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Motivation

* Events at LHC in
proton proton
collisions are tricky

e Parton Distributions
 Hard

* Multiple Interactions
* Radiation

* Hadronization

In many cases the inclusive cross sections are perturbatively calculable

Parton Shower is a Monte-Carlo generator that allows to calculate the
cross sections at the most exclusive level (limited only to leading Log)



What does parton shower do?

Markov process with probabilities to:
1

T'shower ™~

* Knock a parton out of the proton (PDF) L
: - L. 1
e Collinear splittings (radiation) Tooft ™ o

e Hadronization

Parton Shower includes
resummation of Sudakov
logarithms

In last decade Effective Field Theory Cﬁ 6?%0
methods allowed for precise E%\
predictions using factorization and

RG evolution




Soft Collinear Effective Theory

| /MJ Bauer, Fleming, Luke, Pirjol, Stewart, (00-01)

1/Q

® Clear separation of scales between
hard emission, collinear splittings and
soft radiation

® |n SCET the small parameter A
describes how close to the jet axis the
collinear emissions occur

A-|

E
A

A ® Power counting of SCET requires
W, Q couplings between collinear quarks,

collinear gluons, and soft gluons
Enly Sn2, Ani,An2
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Sudakov logarithms have been understood to high
level of accuracy using SCET



Regge behavior in QCD

* Consider forward scattering amplitude (tree level):

n ! T Pn ~~ ()‘2717)‘)

n pﬁN(laAzaA)
- 2 2
s= (pn+pa)" >t=q

The momentum transfer falls into the Glauber region (outside of SCET)

¢ = Pn —Pn ~ (A2, A2, 0)



Regge behavior in QCD

* Forward scattering at one loop

Box (s channel) Box (t channel) Box (u channel), suppressed
P1 p3 P1 p1 — 1 P3 b1 ps3
l l
P2 P4 D2 P4 b2 P4
g S(1 =y —=y2)

. g S(1=x;—xy =y —y) ﬁ(t)zz/dyldyZZ_
Mbox _ g—/d dxrdvd 1 2 1 2 167z [m )’Iyzt]
e T er | TR s - yiyat = mP (1= (e + ) O+ 02) P . |

“an) CaP B m[(L g, )+ m?

1 1
M= = =)L n(=s) + < In(s)| =7 7800

One-loop correction to Regge scattering is purely imaginary
Thus, it must arise from on-shell intermediate states



Regge behavior in QCD

* Forward scattering at N loops  poikinghorne, 1963

P1 N 1123:1)14'(1
Strong ordering
<G| < ] < L | < <1yl
>0 ->0>0 > >
P2 Pi=p2—q Donoghue, Wyler, 2010

Summation of ladder graphs leads to Regge behavior:

-

p" (1)

: lnns+..._>aosa+ﬁ(t>_|_....,
n.

00
MQCD ~ CloSa E
n=0



Our Goal

(+2) py p,+q (+2)

(-2) p, (-2) p,-q

Our goal is to understand the leading Regge behavior
from effective theory point of view

w |

In QCD resummation of ladder diagrams leads to: e ~ (56 n(—5))"

In EFT what are the degrees of freedom that reproduce
such a behavior ? (Glauber gluons?)

Ultimate goal is to understand the Regge behavior on
same grounds as Sudakov resummation



Regge behavior from Method Of Regions

With J. Donoghue, B. EI-Menoufi arXiv:1405.1731 (PRD)



One loop box graph

We study Regge behavior on the example of toy scalar gb?’ theory

1 g 3 P1 P3
5258;4(133”45—5(15 > > >
[
P2 P4
2 > > >
s >m-,t
: ¢ x)+]
ay _ ing*p(1) ) = G ™ =1

Maocep = ’

2
S ;((t):\/l—4%>l.

The massive box graph, including the crossed box, evaluated at equal and
finite masses



Method of regions

Beneke, Smirnov, 1997
Jantzen arXiv: 1111.2589 (a review)

Method of regions is a powerful method to analyze multi-
loop integrals

When there is a hierarchy of scales in the problem, such as
s>>m?, t, etc, the loop integral can be represented as
power series

Each term in the series can be found by expanding the
integrand in the corresponding momentum region

By recovering all leading order regions we recover the
asymptotic behavior

The expanded loop integrals in practice are much easier to
evaluate



Full theory
P1 m P3
[l yMm m
D2 o
> rﬁ >

Power counting

s>> t,m?

MLy = (i) 41/ i ! ! + !
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The collinear region is leading order. Much easier to compute



Leading Regions

P1 p3
> @ > L >
X
l Y A
X P2 P4
Collins, Soper, Sterman, 1983-1986 0 > >

Beneke, Smirnov, 1997

* n-collinear ()\27 1, A) (pinched) SCET
* n-collinear (1, )\2, A) (pinched)

» Glauber (A%, A%, \) (not pinched)

e Soft (A, A, A)  (not pinched)

e Ultrasoft (sub-leading for massive box)




SCET, vs SCET,

p_ CI,:O — CL:1

p
A A ::.:'
\ \n-coll & n-coll.:..:":: \Q
pz ~ Qz :.:.:,.-’:: p2 -~ Qz
SCET, SCET,
Peoit = (A2, A%, A?) Psoft = (A, A, A)

ultrasoft soft



IVIodes of SCET,

1 (off sheII) D3
(off sheII)
MY =MW = mY My = M 4 M = M= M
n 7 QCD* SCET n/n QCD-

Combining box and crossed box regulates
the light-cone divergence

Adding the two collinear graphs gets the
answer off by factor of 2

In the method of regions one has to
account for overlap between them

ing*p(t)

1
ME)()?D - P



Conceptual problem

p1 p3 . 2
> > > (1) o lﬂ'g ﬂ(t)
Mocp =———,

Smirnov uses analytic regulator and also finds the correct Regge limit

Both Smirnov and our SCET, with mass as a regulator suffer from the
same problem (unitarity)

The fact that overlaps play role hints that the true region responsible
for Regge behavior is hiding inside these regions

This motivates us to consider one more mode, the Glauber...

[~ (A%, 2%, 0)



Modes of SCET, with Glauber mode

P1

o~
e — —<— -9
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(on-shell)

(1) (1) (1) box (1) (1)
1 1 1 1 1 — n + g —_ —

e ) W W) " )
- Mﬁ/G + Mn/ﬁ/G =My = MQCD'

In SCET; we again reproduce the QCD result, but now we
have allowed a physical interpretation that the true
momentum region to give imaginary part is the Glauber
mode

Interpretation: zero-bin substructed true collinear mode
does not contribute to the imaginary part

Thus with our regulator and the Glauber mode, we
resolved the conceptual problem with unitarity

Using the analytic regulator does not allow this, because
the Glauber contribution vanishes in Dim. Reg.



Modes of SCET, with Glauber mode

P1

? @
|
|
SR +overlap — 0
IZN l N D4
(on-shell) o m
ORVIORWIO M _ W Miler, = M + MY + Mo = M) - ML)
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(1) (M) @) A1)
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In SCET; we again reproduce the QCD result, but now we
have allowed a physical interpretation that the true
momentum region to give imaginary part is the Glauber
mode

Interpretation: zero-bin substructed true collinear mode
does not contribute to the imaginary part

Thus with our regulator and the Glauber mode, we
resolved the conceptual problem with unitarity

Using the analytic regulator does not allow this, because
the Glauber contribution vanishes in Dim. Reg.



Two-loop ladder: full theory

1 p1—h p3

D2 po + Uy D4

We simplify the two loop graph by directly taking the imaginary cut
using Cutkosky rule:

616 47 4 5+[<P1 - 11)2 - m2]5+[(ll - 12)2 - m2]5+[(p2 + 12)2 - mz]
d*1,d*l, ,

@ _ !
MMt =4 (i =m?) (B =m?)((li + q)* = m?)((l, + q)* = m?)

In the high energy limit s>>m?, t we get:

ng*p*(t)
S

ImM g():D ~ Ins.

Based on what we have learned from the one-loop calculation we only consider the
relevant modes of SCET, that leave the intermediate states on-shell



Two-loop ladder: mode expansion

D1 P3 P1 P3

S S S
> > > > f > ® >

S~
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P4 D2 Pa

Only two leading graphs in SCET that have the intermediate states on-shell

M2 — 9 ar oy O l(CID (s = 10) = AL [(I7 = 13)I7 = Apld.[Vsly = A))0(s + 1)
I = s [ @t (I = A0 (=) (0} + )5~ A,)(~As,) |
In the high energy limit we get that this graph reproduces the full theory behavior

ng*p* (1)
S

Im/\/l,(fg ~ Ins.

Adding the two graphs and taking the overlap into account matches the full theory:

2 .o . . ..
ImMCgr, = Im(ME + M) = My ) = ImMgéD for t=0 verified including the finite terms



General Picture
QCD SCET SCFETeq
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General Picture

By keeping only the mutual multi-overlap of N leading region (Regge mode)

ng*B(t) () In 5)™!
s (N=1)! °

(N)
ImMnnG/nntzﬁ//Gﬁﬁ T

We reproduce the correct Regge behavior in QCD (to all orders)

p (1)

: lnns+..._)aosa+ﬂ(t)+....,
n.

00
MQCD ~ Cl()Sa E
n=0

We identified the corresponding momentum regions that give us the ladder sum, with
on-shell intermediate states

Lots of overlapping regions which we trace down to



Other Literature

* In QCD literature the Regge behavior is
considered in numerous papers, including
some textbooks: either derived from ladder
graphs summation or Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation (1976-1978).

* In SCET community exploration just started

BFKL equation derived in
S. Fleming, 1404.5672 (PLB) SCET,, with Glauber gluons using rapidity RG
As a result the leading Regge behavior recovered

for QCD



SCET with Glaubers (SCET )



Gyulassy-VWang model
Gyulassy, Wang, 94

® The medium is modeled with a finite number of
scattering centers with static Debye-screened
potential

N
— Z (q; ) = 27 (q Z e T*(R) @ T"(n)

n=1

4o

T
® The momentum scaling of the
exchange gluon is that of the
Glauber gluon: q()\z7 )\27 )\)



Lagrangian of SCETg
The SCET Lagrangian contains everything :)

LSCET(gnaAnaAS) - En lan + ZJDL ZJDL] gn + LYM(A A )

1

EYM(ATU A ) = gtr { [ZD? + gAg Q) ZDV + gATVL,q’] } + EG_F. ,
1

cor 10 = e 0 A5

Ler (LCG(b)) = —tr{b Ar 2

iD= i0" + g(A¥ + AF+ AL

All we need in order to derive all interactions between collinear(and soft)
particles with Glaubers is the scaling rule for the vector potential

covariant gauge A’ X ()\4, A\ >\3)
Anti-collinear source of Glaubers

lisht- K 2
Idilbi, Majumder, 08 ghcone gavge A oc (A%,0,4)



Lagrangian of SCETg

GO, Vitev, 2011

—i(p—p'+)x [ & ,a 77£ UV, abc c — TV,a
£G (€n, Ana 77) — Z ¢ R (gnﬂ?/ngAG §§n’P o nggAG (A%p,)y (Anap))\ nFS’ Ui AMV(q)

p,p’,q

® Our Glauber Lagrangian is invariant under the gauge symmetries
of SCET  £a (¢n A m) = L6 (Wign Ba(An),n) = L6 (xns Bas )

® We will use the static source and three gauge choices:

® covariant(Ag,Ac)

® |ight-cone(Ag,Ac) and

® hybrid(A."=0, covariant(Ag)) (used in GLV calculations)



Jet Quenching from SCET .

Kang, Lashof-Regas, GO, Saad, Vitev, 2014

oaa(pr)
Raalpr) =
( ) <Ncoll>0pp (pT)
d{fl(jg) - O[S(;QQ) /Zl dziz;/ {Pqﬁqg(z/,Q)fq (E’Q) + Pgﬁqq(zl Q)fg (g Q)}
o) _ @) [ p s (5Q) + i Dy (500) )
dj;gl(lj’QQ) - a5(7?2) /Z1 dzZ’/{Pg%gg(Z/,Q)fg (57@)

"’Pqﬂgq(zlv Q) (fq (3,7

Real emission
calculated in
GO, Vitev, 2011
using SCET
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* Using SCET; and DGLAP
equations, we improved
the previous state-of-the
art energy loss predictions
for jet quenching



SCETg: effective theory for Drell-Yan

Bowdin, Brodsky, Lepage, (81)

: Collins, Soper, Sterman, (82)
p wp\\ Bauer’ Lange’ GO( I O)

o [T Glauber gluon: g(A°, 2%, )
-

® An explicit calculation shows that for consistency of effective
theory, SCET should be expanded with Glauber modes to
describe Drell-Yan process

® |t would be interesting to add the spectator interactions into
the factorization analysis of Drell-Yan. SCET s would be the
consistent EFT for purpose.



Conclusions

We derived the Regge behavior for scalar QCD from method of
regions

The method of regions (EFT) with only collinear modes (SCET) gives
the correct QCD result, however imaginary part comes from off-shell
modes (sub-regions)

Using SCET+Glauber, also reproduces the correct QCD behavior, but

has the advantage that the imaginary part comes from the true on-
shell region

At one and two loops we explicitly recovered the leading Regge
behavior and we made a simple conjecture at an arbitrary order

More work is needed for consistent EFT formulation of Regge physics.

Having a further developed SCET with Glauber gluons will be
beneficial for applications in heavy ion and hadron collisions, including
Regge physics



