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”RIDGE” - ANGULAR CORRELATIONS

Two particle correlations in p− p: long range in rapidity, near-side angular correlations

”High multiplicity” collisions with over a hundred charged particles produced



Multiplicity dependence of the ridge in pPb
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BIg Questions

• Origin of angular collimation?

Could be many. For sure explosive ”wind” from hydro would lead to some.

• Origin of long range rapidity correlations?

Causality: correlations exist in early stage of the collision (like in cosmology)

• Do we see a sign of universality between p− p and p− A and A− A?

Hopefully Yes! High energy QCD implies this universality. In all experiments the effect

emerges only when high densities are involved (color glass condensate (CGC))

• Do we see a collective phenomenon (QGP?) in p− p or p− A?

Many indications, but we are not sure yet ...



Our Goal

To discuss some general features of gluon production at high energy.

We need to compute correlations in two-gluon inclusive production rate

[

d2N

d2p dη d2k dξ
−

dN

d2k dξ

dN

d2p dη

]

/
dN

d2k dξ

dN

d2p dη

For dilute on dense (DIS), we do have QCD-derived formulae for multi-gluon production

Here I talk about only one source for the observed phenomena:

INITIAL CONDITIONS (CGC)



High Energy Scattering: CGC-type approach

Target Projectile

〈T | → ← |P 〉

S-matrix:

S(Y) = 〈T 〈P| Ŝ(ρt, ρp) |P〉T〉

CGC-type averaging

S(Y) =

∫

Dρ
p
Dρ

t
S[ρ

p
, ρ

t
] W

p

Y−Y0
[ρ

p
] W

t

Y0
[ρ

t
]

Wp,t are probability distributions, subject to high energy evolution equations

For any other observable O

〈O〉P,T =

∫

Dρp
Dρt OY0

[ρp, ρt] W
p

Y−Y0
[ρp] W

t

Y0
[ρt]



Projectile/Target averaging

We have to specify Wp and Wt by modelling them at some initial rapidities and then

evolve to a desired an effective high energy Hamiltonian HHE, which is yet to be derived.

McLerran-Venugopalan model for dense systems:

W
MV

[ρ] = N exp

[

−

∫

k

1

2µ2(k)
ρ(k)ρ(−k)

]



Light Cone Wave Function
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Hard particles with k+ > Λ scatter off the target. In the eikonal approximation, the

scattering amplitude is independent of k+. Hard (valence) modes are described by the

valence density ρ(x⊥). Note rapidity independence!

Soft modes are not many. They do not contribute much to the scattering amplitude.

The boost opens a window above Λ with the width ∼ δy. The window is populated

by soft modes, which became hard after the boost. These newly created hard modes do

scatter off the target.

In the dilute limit ρ ∼ 1; gluon emission ∼ αs ρ, LO = one gluon, NLO = 2 gluons

In the dense limit ρ ∼ 1/αs, we have αs ρ ∼ 1, and the number of gluons in the window

can be very large.



Denote soft glue creation and annihilation operators as a and a†.

HQCD = H(ρ, a, a
†
)

Hadron wave function in the soft gluon Fock space

|Ψ〉Y0
= |v〉 = |ρ〉valence ⊗ |0a〉soft

The evolved wave function

|Ψ〉Y = ΩY(ρ, a) |Ψ〉Y0
;

or equivalently

Ω
†
H Ω = Hdiagonal

The major challenge is to find Ω that does the job



Gluon coherent field operator in the dilute limit

ΩY(ρ → 0) ≡ CY = Exp

{

i

∫

d
2
z b

a

i (z)

∫ eY Λ

eY0 Λ

dk+

π1/2|k+|1/2

[

a
a

i (k
+, z) + a

†a
i
(k+, z))

]

}

x

z

ρ p

v

Linear evolution means δρ ∝ ρp

Emission amplitude is given by the

Weizsaker-Williams field

b
a

i (z) =
g

2π

∫

d
2
x
(x − z)i

(x − z)2
ρa(x)

The operator C dresses the valence charges by a cloud of the WW gluons

In the dense regime: Ω(ρ ∼ 1/αs) = C B B is a Bogolyubov operator

B = exp[Λ(ρ) (a2 + a
† 2) + · · ·]

B defines quasiparticles above the WW background

Altinoluk, Kovner, ML, Peressutti, Wiedemann (2007-2009)



Given the evolution of the hadronic wave function we can calculate evolution of an

arbitrary observable Ô(ρ)

The evolution of the expectation value

d 〈v|Ô|v〉

d Y
= lim

Y→Y0

〈v|Ω†Y Ô[ρ + δρ] ΩY |v〉 − 〈v|Ô[ρ]|v〉

Y − Y0

= −

∫

DρW [ρ]H
HE

[ρ] O[ρ]

Charge density due to newly produced gluon

δρ
a
(x) =

∫ eY Λ

eY0 Λ

dk
+
a
†b
i (k

+
, x)T

a

bc a
c

i (k
+
, x)

HKLWMIJ = HHE(ρ → 0) A. Kovner and M.L., Phys.Rev.D71:085004, 2005

HJIMWLK = HHE(ρ → ∞) - Jalilian Marian, Iancu, McLerran, Leonidov, Kovner (1997-2002)

Balitsky-Kovchegov (BK) is the large Nc version of JIMWLK



Density Matrix of soft modes

The wave function coming into the collision region at time t = 0

|Ψin〉 = ΩY |ρ, 0a〉 .

Standard CGC formalism: first integrate out the soft modes and then average over ρ

Q: Can we learn something if we do in the opposite order? A: probably Yes.

Define the reduced density matrix of soft modes

ρ̂ =

∫

DρW[ρ] |Ψin〉 〈Ψin|



”Dilute/Dense mix approximation”: Ω = C and W = WMV (Gaussian),

ρ̂ is computable analytically

T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and ML, arXiv:1503.07126

ρ̂ =
∑

n

1

n!
e−

1
2φiMijφj

[
n
∏

m=1

Mimjmφim|0〉 〈0|φjm

]

e−
1
2φiMijφj

Here we have introduced compact notations:

φi ≡
[

a
†a
i (x) + a

a

i (x)
]

; Mij ≡
g2

4π2

∫

u,v

µ
2
(u, v)

(x− u)i

(x − u)2
(y − v)j

(y − v)2
δ
ab

M bears two polarisation, colour, and coordinate indices, collectively denoted as {ij}.



Bose Enhancement

Easy to show that correlators in this ρ̂ Wick factorize in terms of two basic elements:

tr[ρ̂a†ia (k)a
j
b(p)] = (2π)2δab δ

(2)(k − p) g2µ2(p)
pipj

p4

tr[ρ̂ai
a(k)a

j
b(p)] = tr[ρ̂a†ia (k)a

†j
b (p)] = −(2π)2δab δ

(2)(k + p) g2µ2(p)
pipj

p4

Correlator of aaaa enters double gluon production:

tr[ρ̂a†ia (k1)a
†j
b (k2)a

i
a(k1)a

j
b(k2)] = S2(N2

c − 1)2
{

g4µ2(k1)µ
2(k2)

k2
1k

2
2

+
1

S(N2
c − 1)

[

δ
(2)

(k1 − k2) + δ
(2)

(k1 + k2)
] g4µ4(k1)

k4
1

}

The first term is the “classical” square of the density.

The last term is a Bose enhancement contribution → Glasma Graphs



Entanglement Entropy

Alex Kovner and ML, arXiv:1506.05394

Initial wave function: Entanglement Entropy of soft modes

σ
E

= − tr[ρ̂ ln ρ̂]

How to calculate ln? The “replica trick”:

ln ρ̂ = lim
ǫ→0

1

ǫ
(ρ̂

ǫ − 1)

Calculate ρN and take N → 0. N copies of the field - replicas.

The result

σ
E
=

1

2
tr

{

ln
M

π
+

√

1 +
4M

π
ln

[

1 +
π

2M

(

1 +

√

1 +
4M

π

)]}



Translationally invariant limit (µ = const):

M
ab

ij (p) = g
2µ2pipj

p4
δab

For small M , or the UV contribution

σ
E

UV = tr

[

M

π
ln

πe

M

]

= −
N2

c − 1

π
S

∫

p2>
Q2
s

g2

d2p

(2π)2
Q2

s

g2p2
ln

Q2
s

eg2 p2

where Q2
s = g4

π µ2 σE is formally UV divergent

σ
E

UV =
Q2

s

4πg2
(N

2

c − 1)S

[

ln
2 g

2Λ2

Q2
s

+ ln
g2Λ2

Q2
s

]

The large M , IR contribution is

σ
E

IR ≃
1

2
tr[ln

e2M

π
] =

N2
c − 1

2
S

∫

p2<
Q2
s

g2

d2p

(2π)2
ln

e2 Q2
s

g2p2
=

3(N2
c − 1)

8πg2
SQ

2

s



Properties of σE.

σ ≈ σ
E

UV + σIR =
SQ2

s

4πg2
(N

2

c − 1)

[

ln
2 g

2Λ2

Q2
s

+ ln
g2Λ2

Q2
s

+
3

2

]

UV divergent: the divergence is cutoff physically at Λ ∼ MeY0 ≫ M, where eikonal

approximation breaks down.

σE is not extensive in rapidity: only one longitudinal mode (rapidity independent) is

entangled with valence degrees of freedom.

Similar to “topological entropy”: insensitive to boundary region between the modes.

But not quite what we would like to know.

We need to address scattering process



Semi-inclusive reactions

The wave function coming into the collision region at time t = 0

|Ψin〉 = ΩY |ρ, 0a〉 .

The system emerges from the collision region with the wave function

|Ψout〉 = Ŝ ΩY |ρ, 0a〉 .

The system keeps evolving after the collision to the asymptotic time t → +∞, at which

point the measurement of an observable Ô is made

〈Ô〉P,T = 〈 〈0a|Ω
†
Y (1 − Ŝ

†
)ΩY Ô Ω

†
Y (1 − Ŝ)ΩY |0a〉 〉P,T



Eikonal scattering approximation

A A A A A A A

in out
x −

Eikonal scattering is a color rotation

Eikonal factor does not depend on rapidity

In the light cone gauge (A+ = 0) the large target field component is A− = αt.

S(x) = P exp

{

i

∫

dx
+
T

a
α

a

t(x, x
+
)

}

. ”∆”α
t
= ρ

t
(YM)

|in〉 = |z, b〉 ; |out〉 = |z, a〉 ; |out〉 = S |in〉



Single inclusive gluon production

z z

Ο   (κ)g
Y

0

Y1

The observable

Ôg ∼ a
† a
i (k) a

a

i (k)

dN

d2kdη
= 〈σ(k) 〉P,T

After soft gluon averaged using dilute projectile approximation (Ω→ C)

σ(k) =

∫

z,z̄,x1,x̄1

e
ik(z−z̄) (z̄− x̄1)i

(z̄− x̄1)2
(x1 − z)i

(x1 − z)2

{

ρ(x1)[S
†(x1)− S

†(z)][S(x̄1)− S(z)]ρ(x̄1)
}



Entropy production

σP =
1

2
〈tr







ln
MP

π
+

√

1 +
4MP

π
ln



1 +
π

2MP



1 +

√

1 +
4MP

π















〉T

with

M
P ≡ g

2

∫

u,v

µ2(u, v)
(x − u)i

(x − u)2
(y − v)j

(y − v)2
[(S(u)− S(x))(S†(v)− S

†(y))]ab

T -averaging is complicated Let expand σP around M̄ ≡ 〈MP〉T (dilute projectile limit)

M̄ == δab
Q2

Pπ

g2

∫

z

(x− z)i

(x− z)2
(y − z)j

(y − z)2
[PA(x, y) + 1− PA(x, z)− PA(z, y)]

PA - S-matrix of an adjoint dipole Qp - saturation momentum of the projectile.

M̄ is almost single inclusive gluon, but it is not summed over ij



σP = tr

[

M̄

π
ln

πe

M̄

]

−
1

2π
tr
[{

〈(MP − M̄) (MP − M̄)〉T
}

M̄
−1
]

....

First term is almost −n lnn, where n is a multiplicity per unit rapidity (dN/dη)

it depends on the production probabilities of longitudinally and transversely (with respect

to the direction of their transverse momentum) polarized gluons separately

Second term - almost correlated part of double inclusive gluon production.

Correlations between gluons decrease entropy of the produced state. consistent with the

view of entropy as measuring disorder in the final state.

For a parametrically large number of produced particles (αsdN/dη ∼ 1), the entropy is

parametrically of order 1/αs



”Temperature” of produced system

We can naturally define temperature through:

T
−1

=
dσ

dET

E⊥ ∝

∫

d
2
k |k|MP

(k) ∝ (N
2

c − 1) S
Q2

P

g2
QT

Keeping only mean field term in the entropy:

T =
π

2
〈kT〉

.

〈kT〉 = E⊥/Ntotal Ntotal =

∫

d
2
kM

P
(k)



Naive picture of correlated gluon production

Long range rapidity correlations come for free with boost invariance

Incoming |P 〉 is approximately boost invariant: exactly the same gluon distribution at Y1

and Y2.

What happens at Y1, happens also at Y2: If it is probable to produce a gluon at Y1, it is

also probable to produce a gluon at Y2.

But exactly by the same logic there must be angular correlations:

Gluons scatter on exactly the same target

If the first gluon is most likely to be scattered to the right, the second gluon at the same

impact parameter will be also scattered to the right

Eikonal scattering is rapidity independent!



Double inclusive gluon production

O = a
†
(k) a(k) a

†
(p) a(p)

dN

d2pd2kdηdξ
= σ4 = 〈σ(k) σ(p)〉P,T

Configuration by configuration

(for fixed configuration of projectile charges ρ and fixed target fields S)

σ(k) is a real function of k, which has a maximum at some value k = q0. Then the two

gluon production probability configuration by configuration has a maximum at

k = p = q0 ≃ Qs

The value of q0 depends on configuration, but the fact that k ≃ p does not.

This is the near side correlation!



Is the maximum of σ1 unique?

No, σ1 is symmetric under k→ −k and thus has two maxima at q0 and −q0

This means that σ4 has a symmetry k, p → −k, p and therefore has maxima at relative

angles φ = 0 and φ = π

The maximum at φ = π is very difficult to distinguish experimentally.

After all there is some asymmetry

between 0 and π angles

The v3 story:



Projectile/Target averaging

• “Glasma graphs” A. Dumitru, F. Gelis, J. Jalilian-Marian, T. Lappi: Phys.Lett. B697 (2011) 21

(arXiv:1009.5295), followed by quite successful quantitative effort to describe all data by

K. Dusling and R. Venugopalan, Phys.Rev.Lett. 108 (2012) 262001

a†(k1) a†(k2) a(k2) a(k1)

q

p

q

p

N(p− k1)

N(q − k2)

TYPE A

a†(k1) a†(k2) a(k4) a(k3)

q

p

q

p

N(p− k1)

N(q − k2)

TYPE B

a†(k1) a†(k2) a(k4) a(k3)

q

p

q

p

N(p− k1) N(q − k4)

TYPE C

Type B+Type C=”upside down” Type A + “suppressed”

The resulting correlations are Nc suppressed. The physics of the ”Glasma graphs” is

Initial state Bose enhancement → correlation in the final state.

T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and ML, arXiv:1503.07126.



• Local anisotropy A. Kovner and M. L: PRD83 (2011) 034017; IJMP E Vol. 22 (2013) 1330001

Qs
−1

E

tr[S
†
x Sy]/Nc = Exp[− (~r ~E(~b))

2
] ;

~E(~b) =
∑

~E0(~b) e
− d2 Q2

s ; E0 = Qs

~r = ~x− ~y is a vector of the dipole moment.

〈tr[S†x Sy]tr[S
†
u Sv]〉 has non-trivial angular correlations and the effect is a leading Nc.

A. Dumitru, A. Giannini, NPA 933 (2014) 212

A. Dumitru, L. McLerran and V. Skokov, PLB 743, 134 (2015)

A. Dumitru and V. Skokov, PRD 91, 7, 074006 (2015)

A. Dumitru, A. V. Giannini and V. Skokov, arXiv:1503.03897,

V. Skokov, PRD 91, 5, 054014 (2015)

T. Lappi, PLB 744, 315 (2015)
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A word about high energy evolution

• With increase of rapidity, we found an exponentially fast isotropization with the

exponent λA ≃ 0.6.

• Observed correlations must arise dynamically. Pomeron loops are needed

Quite an opposite result (presumably 1/N2
c effect)

A. Dumitru, A. V. Giannini and V. Skokov,

arXiv:1503.03897
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Target correlations 〈tr[S†S] tr[S†S]〉T from the BK equation

BKe for imaginary part of the dipole scattering amplitude N(~r) = 1 − tr[S†x Sy]/Nc

∂Y N(~r) =
CF αs

2π

∫

d
2~r′

~r2

~r′ 2 (~r−~r)2
[N(~r′) + N(~r−~r′) − N(~r) − N(~r′)N(~r−~r′)]

Anisotropic initial conditions at some initial rapidity Y0 = ln 102.

N(Y0,~r) = 1 − Exp[− a r
2
xg

LOCTEQ6
(x0, 4/r

2
)F(θ)]; a =

αs(r
2)π

2Nc R2

F(θ) = 1− A + 2A cos
2
(θ) A = 3/4
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W[δ] = 1/2π, constant for any δ ranging from 0 to 2π.

〈F〉δ =

∫ 2π

0

dδ F(θ + δ)W[δ] = 1

We are interested in the two-dipole correlator 〈N(Y, r1, θ1, δ)N(Y, r2, θ2, δ)〉δ.



Single configuration solution
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Angular correlations of the saturation radius

Two quantities of interest: correlator of two saturation scales 〈Rs(θ1)Rs(θ2)〉δ and

∆Rs(Y, r, θ) ≡
〈Rs(Y, θ1, δ)Rs(Y, θ2, δ)〉δ − 〈Rs(Y, θ1, δ)〉δ 〈Rs(Y, θ2, δ)〉δ

〈Rs(Y, θ1, δ)〉2δ
, θ = θ1−θ2
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Angular correlations 〈N(Y, r, θ1)N(Y, r, θ2)〉δ
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Again fast anizotropization

Ang. correlations ∼ e
−λY

, λ ≃ 0.6

Presumably related to the second BFKL eigenvalue

ωn=0 = 4 ln 2 ᾱs; ωn=2 = 4 (ln 2 − 1) ᾱs



Towards correlations in symmetric collisions.

T. Altinoluk, A. Kovner, E. Levin, ML, JHEP 1404 (2014) 075

dN

d2pd2kdηdξ
= 〈σ(k) σ(p)〉P,T

σ(k) =

∫

z,z̄,x1,x̄1

e
ik(z−z̄)~f(z̄− x̄1) ·~f(x1− z)

{

ρ(x1)[S
†
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after color projection algebra and some little massage
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īj̄k̄l̄ ∂

∂(klk̄l̄)
[N̄

P
yxN̄

P
vuQ̄

P
xvuy]

}

where we have defined

∂

∂(ijkl)
≡

∂

∂xi

∂

∂yj

∂

∂uk

∂

∂vl

∆
ijkl ≡ δ

ij
δ
kl
+ δ

ik
δ
jl − δ

il
δ
jk

Here QT(yuvx) = tr[S(y)S†(u)S(v)S†(y)] (quadrupole/B-Reggeon)

The expression is manifestly symmetric with respect to target/projectile.


