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Motivation

e Simulate the Mach Cone at Weak coupling

Strong coupling result:

ot ; What about weak?

diffusion wake HQ moving forever
\
O >
—
Mach Cone

e Solve the linearized Boltzmann equation

(at + Up - aw)f(pa .’13) — C[fvp] )

We got stuck — find out why!



Spectral Densities with Boltzmann Equation — LOTS OF PHYSICS

e Lattice QCD
cosh(w(m — 1/2T))

/ Bz e* (J(r,2)J(0,0)) = / ;—: T (1w, k) (/2

e Hydrodynamics
— How small do w and k need to be actually

— Extract transport coefficients = new ones 717, &5, &g, K©

e Compare Spectral Densities with AAS/CFT



The linearized Boltzmann Equation
1. Collinear Bremmms
2. Hard collisions between particles

3. Random Walk of Hard Particles due to soft background field
— All of the screening is in here.

— Want to separate this from hard collisions.

We did it



Fokker Planck Equation

ﬂf\/m

e Random Walk of Hard Particles

9 [ 5
op* | np(1+ nyp)

e Could re-interpret this as a Langevin equation

Oof = T,uAi <np(1 + np) ]) + gain terms

op*

d .
d_ZZ —pa(l+2np)p + £(1)

(EME)) = 2pad?

e General form of Langevin equation will hold at leading order and NLO(?)

— But need hard (unscreened) collisions, and collinear emission



Bath Particles

Gain terms:
g Random Walk

e \We have random walk

055 (p) = 5 (TuAnp(l T )

e \Work done on the excess

dE Ox(p)
= [poln = [ 6 Tuan (14 ) 25 P
dt . D P P2 Op
e (Gain terms
1 1 0 o dFE 1 0 dP
i _ 1 LI B at”
gain terms & [pQ 8pp Ny ( +np)} v + & lapnp( +np)] ATt



Summary

e The Boltzmann Equation

9 o [ 6&f
0, - 0x)0 = Tpuas— 1 :
@t up 53] = Tuag (o +m)z | —f )
+1[182n(1—|— JaE [a - )] dP
— | == n n np)| - —
és Lp2op’ Plat o gp lop” Prlar

e Conserves energy and momentum

— Is a symmetric pos-definite matrix

Could have guessed the form based on general symmetry arguments



Boundary conditions

Py Py
A

A
/—\ / Ap ~ g1

e The excess of gluons in a ball of Ap ~ ¢gT

p*np(1+np)
AP d3p g A
/o W”p(lJrnp)X(P) o< T°  x(0)Ap

® |ts easy to create or destroy a soft gluon:

lim x(p) =0
p—0



g 9 p'~T

Emission of Soft Glue: k ~ gT

P.Arnold, C.Dogan, G.D.Moore, (

e Rate for hard particles to Emit/Absorb a soft gluon with p ~ g7’

dk dk
Peoft ™~ g2TXg2X/?X[1+f(k>]Ng4T2 ﬁ
4T2
~ 9 ~ ¢g°T <« Fastforus
m

e Time scale we are considering 7 ~ 1/¢*T log(1/g))

e Then that the excess of gluons goes like ~ 1 /{50 7]

x(gT) = O(g)

The leading order weakly coupled limit g — 0 is found with x(0) = 0



Number Changeb

*BE D Isr_1u, 2 O, LILO 5, 9E
81‘.0f T'U'A(")pi np(l—{—np)ap +5B p28pp np(1l+np) T

 Particle Number Change :)

\\/

) 1 —T2 ¢
—O0N = —Tluqali 12 (1
ot P HA NS (o) / AP - prp(1+ ) ap T 2% dz‘
1
Diffusion Flux) Disturbed GIuonsJ’

* In Equilibrium : Average) d Npp = const



Summary
e With gain terms Energy and Momentum are conserved
e With boundary condition particle is not.
e Equation provides a good intial value problem — watch it equilibrate

What you gonna do with it ?



Equilibrium Correlation Functions

e Spectral Functions of T
PP (W, k) = —QImG%/O‘B(w, k)
e Then the retarded Green Function is

G P (w, k) = —i /_ Z dt /_ Z da et g(¢) < [T“ “(t,@), T (0, O)} >/

e Classify with four modes: k along z-axis
- G7**(w, k) — Shear mode
- G%#*(w, k) — Sound mode
- G/ (w, k) - Tensor mode

-~ nu,,nagGL}'{zmﬁ(w, k) — Bulk mode



Linear Response:

e Turn on a small gravitational field — can do this in Kinetics a theory too

1
S(Guv) = So + 5 /d4X TH(X) by (X))

e This disturbs 1" from equilibrium

—1

(T (X)), = Tial (X) =

/ 2y O(X°-y°) ([T(X), T (Y)]>' has (Y)

e |n Fourier space then

Compute in KT

1 1468
hag(w, k) = 5 G P (w, k) hag(w, k)

h=0

Can use this to compute spectral densities in kinetic theory



Linearize Response in Kinetic Theory

1 (‘9 )
_ M . )\ wpr Y _

e Turnon asmall hgy (2, 2)
1

f=nhtof, b= | |
! " exp(y/PH(nij + hij)p? /T) F 1

e Find an EOM in fourier space

(—iw +ivp - k) f(p,w, k) +np(l 4+ np) QZZPJT (—iwhij(w, k))
P

A\ J/
~

Source

0 Ox(p)
o (np(l + np)——= oy > + gain terms

— Source vanishes for time indep grav fields

Solve 2D partial diffeq for § f (w, k) by matrix inversion



Finally computing G'%"**
e The spectral weightis p = —2ImGpr

e Given delta f(w, k) we compute the stress tensor

2T z2Z dgp\/ —g pzpa: h
T+ 0T% = Vg/ orF B, (np + 5f(w,k)) :

B d°p p*p” 0 f(w, k)
= —Pohz:c(wyk) —+ [Vg/ (27’(’)3 Ep hzx(W,k)] hZZU(w7k)

N J

This is G2



Sound mode — (T%%(x)T%%(0))

8.0 : | ‘
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e Free streaming (easy) — high k, w

e Hydro —small k, w



Analysis with Linearized (Conformal) Second Order Hydro

e Stress Tensor:

THY — THY 7T/1u/ n 7T§”/ |
e 2nd Order dissipative part of the stress tensor (Static) :
" =Ty ZUQRO‘W”WUB — 2(VH*V" In T}} +K [R<W> — 2uaRo‘<W>Bu5] ,
— Baier, Romatschke, Son, Starinets, Stephanov 07

e Using lower order order EOM, they rewrote it as a Dynamic equation
o =" — 7 (D7) + K [R<W> — 2uaRO‘<W>5u5} :

Which one is better?



Determine the coefficients, 7 and K

e Turn on small A, and solve linearized equations of motion V , T"" = 0
e(t,x) ~ e, + €(t, z), ut ~ (1,u'(t,2)),
e and find (BRSSS)

1
0T = | —inw + nrew’ — im(wQ + k%) Py

\ 7
~~

YTy
GR

e We expand our numerical results at small w and &

Tr

n/sT

An approximate result 7 ~ 1/g® while K = O(1). Notice & is a static: Gz "Y (0, k) = —%lﬁlk%

= 6.32 k=20

Now 7, and K are fixed



Predictions for sound peak (with fixed coefficients)
e Turnon h_; solve V, TH" =0
e For the static theory

T (w. k) = | (e, + P >c§w2 — D3 + 7. Dow* + TWFSC§k2w2
AR w2 — 22 il ywk? — T gc2kA

\ . 4

This is G

hZZ

® For the dynamic theory

2,2 _ P 3 _ s 23
ciw® —1l'sw® —1Trciw

w? — 2k? + il swk? + it 2wk? — it w3

G'ﬁzz(wa k) = (e +Po)

Now go compare with full results



Sound Mode
25 ‘

20
15
0[]/

k=0.1
k=0.2

-

Boltz

-—--- 1st hydro
———- 2nd static |
2nd dynamic

ReGR™““(wk) / [6X4/3n)]

......

e Translate:

e Dynamic is arguably better than static

0.5k

0.7

IMGRZZ (k) | [(4/3n)]
3

N‘emfp
A\
/7 N\

cr)
(e +P)cs

Boltz

-—--- 1st hydro
———- 2nd static

2nd dynamic

K=T/py

(b)

0.2 0.3
W= wl/ha

2nd order “works until” w, ck < 0.7 [?7/(60 + 770)03} -

0.4




Current-Current Channel (all other channels studied as well)

p°?(w, k) = Fouier Trans < [J“V(tv ), JQB(O’ 0)}>
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Expect diffusion structure for kD /¢ < 0.7. Can use to fit finite k lattice data



Current-Current Channel (all other channels studied as well)

p°?(w, k) = Fouier Trans < [Jw@a ), JQB(O’ O>}>

12 | (b) -
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Expect diffusion structure for kD /¢ < 0.7. Can use to fit finite k lattice data



Current-Current Channel (all other channels studied as well)

p*?(w, k) = Fouier Trans < []M’/(t, ), ‘]aﬂ(o’ O)]>
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Expect diffusion structure for kD /c < 0.7. Can use to fit finite k lattice data



Return to the Mach Cone

RSTOL fue  AGSICFT
dfiusion m HQ moving forever T
_i O > 0. |
/ )
Mach Cone 0

Ly

-20 X L
e Most of the structure you see is universal ideal hydro:
, g dn’ .
0, T + @iTﬁjydm :d—i]&)’(a} — vt) + corrections

We differences between weak and strong lie at intermediate distances!



The source for kinetic theory:

Non Equilbriug Heavy Quark

g

in equilib out of equil

e The Boltzmann equation becomes

(O¢ +vp - Bz) 6 f (£, x, p) = C[6f,p] + S(p)6*(x — vt)

where the kinetic theory source is

1 0 0
S(p) x 2 aprnp(l + np)] nEv?  + lﬁpnp(l + np)] . Lpv
coll e-loss coll p-loss

e E-loss of HQ found by Braaten-Thoma (1995): dp/dt = —upv



Final Result

— A measure of the mean free path

RETILghe  Kineties  RTOILju. . AdS/CFT
04, . A 04

0.0]

Lo L' "o



Final Result

— A measure of the mean free path

Oi T .
RIST WL e o Kinetics  RBTHL ju, o AdS/CFT

L o

Same at large distances



Final Result

— A measure of the mean free path

Oi
RISTOIL /u.

© " Kinetics Oi
e RISTOIL /i

04,
0ol

© . AdS/CFT

Free streaming, slowly Dissipate like crazy,
becoming hydro hydro emerges



Comparing with hydro quantitatively

4 cn
L, = — = “mean free path”
°7 3 (e +P)c? P

DY L% —

> > .
0.2, g
U 10

Go around circle and plot the energy density, compare with hydro

-20
xL/ LO



Comparison with hydro

R 4 C
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Comparison with hydro

R 4 C
M= — where L,=— I 5 = “mean free path”
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The AdS/CFT works amazingly well once second order corrections are included



Comparison with hydro

R 4 C
= — where L,= - i 5 = ‘mean free path”
0 3 (e +P)c;
14 8
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Second order corrections don'’t help Boltzmann too much



=6.32, (Kinetic Theory)

=4 — 2log(2) ~ 2.61. (AdS/CFT)

Can’t have such (relatively) small second order parameters

in any kinetic theory with any collision term!!!



Bulk mode — (7, (z)T",(0))

(d)

N 2.0 | ” R=0.5

g K =KT/u,

—~ 15+ Boltz |
xn

3
T 1.0
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1
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W= Wwl/py

e Hydro —small k, w



Bulk perturbations

e Gravitational Perturbation:
Gu(X) = (1 + H(z))nu

e The correct equilibrium is not at constant temperature

X)\/—goo(X) = Const, Ty(z)=T, (1 — ;H(X)) :

e Expand around this time dependent equilibrium

1
_H H _
f=np +0f  np(L2P) = 5 0m0mm 00 -1




Boltzmann Equation for Bulk Perturbation

e Boltzmann equation + mass term

1 0 0 1Om?(X) 0

_ 2 T A pupV ot y _

Ep(P oxr ey T 5 oxn OP, >f("’“"p) f.pl
Force term %%

e After Pluggingin f = n{f + 0 f and careful algebra

m?

O+ vp - 00) 07 =y (14 my) e OuH = CI5 8]
where ,
om? T
-2 _ 2  g20m° _ 1=
m”=m” = T" o . CaBlg)— -



Bulk mode — (1", (x)T",(0))
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e Hydro —small k, w

Should be able to extract second order non-conformal transport coeffs



2nd Order Non-Conformal Hydro (Romatschke)

e At linear order in non-conformal hydro there is the shear tensor
T = 1" 401 (Dot )k RW) 2uaRo‘<“”>5u5 +/<;*2uau5Ro‘<W>B ,
and the bulk tensor

=111 + (ruD(V - u) + &R + LeuausRY

e Lots of coeffs . ..

- But k* = &5 = &g = 0 in kinetic theory for the same reasons as before



2nd Order Non-Conformal Hydro (Romatschke)

e At linear order in non-conformal hydro there is the shear tensor
Y = 7T’1”W + n7e (Do)

and the bulk tensor
II =1I; + CTHD(V . U)

e Turning on a sinusoidal perturbation
G = (1 + H(E))nuw

e One can, solve the hydro equations of motion and find the hydro prediction

(2T5 + T} = —% [—iCw + (mmw?] H(w,0)

Comparison with kinetic results for <c§Tg + T;> determines 711



Results for 717

Nf 0 2 3

i1 /7= | 0.510 | 0.548 | 0.554

e Bulk viscosity is small because the coupling of T}, to H (t)1,,,, small

1
g9*Tlog(1/g)

e But the relaxation times of such perturbations is similar to 7,

¢ ~ B(g)*T* x

11
Tr

~ 0.5



Conclusions
e Formulated the linearized Boltzmann Equation as a Fokker Planck Equation

e Determined all spectral functions (most not discussed)

— Found that response is well described by hydrodynamics for

"
(e +P)cs

w,ck < 0.7

— Completed a second order analysis of bulk response function.

— Only 111 # 0 for linear case.

e Studied the medium response to a heavy quark probe

— The AdS/CFT converges to hydro extraordinarily quickly (even after measuring

units in terms of mean free paths)



