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At high energy, energy loss is dominated by nearly-collinear
bremsstrahlung and pair production.

Think
• cosmic ray shower
• shower chamber

radiation length
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brem from several successive (small angle) collisions not very different from
brem from one collision.

Result: a reduction of the naive brem rate.

Naively

brem rate  ~  n v  ~  (density of scatterers)    1

At very high energy,

probabilities of brem from successive scatterings no longer independent;

Complication: The Landau-Pomeranchuk-Migdal (LPM) Effect

(up to logs)
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Are splittings independent?

Can I just put LPM result for Γbrem etc. into a Monte Carlo to get

?
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Democratic   no daughter has energy << E.

implies roughly α probability of brem per formation time.

So two consecutive splittings will typically look like

Chance of overlap

Situation #1: Democratic Splitting

∝  α
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How big is that ?

costs roughly s(Q

).

Q


grows with formation length, which grows with E, but slowly:

So s(Q

) may not be large, but it won't be tiny for energies of interest.

Moral: it's interesting to figure out how to calculate
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Situation #2: Soft Secondary Emission

2nd emission involves much lower energy particle:

Probability of 2nd (and so 3rd, etc.)
emission can be ~ 1.

analyzed in case x << y << 1 by

Blaizot & Mehtar-Tani;  Iancu;  Wu (2014)

Interesting consequence for energy loss .. .

Situation #2: Soft Secondary Emission
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implies

Independent splitting:

Corrections due to modify this to

[ Blaizot & Mehtar-Tani (2014) ]
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Our Primary Goal

Compute effects of overlapping formation times

for any x  and y, not just y << x << 1.

y x
x

y
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The LPM Effect (QED)

Warm-up:  Recall that light cannot resolve details smaller than its wavelength.

[Photon emission from different scatterings have same phase      coherent.]

Now: Just Lorentz boost above picture by a lot!
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The LPM Effect (QED)

Note: (1)  bigger E requires bigger boost  more time dilation   longer formation length
   (2)  big boost  this process is very collinear.
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versus

Are these two possibilities in phase?  Or does the interference average to zero?

IN PHASE   if   (i) everything is nearly collinear                                         ✓
                           (ii) particle and photon have nearly same velocity       ✓ (speed of light)

An alternative picture

x1

x2
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The LPM Effect (QCD)
There is a qualitative difference for soft   bremsstrahlung.:

QED

Softer brem photon   longer wavelength
  less resolution
  more LPM suppression

QCD

Unlike a brem photon, a brem gluon can easily scatter from the medium.

vs.

Upshot:   In-medium soft brem more important in QCD than in QED.

Softer brem gluon   easier for brem gluon to scatter
 less collinearity
 less LPM suppression
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Formalism for LPM: single brem
Shorthand henceforth:  Draw

as simply

But will be even more convenient to draw as

Can (formally) interpret this as 3 particles moving forward in time [Zakharov 1990's]:

2 particles from the amplitude (evolving with e -iHt)
1 particle from the conjugate amplitude (evolving with e +iHt)
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Will show that evolution in can be described by

3-particle non-relativistic Quantum Mechanics in 2 dimensions

with weird properties:

●

● (i.e. H  is non-Hermitian)

  interference vanishes as ∆t  ∞, as it must!
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Kinetic terms:

Energy of a high-pz particle:

Evolution of is e -iHt with
1

2

3

conjugate evolves
with e +iHt 

This is 2-dimensional non-relativistic QM with

As promised,
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Potential terms:

Accounts for local interactions with medium.
To motivate form, think of something else...

A classical Boltzman analysis of scattering:

gain term loss term

Fourier transform:

with

This looks like a Schrodinger-ish equation:

with

In our problem, this physics gives  V :
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1

2

3

QED:

(bar over Γ means charge e 2 factored out)

QCD:

Color factors Ti · ∙Tj  are fixed (not dynamical)  because

 e.g.
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How to put the calculation together:

(1) Solve for propagation in 3-particle QM in shaded region.

(2) Tie together with QFT matrix elements for vertices

How to put the calculation together:
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Simplifcation: 3-particle QM   1-particle QM

● Translation invariance:

Factor out COM motion       2-particle QM

● Results should not depend on exact choice of z axis:

versus

     can factor out d.o.f. associated with tiny changes of z axis
     1-particle QM

[ In 2-dim QM language, the last simplification depends on a special property of the case m1+m2+m3 = 0.]

19



  

Solving 1-particle QM:

Method 1.   Can solve numerically.

Method 2.   High energies   very collinear   b 's small.

So make small b  approximation to

   a harmonic oscillator problem

( a non-Hermitian one: )

[ Zakharov (2004+); Caron-Huot & Gale (2010)  ]

[ Baier et al . (1998)  ]

[ BPMPS-Z (1990's)  ]
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Formalism for LPM: double brem
Example of an interference contribution:

To compute : Sew together QFT matrix element
for vertices with QM evolution in between.

Simplify : Using symmetries, as before.
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ugliest bit  =  2-particle QM evolution

Can imagine

● numerics [ have not done ]

● harmonic osc. approximation [ have done! ]

Harmonic osc. sounds very straight-forward, but in fact quite complicated.
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What do we do?

● For 4-particle (effectively 2-particle) evolution, find eigenmodes and frequencies of

● Construct corresponding propagator for 4-particle (2-particle) evolution.
    [Also do the same for 3-particle (1-particle) evolution.]

● Combine with QFT matrix elements for splitting vertices.

● Analytically integrate over all vertex times except ∆t  : 

● Analytically integrate over all vertex transverse positions. 

Result:

● Final ∆t  integral easy to do numerically. 

non-Hermitian
springs
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Complications

Color:   During 4-particle evolution,  T1+T2+T3+T4   = 0 is not enough to fix color factors Ti · ∙Tj  . 

Color dynamics is non-trivial!

For now : Work in large Nc  limit.                      [Not necessary if the brems are soft.]

Formalism:    Getting straight the formalism for 4-particles   effectively 2 particles.

Helicities:    Helicities of high-energy particles contract non-trivially in

Must use helicity-dependent DGLAP splitting functions at vertices.

Divergences:    Each time-ordered diagram diverges as  ∆t   0.

Must handle carefully (and non-trivially) with i ε prescriptions.
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Published Work

+
permutations of

(x, y, 1-x-y)

Forthcoming

crossed diagrams:

+
permutations of

(x, y, 1-x-y)

sequential diagrams:

Still  in progress

[ all for g   gg    ggg ]

virtual corrections, e.g.

4-gluon vertices, e.g.

correct single brem rate

[parts of which included in y << x << 1 work of earlier refs.]
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Preview of one result for g   gg   ggg
The difference

( double brem ) – what you'd get treating it as
independent single brems( )

is negative.

Example: a simple formula for our results in limiting case y << x << 1

[not analyzed in y << x << 1 work of earlier refs.]

( Reminiscent of heuristic model in JEWEL Monte Carlo [Zapp et al. (2011+)]. )

Why is the correction from overlapping formation lengths negative? ...
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Actual

Monte Carlo

x  and z  gluons are so close during formation time,
the soft y  sees them as a single adjoint-color particle.

Simple Monte Carlo always treats y  emission from x  and z  gluons
independently and so double counts the chance of emission during
laswt half of x emission formation time.
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