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Introduction

The many-body physics of relativistic non-Abelian gauge theories plays an important role in

current heavy ion collision experiments and the astrophysics of compact stars. One encounters

similar problems in certain dark matter and leptogenesis computations in cosmology, as well as

condensed matter and cold atom environments.

The dynamical properties of these many-body systems are encoded in various spectral functions

where, in particular, their zero-frequency limits define transport coefficients.



Introduction

Numerical lattice Monte Carlo simulations have been very successful to determine static

properties of strongly interacting matter. The reconstruction of real-time quantities based on

analytic continuation of Euclidean correlation functions using Bayesian methods such as MEM

however is often difficult.

We may employ suitable low-energy effective theories to develop a general understanding of the

qualitative structure of spectral functions and associated transport. But what are suitable

effective dynamics?



From microscopic to low energy effective dynamics

Given a characteristic scale, we typically identify the relevant hydrodynamic degrees of freedom.

This provides an appropriate description of the long-wavelength and small-frequency fluctuations

in the system away from the critical temperature.

Close to the critical point we need to consider additional slow modes to determine the associated

dynamic universality class. In particular, the magnitude of the order parameter will exhibit critical

slowing down and might couple to other conserved charges.

This approach cannot describe the transition from unitary dynamics to dissipative (or possibly

dissipationless) transport. In principle, this requires the solution of the full generating functional

for correlation functions on a closed time path (Schwinger/Keldysh).
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From microscopic to low energy effective dynamics
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The dynamic zoo

At the critical point the system satisfies the scaling assumption. In thermal equilibrium, we can

phrase the presence of scaling in terms of the spectral function of the order parameter:

ρ (sq, szω) = s−2+ηρ (q, ω)

where z is the dynamic critical exponent, and η is the anomalous dimension.

The coupling to additional fields might be relevant and determine the dynamic unversality class.

Model A relaxation Kinetic Ising model, anisotropic magnet – z = 2 + cη

Model B diffusion Kinetic Ising model, uniaxial ferromagnet – z = 4 − η

Model C relaxation Anisotropic magnet, structural transitions – z = 2 + α
ν

Model E Planar magnet Spin wave z = d/2

Model F Planar magnet, superfluid Second sound z = d/2

Model G Heisenberg antiferromagnet Spin wave z = d/2

Model H Gas-liquid binary fluid – z = d + xη

Model J Heisenberg ferromagnet Spin wave z = 1
2

(d + 2 − η)



Dynamic universality class of the QCD critical point

Near the critical end point of the chiral phase transition in QCD, the modes potentially important

for hydrodynamics are given by the fluctuations of:

• the conserved energy and momentum densities, ε = T00 − 〈T00〉 and π i
= T0i,

• the conserved baryon number density, n = q̄γ0q − 〈q̄γ0q〉,

• the chiral condensate, σ = q̄q − 〈q̄q〉.

The non-vanishing coupling [πi (x), σ (y)] = σ (x)∇iδ
(3) (x − y) between the order parameter

and momentum density are essential in considerations that lead to Model H.

Son & Stephanov, PRD 70, 056001 (2004)

In the static case, without a mixing of the order parameter σ and baryon density n, the dynamic

universality class might be associated to that of Model C (which asserts the symmetry σ → −σ).

Berdnikov & Rajagopal, PRD 61, 105017 (2000)

However, σ – n mixing (at nonvanishing µB) eliminates the nonconserved mode from

hydrodynamic theory, leading instead to Model B.



QCD phenomenology

The critical correlations of chiral condensate show up through pion and nucleon coupling in the

chiral effective Lagrangian, ∼ gπσπ+π− and ∼ gNσN̄N.

Athanasiou et al., PRD 82, 074008 (2010)

Cumulants near the critical point:

κ2 ∼ Vn2
πg2

π ξ2

κ3 ∼ Vn3
πg3

πλ3 ξ
9/2

κ4 ∼ Vn4
πg4

πλ4 ξ
7

This leads to strong fluctuations in high order moments, which are limited, however, by finite size

and nonequilibrium effects (ξ ∼ τ
1
z ).

Can we determine the dynamic critical exponent z for strongly interacting

(relativistic/nonrelativistic) matter?

Model H value of z ≃ 3 is larger than the model C value z ≃ 2.17, which means that the effect of

the time constraint on the correlation length ξ is stronger.



2+1 dimensional relativistic scalar theory

(2 − η)/z

≃ 0.87

Berges et al., NPB 832, 228 (2010) 228

Dynamic critical scaling over 3 orders of magnitude: z = 2.0 ± 0.1.

Compatible with the relaxational behavior of a single scalar field coupled to an auxiliary field

(energy conservation)?

Strong scaling, i.e., z = 2 + α/ν (Model C) yields: z = 2 (according to exact Onsager solution

α = 0, η = 1/4, ν = 1).



Order parameter coupled to auxiliary field (energy density)

We consider the following dynamics

∂

∂t
ϕa (x, t) = −Ω

δH

δϕa (x, t)
+ ηa (x, t)

∂

∂t
ε(x, t) = Ωε∇

2 δH

δε(x, t)
+ ζ (x, t)

which defines the kinetic coefficients Ω (dissipation) and Ωε (diffusion).

The system is coupled to a thermal bath (kBT = 1)

〈ηa (x, t)ηb (x′, t′)〉 = 2Ωδ (d) (x − x′)δ(t − t′)

〈ζ (x, t)ζ (x′, t′)〉 = −2Ωǫ∇
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and the time-dependent GLW functional determines the parameters and couplings of the model:
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Field-theory formulation

From the classical field equations of motion we may derive the field-theoretic action

S =

∫

ddx dt

{
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Scale dependent effective action

We promote the parameters and couplings of the theory to scale-dependent quanitites:
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and determine the components of the inverse propagator:
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⇒ Conservation of charge via momentum-dependent coupling



Functional renormalization group

The exact nonperturbative functional renormalization group equation
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defines and infinite hierarchy of flow equations for irreducible n-point functions:
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It can be closed by truncating the set of operators included in the ansatz for the scale dependent

effective action. In particular, we choose a gradient expansion to O(∂2) and a finite basis of

local field monomials for the potential:

Uk (φ, E) =
∑

n

ḡn,kOn (φ, E)

The β functions are defined in terms of the scale derivatives of the couplings

βgn = k
∂gn

∂k
= (−dOn

+ cnη)gn + · · ·

and anomalous dimensions for the fields:

η(φ) = −k
∂Zk (φ)

∂k

From these quantities we derive fixed points, critical exponents, etc.



Couplings and parameters in Model C

Dimensionless renormalized coupling between the sectors: γ = kd/2−2Z−1Z
−1/2

E
γ̄

Dynamic properties characterized by parameter:

κ = 1/(1 +ΩEΩ
−1Z−1ZE )

which varies in the range 0 ≤ κ ≤ 1 and captures the asymptotic scaling properties

RG fixed point distinguished by scaling

Z ∼ k−η, ZE ∼ k−ηE , Ω
−1 ∼ k−ηΩ

Dynamic critical exponent z is derived by examining the scaling behavior of the spectral function:

ρ = −i Im Gφφ̃ ∼ k−2+η , where it is assumed that q ∼ k and ω ∼ kz

Ω
−1Z−1kz−2 ∼ kz−2+η−ηΩ = const.

z = 2 − η + ηΩ , zE = 2 − ηE + ηΩE



Dynamic critical scaling

Diagrams that contribute to the frequency and momentum-dependent part of the two-point

function Γ
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Ẽ E

φ φ̃

φ φ
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Only one diagram contributes to the frequency-dependence in the E-sector:
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⇒ Absence of dynamic renormalization in E-sector (ηΩE = 0)

z = 2 − η + ηΩ , zE = 2 − ηE



Anomalous dimensions

The anomalous dimensions η = −∂ ln Z/∂s, ηE = −∂ ln ZE/∂s, and ηΩ = −∂ lnΩ−1/∂s

define the dynamic critical exponent as well as possible fixed points of the model.

η = 16
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Anomalous dimensions (continued)
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Fixed points and dynamic scaling regimes

Single β-function characterizes the dynamic properties of the non-Gaussian FP associated to

the second order phase transition:

βκ = κ (1 − κ)(ηΩ (κ) − η + ηE )

It will depend implicity on the fixed point values of the couplings, the number of field components,

and dimensionality of the system. Zeros of βκ capture the dynamic critical behavior (fixed points)

and we find multiple solutions describing to different dynamic universality classes.



Dynamic universality classes for Model C

Weak scaling region (I): κ = 0 and γ , 0

Strong scaling region (II): 0 < κ < 1 and γ , 0

z = 2 − ηE = zE

Anomalous diffusion region (III): κ = 1 and γ , 0

Decoupled scaling region (IV): κ = 0 and γ = 0



Critical dynamics for relativistic field theories

Coming back to the 2 + 1-dimensional relativistic scalar theory, we see that in fact the scaling

behavior should match that of Model A: z = 2.16 (d = 2).

How does that fit with the scaling result z = 2.0 ± 0.1?

Need to revisit classical-statistical simulations which is currently in progress.

In general it is necessary to consider the relativistic scalar theory and determine the appropriate

low-energy dynamics. This is work currently in progress.



Questions


