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Introduction



Relativistic viscous hydrodynamics...

... has been playing a very prominent role in the last |5 years. In particular:

- It describes the quark-gluon plasma in heavy ion collisions at RHIC and LHC

- It appears in the AdS/CFT as a concrete realization of the membrane paradigm

These highly successful applications of relativistic viscous hydrodynamics make it
easy to forget that it Is a theory that deserves understanding on its own.

This Is precisely the topic of my talk.
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Relativistic hydrodynamics as an EFT

an EFT of the slow evolution of conserved

hydrodynamics is . . . o
/ Y currents in collective media close to equilibrium

As any EFT 1t s based on the idea of the gradient expansion

DOFs: always local energy density e and local flow velocity v* (u,u” = —1)

EOMs: conservation egns V,(T"") =0 for (I"") systematically expanded in gradients

terms carrying 2
and more gradients

l

(T") = euu? + P(e){ " + u'u” } —n(e) " — ((e){ g +uu” HV - w) &)

b T~

microscopic

Ut EoS shear viscosity bulk viscosity
NpUt. (P(e) = %e for CFTs) (vanishes for CF1s)
L e+ Ple n . £
Dissipation: Vﬂ{ T( ) -yt +} = 57080 Py > (V u)* + ... >0
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H)’d rOdynamICS and Ad S/C FT see, e.g. Kovtun & Starinets [hep-th/0506 | 84]

Consider small amplitude perturbations (57,./N.2 < T*) on top of a holographic plasma

1 . o
T,, = é7r2N§T4 diag (3,1,1,1),,, +0T}, (~ e i@k itikD)

Dissipation leads to modes with complex w(k), which look like
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w(k) —0ask — 0 :slowly dissipating modes (hydrodynamic sound waves)

all the rest: far from equilibrium (QNM) modes damped over tierm = O(1)/T
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Hydrodynamics and QGP joren 1982

The “spherical cow’ of heavy ion collision Is
the boost-invariant flow with no transverse expansion.

In Bjorken scenario dynamics depends only on proper time 7 = \/(:1;0)2 — (x1)?

ds® = —dr? 4 Tdy* + dxs + dx3

and stress tensor (for a CFT) is entirely expressed in terms of local energy density

(1) = ding{—e(r), W — (), 1D 4 AT ATy ATy
V. (TH") =0 > Té(T) = —%6(7’) + o(7)
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Hydrodynamic gradient expansion is divergent

Hydrodynamic gradient expansion: €(7) and ¢(7) are expressed as series in

T at strong coupling the temperature .
sets the microscopic scale: N =
€

size of the gradient based on
dimensional analysis:

ds* = —dr? +@dy2 + day + dag
9
In 1302.0697 [hep-th] we computed [ (TT(7)) = 3t
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Hydrodynamics and QNMs

240
1

Analytic continuation (using symmetric Pade approximant) of f5(£) = » I’

revealed the following analytic structure of fB(&): n=0 "

4 1 lfor N=4SYM
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< |
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Branch cut singularities start at 5 L WQN M, |
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Question behind this work

How to make sense of the divergent hydrodynamic gradient expansion?
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Evolution equations for
relativistic viscous fluids



Evolution equations for relativistic viscous fluids

Naive viscous hydrodynamics: V,.{ eu*u” + P(e){ g"* + v u” } —n(e) o } =0

leads to the diffusion equation for du.(t, «) perturbation on top of T' = constand u' =1

1's

This equation does not have a well-posed initial value problem in boosted frames.

One known remedy: promote IT"" = (TH*") — (eu"u” + P(e){g"" + uFu"})

to an independent dynamical field. The prototypical example Is:
(D + 1) II*Y = —not”

Instead of the diffusion equation, one now gets the Maxwell-Cattaneo equation

1 1
07 du, — Q—3§5uz + —0y0u, = 0:okay* as long asmn1 > i
s Tl TII S
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Formulation of hydrodynamics

Fquation d?6u, — Qia%uz + iatéuz = 0 derived from (D + 1) II*” = —not”
9 t sl ° T
has two modes as solutions:

. T 0 1 . N2
w=—1—%k . d — — | k
ST " “ ZTH ST i
hydrodynamics purely imaginary “quasinormal mode”

On top of this, (D + 1) II*Y = —no*” leads to an infinite gradient expansion.
p g p

Conclusion: theories like this are certain “UV-completion™ of hydrodynamic modes,
much like the full N=4 SYM is a "UV-completion” of its hydrodynamic sector.

As an aside: 1409.5087 [hep-th] showed that g(%D)2 + 2wIlD + w22 [T = — n|w|?c™”

. . . T
s a structure coupling hydrodynamics to the lowest quasinormal mdde.
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In the following we will address questions about the hydrodynamic gradient
expansion raised in N=4 SYM within the framework of (gD + 1) [T = —not”.

To make contact with the Iiterature, | will consider a slightly more general theory:

A
07122451 [hep-th]: (D + 1)TI* = —nah” + n_;nw e

10/20



The attractor in

A1l
)

T aH”>O‘
n

(tnD + 1) II*Y = —not” +



Boost-invariant generalized hydrodynamics

For the boost-invariant flow II*” has only one independent component: I1Y, = —¢(7)
. 4
Vu(I*) =0 —> T€:—§€—|—gb
A1 . A \¢® 4mg
D+ 1) O = —potv + ST _ IV ——» —
Cry ] . .
Ina CFT 1 = 7o AL= C,\lf, n = Cys and set N=4 SYM gradient expansion values.

Introducing the scale invariant combination w = 7 T'(7) one equivalently* gets

L i = f(w) (: = igb(ﬂ)

w 3 e(7)
, 4Af7 16f 16 3f7  2f 2 | 2 40,
Cru <ff w 3w 9w>+(j}‘1 (2077 - Cnp ' 3C,) 3 9w -0
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The attractor

1.0
0.9
attractor
0.8 different solutions
. fw) = fo+ fru™
0.7 B B
fw) = fo+ frw™" + faw
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early time ate time
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Beyond the gradient expansion in

A1
n2

1L aHV>a
n

(THD—I— 1)H’u’/ = —UO'MV—l—



Divergent gradient expansion
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Quasinormal mode

Let's now consider small perturbations on top of hydrodynamics

. 2 4077 1 8077(07-1—1 - C)\l) )
=3t w 27 v

. e

The solution takes the form

Cn—2Cx, 202 402
5f~exp(— : w)w Crn {1—|—( 1 —20770)\1—|—4077 >‘1—|—4C)\1)’w1—|—...}

2C 3C,,  3C., - 3C,., 3

TII

exponential dampening (QNM) divergent series

Analogy with QFT:

1 .
— ~ coupling constant
w
L 1 . .
expansion in powers of — perturbative expansion

QNM ~ nonperturbative object (instanton™)
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Singularities of the Borel transform

Analytic continuation of Borel transform reveals dense series of poles on real axis
200 200

fo@©~ Y Sl =3 Fe
n=0 n=0
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Assuming the leading singularity of the form (£ —&0)” we obtain the following relation

~

o _ g <1+1+7+O(i))

= 0 2
fn+1 n-+1 n n

Applying it to our data, we got & = 7.21181 and ~ = 1.1449.
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Ambiguities in Borel summation
We assume the following analytic structure of fs(§) with h;(€) analytic for Re(§) > 0

FB(&) = ho(&) 4+ (S0 — &) (&) + (26 — )P ha(&) + . ..

Cuts lead to ambiguities in the Borel summation

fr(w) = /C 0 e fu(Efw) = w /C 4 e i (€)

as C' 1s a contour connecting O with oo . For each cut we get the following ambiguity

o0

S fr(w) = €™y —/ks d€ e " 5(& — k&) " hi(€), where p € Zoad

Evaluating the ambiguity at large w we obtain the k-th power of the QNM

5fr(w) ~ e™PT (ky + 1)hy (k&) (w™7e %)
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Transseries

The analysis of ambiguities leads us to the transseries for f(w)

fw)= > Q)™ Y ampw" where @ = w7 exp(—wép)
m=0 n=0

The coefficients a,, » are fixed uniquely up to a0, which can be reabsorbed in ¢

Constant ¢ s called the transseries parameter and we assume It is complex.

Hydrodynamic gradient expansion corresponds to m = 0 subseries.

For each m, corresponding subseries in n Is divergent. We expect their Borel
transforms to each have a sequence of branch-cuts starting at & &.

The sum of the transseries, defined using Borel summation, should be real and
unambiguous, up to a single real integration constant. This leads to the resurgence.
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Ambiguity cancellation in the lowest order

Let's consider the transseries with Borel sums performed over n index

flw) =) " Qw)™ ) apmpw™" — fr(w) = £, (w) + cQw) £, (w) + ...
m—0 n=0 resummation

Let's investigate the leading large-w behavior of the resummed expressions:

2
(0) — 5+ b\ + o2 1.

F=14+0pV 4

Note that b\” = ™I (y + 1)h'” (&) is ambiguous.

The only way to cancel ambiguities at the order Q' is to demand

c=r =Ty + )iy’ (&)

r 1S a physical integration constant specifying a particular solution f(w)
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Resummed hydrodynamics and the attractor

attractor

flw) = fo+ fiw™?

0.72

0.70

0.4 0.6 0.8 1.0 1.2 1.4
W

Note that matching to the attractor required choosing r = 0.049 (not O 1).
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Summary



Summary 1503.07514 [hep-th]

Hydrodynamic gradient expansion Is divergent.
Our proposal: hydrodynamics beyond the gradient expansion = attractor.
Gradient expansion needs to be supplemented with "ONM" — transseries

Analogy with QFT: gradient expansion = perturbative expansion; " QNM" = instanton

Resurgence: resummation seems to be free from ambigurties, up to integration const.
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Support: ambiguities at NLO
flw) = Z " Q(w)™ Z Ay W

m=0

= fr(w) = fiy (w) + cQw) fi (w) + ...
resummation

The leading large-w behavior of the resummed expressions:

2
0 = 5 b + Q%% + ...

Wo=1+ Y4

2 3
BT

where 5" = ™ T (y + 1) (&), b = 2™Pr(2y + 1)hP (2¢,), B = ¢™PT (v + 1)AV (&)

At order Q': c=r — ™I (v + 1)h§0) (o)

Now, at order QZ:
i (&) + 301 (g0) = 0
2T (2 + 1)h” (260) + 3T (7 + 1)2h{” (&)* = 0

We were able to numerically verity only the first relation.
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