ
∗

• Compare Spectral Densities with AdS/CFT



The linearized Boltzmann Equation

1. Collinear Bremmms

2. Hard collisions between particles

3. Random Walk of Hard Particles due to soft background field

– All of the screening is in here.

– Want to separate this from hard collisions.

We did it



Fokker Planck Equation
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• Random Walk of Hard Particles

∂tδf = TµA
∂

∂pi

(
np(1 + np)

∂

∂pi

[
δf

np(1 + np)

])
+ gain terms

• Could re-interpret this as a Langevin equation

dp

dt
= −µA(1 + 2np)p̂ + ξ(t)

〈
ξi(t)ξj(t′)

〉
= 2TµAδ

ij

• General form of Langevin equation will hold at leading order and NLO(?)

– But need hard (unscreened) collisions, and collinear emission



Gain terms:
Bath Particles

Random Walk

• We have random walk

∂tδf(p) =
∂

∂pi

(
TµAnp(1 + np)

∂χ(p)

∂pi

)
• Work done on the excess

dE

dt
=

∫
p

p ∂t [δf ] = −
∫
p

p̂i · TµAnp(1 + np)
∂χ(p)

∂pi

• Gain terms

gain terms =
1

ξB

[
1

p2
∂

∂p
p2np(1 + np)

]
dE

dt
+

1

ξB

[
∂

∂p
np(1 + np)

]
· dP
dt

,

ξB =

∫
p

np(1 + np) =
T 3

6



Summary

• The Boltzmann Equation

(∂t + vp · ∂x)δf = TµA
∂

∂pi

(
np(1 + np)

∂

∂pi

[
δf

np(1 + np)

])
+

1

ξB

[
1

p2
∂

∂p
p2np(1 + np)

]
dE

dt
+

1

ξB

[
∂

∂p
np(1 + np)

]
· dP

dt
,

• Conserves energy and momentum

– Is a symmetric pos-definite matrix

Could have guessed the form based on general symmetry arguments



Boundary conditions
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• The excess of gluons in a ball of ∆p ∼ gT

∫ ∆p

0

d3p

(2π)3
np(1 + np)χ(p) ∝

p2np(1+np)︷︸︸︷
T 2 χ(0)∆p

• Its easy to create or destroy a soft gluon:

lim
p→0

χ(p) = 0



Emission of Soft Glue:
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!• Rate for hard particles to Emit/Absorb a soft gluon with p ∼ gT

Γsoft ∼ g2T × g2 ×
∫
dk

k
× [1 + f(k)] ∼ g4T 2

∫
dk

k2

∼ g4T 2

m
∼ g3T ⇐ Fast for us

• Time scale we are considering τ ∼ 1/g4T log(1/g))

• Then that the excess of gluons goes like∼ 1/[Γsoftτ ]

χ(gT ) = O(g)

The leading order weakly coupled limit g → 0 is found with χ(0) = 0
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Summary

• With gain terms Energy and Momentum are conserved

• With boundary condition particle is not.

• Equation provides a good intial value problem – watch it equilibrate

What you gonna do with it ?



Equilibrium Correlation Functions

• Spectral Functions of Tµν

ρµναβ(ω,k) = −2 ImGµναβR (ω,k)

• Then the retarded Green Function is

GµναβR (ω,k) = −i
∫ ∞

−∞
dt

∫ ∞

−∞
dx e+iωt−ik·x θ(t)

〈[
Tµν(t,x), Tαβ(0,0)

]〉′

• Classify with four modes: k along z-axis

– GzxzxR (ω,k) – Shear mode

– GzzzzR (ω,k) – Sound mode

– GxyxyR (ω,k) – Tensor mode

– ηµνηαβG
µναβ
R (ω,k) – Bulk mode



Linear Response:

• Turn on a small gravitational field – can do this in Kinetics a theory too

S(gµν) ' So +
1

2

∫
d4X Tµν(X)hµν(X) ,

• This disturbs Tµν from equilibrium

〈Tµν(X)〉hαβ = Tµνeq (X)−−i
2

∫
d4Y θ(X0−Y 0)

〈
[Tµν(X), Tαβ(Y )]

〉′
hαβ(Y )

• In Fourier space then

〈Tµν(ω,k)〉hαβ︸ ︷︷ ︸
Compute in KT

=
∂Tµνeq

∂hαβ

∣∣∣∣
h=0

hαβ(ω,k)− 1

2
GµναβR (ω,k)hαβ(ω,k)

Can use this to compute spectral densities in kinetic theory



Linearize Response in Kinetic Theory

1

Ep

(
Pµ

∂

∂Xµ
− ΓλµνP

µP ν
∂

∂P λ

)
f(t,x,p) = C[f,p] ,

• Turn on a small hxy(t, z)

f = nhp + δf , nhp =
1

exp(
√

pi(ηij + hij)pj/T )∓ 1
.

• Find an EOM in fourier space

(−iω + ivp · k)δf(p, ω,k) + np(1 + np)
pipj

2EpT
(−iωhij(ω,k))

︸ ︷︷ ︸
Source

=TµA
∂

∂pi

(
np(1 + np)

∂χ(p)

∂pi

)
+ gain terms

– Source vanishes for time indep grav fields

Solve 2D partial diffeq for δf(ω, k) by matrix inversion



Finally computing GzxzxR

• The spectral weight is ρ = −2 ImGR

• Given delta f(ω, k) we compute the stress tensor

T zxeq + δT zz = νg

∫
d3p
√−g

(2π)3

pzpx

Ep

(
nhP + δf(ω, k)

)
,

= −Pohzx(ω, k) +

[
νg

∫
d3p

(2π)3

pzpx

Ep

δf(ω,k)

hzx(ω,k)

]

︸ ︷︷ ︸
This is Gzxzx

R

hzx(ω, k)



Sound mode – 〈T zz(x)T zz(0)〉
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• Free streaming (easy) – high k, ω

• Hydro – small k, ω



Analysis with Linearized (Conformal) Second Order Hydro

• Stress Tensor:

Tµν = Tµν + πµν1 + πµν2 ,

• 2nd Order dissipative part of the stress tensor (Static) :

πµν2 = ητπ

[
2uαR

α〈µν〉βuβ − 2 〈∇µ∇ν lnT 〉
]
+κ
[
R〈µν〉 − 2uαR

α〈µν〉βuβ
]
,

– Baier, Romatschke, Son, Starinets, Stephanov ’07

• Using lower order order EOM, they rewrote it as a Dynamic equation

πµν = πµν1 − τπ 〈Dπµν〉+ κ
[
R〈µν〉 − 2uαR

α〈µν〉βuβ
]
,

Which one is better?



Determine the coefficients, τπ and κ

• Turn on small hxy and solve linearized equations of motion∇µTµν = 0

e(t,x) ' eo + ε(t, z) , uµ ' (1, ui(t, z)) ,

• and find (BRSSS)

δT xy =

[
−iηω + ητπω

2 − 1

2
κ(ω2 + k2)

]

︸ ︷︷ ︸
GxyxyR

hxy

• We expand our numerical results at small ω and k

τπ
η/sT

= 6.32 κ = 0

An approximate result ητπ ∼ 1/g8 while κ = O(1). Notice κ is a static: GxyxyR (0, k) = − 1
2
κk2.

Now τπ and κ are fixed



Predictions for sound peak (with fixed coefficients)

• Turn on hzz solve∇µTµν = 0

• For the static theory

T zz(ω, k) =

[
(eo + Po)

c2
sω

2 − iΓsω3 + τπΓsω
4 + τπΓsc

2
sk

2ω2

ω2 − c2
sk

2 + iΓsωk2 − τπΓsc2
sk

4

]

︸ ︷︷ ︸
This is GzzzzR

hzz

• For the dynamic theory

GzzzzR (ω, k) = (eo + Po)
c2
sω

2 − iΓsω3 − iτπc2
sω

3

ω2 − c2
sk

2 + iΓsωk2 + iτπc2
sωk

2 − iτπω3

Now go compare with full results



Sound Mode
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• Translate:

0.5 k̄ = 0.7

∼`mfp︷ ︸︸ ︷
cη

(e+ P)c2
s

k

• Dynamic is arguably better than static

2nd order “works until” ω, ck <∼ 0.7
[
η/(eo + Po)c2

s

]−1



Current-Current Channel (all other channels studied as well)

ρzz(ω,k) = Fouier Trans
〈[
Jµν(t,x), Jαβ(0,0)

]〉
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FIG. 4: (a) The bulk spectral function for three flavors compared to the pure glue theory. In this figure,

η/(eo + Po) is 0.917 T/µA for Nf = 3 and 0.461 T/µA for Nf = 0, so that the k values for Nf = 0 coincide

with Fig. 2. (b) The longitudinal current-current spectral function for three flavors and the quenched

approximation. In this figure D = 0.944T/µF for Nf = 3, while D = 0.852T/µF for Nf = 0, so that the k

values for Nf = 0 coincide with Fig. 5. The results are similar in the other channels.

In deriving this result, the definition of the current, Jµ(X) = δS/δAµ(X), is used to specify the

interaction Hamiltonian, Hint = −
∫

d3x JµAµ. In Fourier space we define

Gµν
R (ω,k) = −i

∫
d4X eiωt−ik·xθ(t) 〈[Jµ(t, x), Jν(0, 0)]〉 , (5.16)

and conclude that

〈Jµ(ω,k)〉A = −Gµν
R (ω,k)Aν(ω,k) . (5.17)

Taking k along the z direction, there are two independent correlators, Gzz
R (ω, k) and Gxx

R (ω, k).

To determine the Boltzmann equation in the presence of an external field, we note that the

Lorentz force on a charged particle is F i = QaF
i
µvµ , which leads to the Boltzmann equation for

the strangeness excess

1

Ep

(
pµ∂µ + QaF

µνpν
∂

∂pµ

)
fa = Ca[f,p] , (5.18)

where Qs is one for strange quarks, minus one for anti-strange quarks, and zero for all other

species. Turning on a weak gauge field Aµ = (0,A) disturbs the system from equilibrium through

the linearized Boltzmann equation

(−iω + ivp · k)δfa(ω,k) − iωnp(1 − np)QaAi
pi

Ep
= Ca[δf,p] . (5.19)

We see that the gauge field does not disturb the fermion sum δf q+q̄, and only disturbs the fermion

difference

(−iω + ivp · k)δfs−s̄(ω,k) − iωnp(1 − np) 2QsAi
pi

Ep
= Cs−s̄[δf,p] . (5.20)

24

Expect diffusion structure for kD/c <∼ 0.7. Can use to fit finite k lattice data



Current-Current Channel (all other channels studied as well)

ρzz(ω,k) = Fouier Trans
〈[
Jµν(t,x), Jαβ(0,0)
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FIG. 4: (a) The bulk spectral function for three flavors compared to the pure glue theory. In this figure,

η/(eo + Po) is 0.917 T/µA for Nf = 3 and 0.461 T/µA for Nf = 0, so that the k values for Nf = 0 coincide

with Fig. 2. (b) The longitudinal current-current spectral function for three flavors and the quenched

approximation. In this figure D = 0.944T/µF for Nf = 3, while D = 0.852T/µF for Nf = 0, so that the k

values for Nf = 0 coincide with Fig. 5. The results are similar in the other channels.

In deriving this result, the definition of the current, Jµ(X) = δS/δAµ(X), is used to specify the

interaction Hamiltonian, Hint = −
∫

d3x JµAµ. In Fourier space we define

Gµν
R (ω,k) = −i

∫
d4X eiωt−ik·xθ(t) 〈[Jµ(t, x), Jν(0, 0)]〉 , (5.16)

and conclude that

〈Jµ(ω,k)〉A = −Gµν
R (ω,k)Aν(ω,k) . (5.17)

Taking k along the z direction, there are two independent correlators, Gzz
R (ω, k) and Gxx

R (ω, k).

To determine the Boltzmann equation in the presence of an external field, we note that the

Lorentz force on a charged particle is F i = QaF
i
µvµ , which leads to the Boltzmann equation for

the strangeness excess

1

Ep

(
pµ∂µ + QaF

µνpν
∂

∂pµ

)
fa = Ca[f,p] , (5.18)

where Qs is one for strange quarks, minus one for anti-strange quarks, and zero for all other

species. Turning on a weak gauge field Aµ = (0,A) disturbs the system from equilibrium through

the linearized Boltzmann equation

(−iω + ivp · k)δfa(ω,k) − iωnp(1 − np) QaAi
pi

Ep
= Ca[δf,p] . (5.19)

We see that the gauge field does not disturb the fermion sum δf q+q̄, and only disturbs the fermion

difference

(−iω + ivp · k)δfs−s̄(ω,k) − iωnp(1 − np) 2QsAi
pi

Ep
= Cs−s̄[δf,p] . (5.20)

24

Expect diffusion structure for kD/c <∼ 0.7. Can use to fit finite k lattice data
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FIG. 4: (a) The bulk spectral function for three flavors compared to the pure glue theory. In this figure,

η/(eo + Po) is 0.917 T/µA for Nf = 3 and 0.461 T/µA for Nf = 0, so that the k values for Nf = 0 coincide

with Fig. 2. (b) The longitudinal current-current spectral function for three flavors and the quenched

approximation. In this figure D = 0.944T/µF for Nf = 3, while D = 0.852T/µF for Nf = 0, so that the k

values for Nf = 0 coincide with Fig. 5. The results are similar in the other channels.

In deriving this result, the definition of the current, Jµ(X) = δS/δAµ(X), is used to specify the

interaction Hamiltonian, Hint = −
∫

d3x JµAµ. In Fourier space we define

Gµν
R (ω,k) = −i

∫
d4X eiωt−ik·xθ(t) 〈[Jµ(t, x), Jν(0, 0)]〉 , (5.16)

and conclude that

〈Jµ(ω,k)〉A = −Gµν
R (ω,k)Aν(ω,k) . (5.17)

Taking k along the z direction, there are two independent correlators, Gzz
R (ω, k) and Gxx

R (ω, k).

To determine the Boltzmann equation in the presence of an external field, we note that the

Lorentz force on a charged particle is F i = QaF
i
µvµ , which leads to the Boltzmann equation for

the strangeness excess

1

Ep

(
pµ∂µ + QaF

µνpν
∂

∂pµ

)
fa = Ca[f,p] , (5.18)

where Qs is one for strange quarks, minus one for anti-strange quarks, and zero for all other

species. Turning on a weak gauge field Aµ = (0,A) disturbs the system from equilibrium through

the linearized Boltzmann equation

(−iω + ivp · k)δfa(ω,k) − iωnp(1 − np)QaAi
pi

Ep
= Ca[δf,p] . (5.19)

We see that the gauge field does not disturb the fermion sum δf q+q̄, and only disturbs the fermion

difference

(−iω + ivp · k)δfs−s̄(ω,k) − iωnp(1 − np) 2QsAi
pi

Ep
= Cs−s̄[δf,p] . (5.20)

24

Expect diffusion structure for kD/c <∼ 0.7. Can use to fit finite k lattice data



Return to the Mach Cone
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FIG. 2. The magnitude of the Poynting vector |T 0i| (in scaled units) times R =
√

x2
T + x2

L that

is induced by a heavy quark probe in (a) weakly coupled QCD and (b) strongly coupled N = 4

SYM. Here Lo is the shear length and the µF (v) is the drag coefficient for each case (see text).
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• Most of the structure you see is universal ideal hydro:

∂tT
0j + ∂iT

ij
hydro =

dpj

dt
δ3(x− vt) + corrections

We differences between weak and strong lie at intermediate distances!



The source for kinetic theory:

Non Equilbrium Heavy Quark

in equilib out of equil

• The Boltzmann equation becomes

(∂t + vp · ∂x) δf(t,x,p) = C[δf,p] + S(p)δ3(x− vt)

where the kinetic theory source is

S(p) ∝
[

1

p2

∂

∂p
p2np(1 + np)

]
µF v

2

︸ ︷︷ ︸
coll e-loss

+

[
∂

∂p
np(1 + np)

]
· µFv︸︷︷︸

coll p-loss

• E-loss of HQ found by Braaten-Thoma (1995): dp/dt = −µFv
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Same at large distances
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Dissipate like crazy,
hydro emerges

Free streaming, slowly
becoming hydro



Comparing with hydro quantitatively

Lo ≡
4

3

c η

(e+ P)c2
s

= “mean free path”

For a given momentum q, to determine the SYM energy density and energy flux we
solve Eqs. (2.33) and (2.37) using pseudospectral methods. At the boundary at u = 0 we
impose the boundary condition that the fields have asymptotics of the form given in the
series expansions (2.41), which is tantamount to demanding that the boundary geometry is
flat. At the horizon at u = uh we impose the boundary condition of infalling waves. This is
tantamount to demanding that Z̃s ∼ (u − uh)

−iωuh/4 near the horizon. With the Z̃s known,

we can then extract the expansion coefficients Z̃
(3)
s and construct the SYM energy density

and energy flux from Eq. (2.42) and Eq. (2.43) .

III. COMPARING ADS/CFT AND KINETIC THEORY

Using the formalism outlined in the previous section we compute the energy density
and Poynting vector induced by the heavy quark in both kinetic theory and the AdS/CFT
correspondence. To compare the AdS/CFT and the kinetic theory results we have measured
all length-scales in units of the shear length

Lo ≡
4
3
ηc

(e + P)c2
s

(3.1)

where c2
s is the squared sound speed and in practice the speed of light is set to unity. Lo

is proportional to the mean free path in kinetic theory and equal to 1/πT for the N = 4
theory. At large distances, where ideal hydrodynamics is applicable, the amplitude of the
disturbance is proportional to the strength of the energy loss. Thus, we divide the response
by the corresponding drag coefficient µF (v) for each theory, Eq. (2.15) and Eq. (2.21). With
these rescalings the two theories produce the same (rescaled) stress tensor at asymptotically
large distances, but differ in their approach to the ideal hydrodynamic limit as we will
analyze in Section IV. Fig. 1 and Fig. 2 compare the non-equilibrium stress in the two cases.
A complete discussion is reserved for the summary in Section V.

In order to compare the stress tensor quantitatively we plot the energy density in con-
centric circles of radius R around the head of the quark. Specifically, we define

dER

dθR

= 2πR2 sin θR δT 00(R) , (3.2)

where R = xT x̂T + xLẑ and the polar angle is measured from the direction of the quark ẑ:

ẑ
R

θR

. (3.3)

Similarly, the angular distribution of the energy flux is given by

dSR

dθR

= 2πR2 sin θR R̂iδT 0i(R) ,

= 2πR2 sin θR

[
cos θR δT 0z(R) + sin θR δT 0x(R)

]
. (3.4)

Numerical results for the angular distributions of the energy density and flux at several
scaled distances R ≡ R/Lo are shown in Fig. 3.

9 FIG. 1. The energy density (in scaled units) times R =
√

x2
T + x2

L that is induced by a heavy

quark probe in (a) weakly coupled QCD and (b) strongly coupled N = 4 SYM. Here Lo is the

shear length and the µF (v) is the drag coefficient for each case (see text).

There is a dramatic change in the AdS/CFT curves between R = 1 and R = 5, indi-
cating a transition from hydrodynamic behavior to quantum dynamics at distances of order
∼ 1/πT . Since this quantum dynamics lies beyond the semi-classical Boltzmann approxima-
tion, no transition is seen in the kinetic theory curves. It would be interesting to calculate
the stress tensor in this region perturbatively to better understand the differences between

10

R

Go around circle and plot the energy density, compare with hydro



Comparison with hydro

R =
R

Lo
where Lo ≡

4

3

c η

(e+ P)c2
s

= “mean free path”
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In the Boltzmann equation, the second order hydrodynamics works better than first order at long distances,
but it does the worse job at short distances becuase of high frequency behavior. In principle, the second order
dynamic form is better than static (see Figure 6 (a)). However, the dynamic solution develops spurious shocks
at diatances R < 20.

In the AdS/CFT correspondence, even the first order does a good job for R > 5. Only the sound mode has
corrections in the second order hydrodynamics. For the energy distribution where the sound mode is dominant,
the first order hydrodynamics starts to fail around the bulk and second order is needed at R = 5. Both the
second order static and dynamic hydrodynamic solution work very well, and the static is slightly better than
dynamic (see Figure 6 (b)).

In comparison with the AdS/CFT correspondence, the Boltzmann equation produces the slower transition
from the free streaming to the hydrodynamic regime. The stress-energy tensor given by the AdS/CFT corre-
spondence is better described by the hydrodynamics. Although they have different sources, we think that it is
basically due to the second order hydrodynamic coefficient τπ. Compared to the shear length, the coefficients
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In the Boltzmann equation, the second order hydrodynamics works better than first order at long distances,
but it does the worse job at short distances becuase of high frequency behavior. In principle, the second order
dynamic form is better than static (see Figure 6 (a)). However, the dynamic solution develops spurious shocks
at diatances R < 20.

In the AdS/CFT correspondence, even the first order does a good job for R > 5. Only the sound mode has
corrections in the second order hydrodynamics. For the energy distribution where the sound mode is dominant,
the first order hydrodynamics starts to fail around the bulk and second order is needed at R = 5. Both the
second order static and dynamic hydrodynamic solution work very well, and the static is slightly better than
dynamic (see Figure 6 (b)).

In comparison with the AdS/CFT correspondence, the Boltzmann equation produces the slower transition
from the free streaming to the hydrodynamic regime. The stress-energy tensor given by the AdS/CFT corre-
spondence is better described by the hydrodynamics. Although they have different sources, we think that it is
basically due to the second order hydrodynamic coefficient τπ. Compared to the shear length, the coefficients

The AdS/CFT works amazingly well once second order corrections are included
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In the Boltzmann equation, the second order hydrodynamics works better than first order at long distances,
but it does the worse job at short distances becuase of high frequency behavior. In principle, the second order
dynamic form is better than static (see Figure 6 (a)). However, the dynamic solution develops spurious shocks
at diatances R < 20.

In the AdS/CFT correspondence, even the first order does a good job for R > 5. Only the sound mode has
corrections in the second order hydrodynamics. For the energy distribution where the sound mode is dominant,
the first order hydrodynamics starts to fail around the bulk and second order is needed at R = 5. Both the
second order static and dynamic hydrodynamic solution work very well, and the static is slightly better than
dynamic (see Figure 6 (b)).

In comparison with the AdS/CFT correspondence, the Boltzmann equation produces the slower transition
from the free streaming to the hydrodynamic regime. The stress-energy tensor given by the AdS/CFT corre-
spondence is better described by the hydrodynamics. Although they have different sources, we think that it is
basically due to the second order hydrodynamic coefficient τπ. Compared to the shear length, the coefficients

Second order corrections don’t help Boltzmann too much



Why?

equation using lower order equations of motion. This renders the system of equations hyper-
bolic and causal, but mixes orders in the gradient expansion. We have compared the static
and the dynamic theories for the kinetic and AdS theories in Fig. 6. Generally the Israel-
Stewart type resummations do not lead to a significant improvement. Indeed, at smaller R
than shown in Fig. 6 Israel-Stewart type resummations can lead to spurious shocks which
are not reproduced by the full result. The differences between the static and dynamic theo-
ries gives an estimate of higher order terms, and this difference is smaller in AdS/CFT than
in kinetic theory at the same R.

Clearly, the convergence to the hydrodynamic limit is significantly faster in the N =
4 theory relative to kinetic theory, even when lengths are measured in the scaled units
described by R. We remark that in the AdS/CFT the second order hydrodynamic parameter
τπ is a factor of 2.5 smaller in scaled units than the corresponding kinetic theory parameter,

τπ
η/sT

=6.32 , (Kinetic Theory) (5.1)

τπ
η/sT

=4 − 2 log(2) " 2.61 . (AdS/CFT) (5.2)

Based on these coefficients, it is natural to expect that the convergence to the hydrodynamic
limit is faster for the N = 4 theory than the corresponding kinetic theory. In theories based
on quasi-particles and kinetic theory it is difficult to reduce the value of τπ in scaled units
significantly [34]. Thus, it would seem that our principal result of this study is reasonably
generic. Specifically, based on the model theories studied in this work we expect theories
without quasiparticles to approach the hydrodynamic limit several times faster (in scaled
units) than theories based on a quasiparticle description. From a practical perspective of
applying hydrodynamics to various almost equilibrium phenomena of heavy ion physics (e.g.
the hydrodynamic flow due to jets and other local disturbances) this factor of two can be
quite important.
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Appendix A: The kinetic theory source in a leading-log approximation

The source of non-equilibrium gluons arises as gluons scatter off the heavy quark, g+Q →
g + Q. The squared matrix element for this process is

|M|2 =

[
g4CF Nc

2dA

]
16

[
2(K · P )2

Q4
− M2

Q2
+

M2

4(K · P )2

]
, (A1)

where K is the heavy quark momentum, P is the gluon momentum, Q = P ′ − P is the
four momentum transferred to the gluon, and we have averaged over the colors and spins
of the external gluon. In a leading log approximation only the (first) most singular term is
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Can’t have such (relatively) small second order parameters

in any kinetic theory with any collision term!!!



Bulk mode – 〈Tµµ(x)Tµµ(0)〉
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• Hydro – small k, ω



Bulk perturbations

• Gravitational Perturbation:

gµν(X) = (1 +H(x))ηµν

• The correct equilibrium is not at constant temperature

TH(X)
√
−g00(X) = Const , TH(x) = To

(
1− 1

2
H(X)

)
,

• Expand around this time dependent equilibrium

f = nHp + δf nHp (t,x,p) =
1

e−P (X)·U(X)/TH(X) − 1



Boltzmann Equation for Bulk Perturbation

• Boltzmann equation + mass term

1

Ep

(
Pµ

∂

∂Xµ
− ΓλµνP

µP ν
∂

∂P λ
− 1

2

∂m2(X)

∂Xµ

∂

∂Pµ︸ ︷︷ ︸
Force term ∂Ep

∂x
∂f
∂p

)
f(t,x,p) = C[f,p]

• After Plugging in f = nHp + δf and careful algebra

(∂t + vp · ∂x) δf − np(1 + np)
m̃2

2EpT
∂tH = C[δf,p] ,

where

m̃2 ≡ m2 − T 2∂m
2

∂T 2

∣∣∣∣
T=To

= −CAβ(g)
T 2

6
.



Bulk mode – 〈Tµµ(x)Tµµ(0)〉
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Should be able to extract second order non-conformal transport coeffs



2nd Order Non-Conformal Hydro (Romatschke)

• At linear order in non-conformal hydro there is the shear tensor

πµν = πµν1 +ητπ 〈Dσµν〉+κ
[
R〈µν〉 − 2uαR

α〈µν〉βuβ
]
+κ∗2uαuβR

α〈µν〉β ,

and the bulk tensor

Π = Π1 + ζτΠD(∇ · u) + ξ5R+ ξ6uαuβR
αβ

• Lots of coeffs . . .

– But κ∗ = ξ5 = ξ6 = 0 in kinetic theory for the same reasons as before



2nd Order Non-Conformal Hydro (Romatschke)

• At linear order in non-conformal hydro there is the shear tensor

πµν = πµν1 + ητπ 〈Dσµν〉

and the bulk tensor

Π = Π1 + ζτΠD(∇ · u)

• Turning on a sinusoidal perturbation

gµν = (1 +H(t))ηµν

• One can, solve the hydro equations of motion and find the hydro prediction

〈
c2
sT

0
0 + T ii

〉
= −1

2

[
−iζω + ζτΠω

2
]
H(ω, 0)

Comparison with kinetic results for
〈
c2
sT

0
0 + T ii

〉
determines τΠ



Results for τΠ

Nf 0 2 3

τΠ/τπ 0.510 0.548 0.554
.

• Bulk viscosity is small because the coupling of Tµµ to H(t)ηµν small

ζ ∼ β(g)2T 4 × 1

g4T log(1/g)

• But the relaxation times of such perturbations is similar to τπ

τΠ

τπ
' 0.5



Conclusions

• Formulated the linearized Boltzmann Equation as a Fokker Planck Equation

• Determined all spectral functions (most not discussed)

– Found that response is well described by hydrodynamics for

ω, ck <∼ 0.7
η

(e+ P)c2
s

– Completed a second order analysis of bulk response function.

– Only τΠ 6= 0 for linear case.

• Studied the medium response to a heavy quark probe

– The AdS/CFT converges to hydro extraordinarily quickly (even after measuring

units in terms of mean free paths)


