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Mo/va/on	
  

1. Incoming hadron   (gray bubbles)

➡ Parton distribution function

2. Hard part of the process 

➡ Matrix element calculation at LO, 
NLO, ... level

3. Radiation  (red graphs)

➡ Parton shower calculation

➡ Matching to the hard part

4. Underlying event   (blue graphs)

➡ Models based on multiple 
interaction

5. Hardonization  (green bubbles)

➡ Universal models 

The description of an event is a bit tricky...
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•  Events	
  at	
  LHC	
  in	
  
proton	
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collisions	
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In	
  many	
  cases	
  the	
  inclusive	
  cross	
  sec/ons	
  are	
  perturba/vely	
  calculable	
  
	
  
Parton	
  Shower	
  is	
  a	
  Monte-­‐Carlo	
  generator	
  that	
  allows	
  to	
  calculate	
  the	
  
cross	
  sec/ons	
  at	
  the	
  most	
  exclusive	
  level	
  (limited	
  only	
  to	
  leading	
  Log)	
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➡ Parton distribution function

2. Hard part of the process 

➡ Matrix element calculation at LO, 
NLO, ... level

3. Radiation  (red graphs)
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4. Underlying event   (blue graphs)

➡ Models based on multiple 
interaction
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Parton	
  Shower	
  includes	
  
resumma/on	
  of	
  Sudakov	
  
logarithms	
  
In	
  last	
  decade	
  Effec/ve	
  Field	
  Theory	
  
methods	
  allowed	
  for	
  precise	
  
predic/ons	
  using	
  factoriza/on	
  and	
  
RG	
  evolu/on	
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• Clear separation of scales between 
hard emission, collinear splittings and 
soft radiation

• In SCET the small parameter λ 
describes how close to the jet axis the 
collinear emissions occur

• Power counting of SCET requires 
couplings between collinear quarks, 
collinear gluons, and soft gluons
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′
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FIG. 15: Cross sections for beam thrust at the LHC with Ecm = 7TeV at Y = 0 and Q = 100GeV (left column) and Q = 1TeV
(right column). Top row: The cross section differential in τB at NLO, LL, and NLL. Middle and bottom rows: The cross section
integrated up to τB ≤ exp(−2ycut

B ) at LO, NLO, LL, and NLL.

calculable pieces from the nonperturbative parton distri-
bution functions, and is a key ingredient for the resum-
mation of large logarithms that occur due to phase-space
restrictions. The most well-known factorization theo-
rem for inclusive Drell-Yan applies for generic momen-
tum fractions, but the hadronic final state is completely
summed over, only subject to overall momentum con-
servation. This requires an inclusive experimental mea-

surement, with only mild restrictions on the final state.
On the other hand, threshold factorization theorems for
Drell-Yan or dijet production take into account phase-
space restrictions and resum resulting large logarithms,
but they are only valid in the limit x → 1. Thus each of
these cases satisfies only one of the above experimental
conditions.

In this paper we have studied factorization for generic x
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Figure 11: Scale variation of quark and gluon jet shapes. For a = 0 and R = 0.7, we display
the variation of the NLL resummed jet shape distributions with the hard scale µH , the jet cuto↵
scale µ⇤

S , the unmeasured jet scales µ2,3
J , the measured jet scale µ1

J(⌧a), and the measured soft scale
µS(⌧a). In each case we vary the scale between 1/2 and 2 times the natural choices in Eq. (6.44),
except for the measured soft scale, which we varied between 1 and 2 times the choice in Eq. (6.44).
We keep the factorization scale fixed at the default hard scale given by Eq. (7.2), µ = !i.
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Sudakov	
  logarithms	
  have	
  been	
  understood	
  to	
  high	
  
level	
  of	
  accuracy	
  using	
  SCET	
  



Regge	
  behavior	
  in	
  QCD	
  

•  Consider	
  forward	
  scaeering	
  amplitude	
  (tree	
  level):	
  

The	
  momentum	
  transfer	
  falls	
  into	
  the	
  Glauber	
  region	
  (outside	
  of	
  SCET)	
  

n
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n

n̄
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s = (pn + pn̄)
2 � t = q2
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Regge	
  behavior	
  in	
  QCD	
  

•  Forward	
  scaeering	
  at	
  one	
  loop	
  
	
  

78 region which the collinear mode shares with Glauber
79 exchange. By removing the overlap, the box can be
80 reformulated in a version of SCET including the Glauber
81 mode, SCETG, in which case the horizontal rung is in fact
82 an on-shell (collinear) mode. The need to include Glauber
83 modes in SCET has been shown by [10] (see also [11]);
84 they have been shown to be important in the context of jets
85 in a medium [12], and the relevance of these modes for
86 Regge physics was first shown in [13].
87 The plan of this paper involves a brief overview of Regge
88 behavior in Sec. 2, and of SCET kinematics in Sec. 3. Then
89 in Sec. 4 (along with Appendix A) we provide a detailed

90treatment of the box diagram, paying particular attention to
91the overlap regions between modes and demonstrating the
92importance of the Glauber mode. Section 5 treats the two-
93loop ladder graph and shows how to count the modes and
94match to the full theory. This is continued to higher orders
95in Secs. 6 and 7. A conclusion summarizes what has been
96accomplished. While this paper was being finalized, an
97important related work by Fleming was released [14], and
98we also discuss the relation of our work to his in the
99conclusion. Three appendices provide some relevant tech-

100nical details.

101II. REGGE BEHAVIOR IN FIELD THEORY

102For the purposes of this paper we will refer to Regge
103behavior as the dependence of the scattering amplitude on a
104power of the center-of-mass energy

MQCD ∼ sαðtÞ ð2Þ

105in the limit s → ∞, t fixed. The Regge exponent αðtÞ is
106dynamically generated through loop diagrams. At each
107order in perturbation theory, the loops generate logs, but in
108this kinematic region the logs exponentiate into a power. In
109general one finds

MQCD ∼ a0sa
X∞

n¼0

βnðtÞ
n!

lnnsþ % % % → a0saþβðtÞ þ % % % :;

ð3Þ

110where we have allowed an extra possible overall factor of sa

111to the amplitude. (In our example a ¼ −1.) It is this
112conversion of logs into powers that makes the phenomenon
113important for phenomenology. In real QCD one sees a
114variety of Regge exponents depending on the quantum
115numbers, including the Pomeron with αð0Þ ∼ 1.
116Polkinghorne [8] was the first to show how this behavior
117emerges in a field theory, using a massive scalar field with
118the ϕ3 interaction of Eq. (1). Although the ladder diagrams
119cannot be calculated completely, the leading high energy
120behavior emerges from a corner of the Feynman parameter
121integration and this corner can be analyzed and summed.
122For example, the direct box diagram shown in Fig. 3 after
123momentum integration becomes

F2:1 FIG. 2. The cut ladder graphs.

F1:1 FIG. 1. The ladder graphs.

F3:1 FIG. 3. One-loop Feynman diagrams with boxlike topology. We only show one internal momentum enough to clarify our conventions.
F3:2 The graphs represent the (s, t), (u, t), and (s, u) channels respectively. The last graph is suppressed by t=s compared to the first two.
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iMbox
QCD ¼ i

g4

16π2

Z
dx1dx2dy1dy2

δð1 − x1 − x2 − y1 − y2Þ
½x1x2sþ y1y2t −m2ð1 − ðx1 þ x2Þðy1 þ y2ÞÞ&2

ð4Þ

125 where x1, x2 are the Feynman parameters associated with
126 the horizontal lines (rungs) in the diagram and y1, y2 are
127 associated with the vertical lines (legs). It is clear from this
128 that the amplitude falls as 1=s2 at large s, except for the
129 region of integrations where x1 and/or x2 are close to zero.
130 Polkinghorne noted that when only one of x1;2 is small, the
131 integrated amplitude falls as 1=s, but when both of the
132 parameters are small there is an extra logarithmic factor of
133 lnð−sÞ. In this corner the residual dependence on x1;2 can
134 be neglected and the result is

iMbox
QCD ¼ ig2βðtÞ 1

−s
lnð−sÞ ð5Þ

135 with s ¼ sþ i0 and

βðtÞ ¼ g2

16π2

Z
dy1dy2

δð1 − y1 − y2Þ
½m2 − y1y2t&

¼ g2

4π

Z
d2l⊥
ð2πÞ2

1

½l2⊥ þm2&½ðl⊥ þ q⊥Þ2 þm2&
: ð6Þ

136 Note that the exponent depends on the transverse momenta
137 only—the longitudinal components have been integrated
138 out. The crossed-box diagram is obtained by the substitu-
139 tion s → u, and since s ≫ −t,m2 we have u ≈ −s. The sum
140 of the box and crossed box then becomes

Mboxþcrossed
QCD ¼ −g2βðtÞ

!
1

s
lnð−sÞ þ 1

−s
lnðsÞ

"
¼ iπ

s
g2βðtÞ:

ð7Þ

141 This is the n ¼ 0 term in the Regge sum of Eq. (3). In this
142 case, we see that the result emerges entirely from the s-
143 channel cut with both horizontal rungs being on shell.
144 The rest of the ladder sum is done in the same way. The
145 important region in the integration is the corner where all
146 the Feynman parameters associated with the horizontal
147 rungs becomes small. In this corner the correct lnnð−sÞ
148 behavior arises and the sum yields the Regge form with
149 amplitude and exponent being given by

a0 ¼
iπ
s
g2βðtÞ and αðtÞ ¼ −1þ βðtÞ: ð8Þ

150151 In real QCD, the situation is somewhat more compli-
152 cated, but follows the same kinematic rules. Within
153 perturbative QCD, this has been demonstrated by
154 Balitsky, Fadin, Kuraev, and Lipatov (BFKL) [15] and
155 in related work [16].

156III. KINEMATICS AND NOTATION

157We consider the binary scattering of particles with
158momenta p1 and p2, while the outgoing particles carry
159momenta p3 and p4. The momentum transfer is defined as
160q ¼ p3 − p1. We work in the center-of-mass frame and use
161light-cone coordinates requiring the introduction of two
162independent null vectors which read

nμ ¼ ð1; 0; 0; 1Þ; n̄μ ¼ ð1; 0; 0;−1Þ; n · n̄ ¼ 2: ð9Þ

163Hence, four momenta are decomposed as follows:

pμ ¼ pþ n̄μ

2
þ p− n

μ

2
þ p⊥; pþ ≡ p · n;

p− ≡ p · n̄; p⊥ · n ¼ p⊥ · n̄ ¼ 0: ð10Þ

164For later convenience, we note the following identity:

d4l ¼ 1

2
dlþdl−d2l⊥: ð11Þ

165166Regge physics is concerned with the kinematical limit

s → ∞; −t; m2 ≪ s ð12Þ

167where s ¼ ðp1 þ p2Þ2 and t ¼ q2 are the usual
168Mandelstam variables. The small parameter required for
169employing the method of regions (SCET) then reads

λ ¼
ffiffiffiffiffi
−t
s

r
: ð13Þ

170All external particles are treated as massless and on shell, in
171particular p2

i ¼ 0. Note that the scattering of two high
172energy on-shell particles, one in the n direction and the
173other in the n̄ always involves an exchange in the so-called
174Glauber region. This can be readily seen from the on-shell
175conditions

p2
3 ¼ 0 ¼ ðp1 þ qÞ2 ¼ 0þ p−

1 q
þ þ t

p2
4 ¼ 0 ¼ ðp2 − qÞ2 ¼ 0 − pþ

2 q
− þ t: ð14Þ

176Because p−
1 , pþ

2 ∼
ffiffiffi
s

p
, this forces q to scale as q ∼

177
ffiffiffi
s

p
ðλ2; λ2; λÞ in the ðþ;−;⊥Þ directions. The Glauber

178region is characterized by having momentum dominantly
179in the transverse direction. The overall momentum transfer
180of Regge exchange is Glauber-like. In addition, one can
181include modes in the mode expansion which correspond to
182Glauber kinematics. Such modes are always off shell; thus,

5
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s → ∞; −t; m2 ≪ s ð12Þ

167where s ¼ ðp1 þ p2Þ2 and t ¼ q2 are the usual
168Mandelstam variables. The small parameter required for
169employing the method of regions (SCET) then reads

λ ¼
ffiffiffiffiffi
−t
s

r
: ð13Þ

170All external particles are treated as massless and on shell, in
171particular p2

i ¼ 0. Note that the scattering of two high
172energy on-shell particles, one in the n direction and the
173other in the n̄ always involves an exchange in the so-called
174Glauber region. This can be readily seen from the on-shell
175conditions

p2
3 ¼ 0 ¼ ðp1 þ qÞ2 ¼ 0þ p−

1 q
þ þ t

p2
4 ¼ 0 ¼ ðp2 − qÞ2 ¼ 0 − pþ

2 q
− þ t: ð14Þ

176Because p−
1 , pþ

2 ∼
ffiffiffi
s

p
, this forces q to scale as q ∼

177
ffiffiffi
s

p
ðλ2; λ2; λÞ in the ðþ;−;⊥Þ directions. The Glauber

178region is characterized by having momentum dominantly
179in the transverse direction. The overall momentum transfer
180of Regge exchange is Glauber-like. In addition, one can
181include modes in the mode expansion which correspond to
182Glauber kinematics. Such modes are always off shell; thus,
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iMbox
QCD ¼ i

g4

16π2

Z
dx1dx2dy1dy2

δð1 − x1 − x2 − y1 − y2Þ
½x1x2sþ y1y2t −m2ð1 − ðx1 þ x2Þðy1 þ y2ÞÞ&2

ð4Þ
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lnð−sÞ ð5Þ
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βðtÞ ¼ g2

16π2

Z
dy1dy2

δð1 − y1 − y2Þ
½m2 − y1y2t&

¼ g2

4π

Z
d2l⊥
ð2πÞ2

1

½l2⊥ þm2&½ðl⊥ þ q⊥Þ2 þm2&
: ð6Þ
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Mboxþcrossed
QCD ¼ −g2βðtÞ

!
1

s
lnð−sÞ þ 1

−s
lnðsÞ

"
¼ iπ

s
g2βðtÞ:

ð7Þ
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78 region which the collinear mode shares with Glauber
79 exchange. By removing the overlap, the box can be
80 reformulated in a version of SCET including the Glauber
81 mode, SCETG, in which case the horizontal rung is in fact
82 an on-shell (collinear) mode. The need to include Glauber
83 modes in SCET has been shown by [10] (see also [11]);
84 they have been shown to be important in the context of jets
85 in a medium [12], and the relevance of these modes for
86 Regge physics was first shown in [13].
87 The plan of this paper involves a brief overview of Regge
88 behavior in Sec. 2, and of SCET kinematics in Sec. 3. Then
89 in Sec. 4 (along with Appendix A) we provide a detailed

90treatment of the box diagram, paying particular attention to
91the overlap regions between modes and demonstrating the
92importance of the Glauber mode. Section 5 treats the two-
93loop ladder graph and shows how to count the modes and
94match to the full theory. This is continued to higher orders
95in Secs. 6 and 7. A conclusion summarizes what has been
96accomplished. While this paper was being finalized, an
97important related work by Fleming was released [14], and
98we also discuss the relation of our work to his in the
99conclusion. Three appendices provide some relevant tech-

100nical details.

101II. REGGE BEHAVIOR IN FIELD THEORY

102For the purposes of this paper we will refer to Regge
103behavior as the dependence of the scattering amplitude on a
104power of the center-of-mass energy

MQCD ∼ sαðtÞ ð2Þ

105in the limit s → ∞, t fixed. The Regge exponent αðtÞ is
106dynamically generated through loop diagrams. At each
107order in perturbation theory, the loops generate logs, but in
108this kinematic region the logs exponentiate into a power. In
109general one finds

MQCD ∼ a0sa
X∞

n¼0

βnðtÞ
n!

lnnsþ % % % → a0saþβðtÞ þ % % % :;

ð3Þ

110where we have allowed an extra possible overall factor of sa

111to the amplitude. (In our example a ¼ −1.) It is this
112conversion of logs into powers that makes the phenomenon
113important for phenomenology. In real QCD one sees a
114variety of Regge exponents depending on the quantum
115numbers, including the Pomeron with αð0Þ ∼ 1.
116Polkinghorne [8] was the first to show how this behavior
117emerges in a field theory, using a massive scalar field with
118the ϕ3 interaction of Eq. (1). Although the ladder diagrams
119cannot be calculated completely, the leading high energy
120behavior emerges from a corner of the Feynman parameter
121integration and this corner can be analyzed and summed.
122For example, the direct box diagram shown in Fig. 3 after
123momentum integration becomes

F2:1 FIG. 2. The cut ladder graphs.

F1:1 FIG. 1. The ladder graphs.

F3:1 FIG. 3. One-loop Feynman diagrams with boxlike topology. We only show one internal momentum enough to clarify our conventions.
F3:2 The graphs represent the (s, t), (u, t), and (s, u) channels respectively. The last graph is suppressed by t=s compared to the first two.
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549 VII. GENERALIZATION TO ALL ORDERS

550 From our explicit calculations at one- and two-loop
551 orders it is easy to guess the answer for higher orders.
552 We first guess the answer and then prove it further
553 below. We expect that the true momentum region for the
554 Regge kinematics at N-loop order is N leading graphs
555 which are subset of SCETG graphs with on-shell inter-
556 mediate states. These are the graphs with a number of
557 n-collinear gluons in the loops, a single Glauber gluon,
558 and after it a number of n̄-collinear momentum in the
559 loops

MðNÞ
n…nG; MðNÞ

n…nGn̄…n̄; …MðNÞ
Gn̄…n̄: ð55Þ

560 Each of these amplitudes includes, by our definition,
561 both the direct box and the crossed box. Each of these
562 amplitudes reproduces the leading Regge behavior as
563 s → ∞ and also any overlap of any subset of these
564 amplitudes reproduces the Regge behavior. Thus, once
565 one combines all the modes, the answer is identical to
566 only including a single mode which is the overlap of all
567 N momentum regions.
568 In order to prove the above statements we use the
569 strong ordering derivation to show that the arbitrary graph
570 in the method of regions gives an identical result as a
571 single loop integral in QCD. Consider, for example, an

572 MðNÞ
Gn̄…n̄ graph. The loop momenta, li where i ¼ 1…N,

573 scale as ðlþi ; l−i ; li⊥Þ ∼ ðλ2; λ2; λÞ; ð1; λ2; λÞ;…ð1; λ2; λÞ.
574 Thus, the plus momentum satisfies lþ1 ∼ λ2 ≪ lþ2 ∼ % % % ∼
575 lþk ∼ lþkþ1 ∼ % % % ∼ lþN ∼ 1 and l−1 ∼l−2 ∼ %%%∼l−k ∼l−kþ1∼ %%%∼
576 l−N∼λ2. Clearly the strong ordering region is a subregion
577 of this region, since for the strong ordered region we
578 have6

jlþ1 j ≪ jlþ2 j % % % ≪ jlþk j ≪ jlþkþ1j ≪ % % % ≪ jlþN j;
l−1 ≫ l−2 % % % ≫ l−k ≫ l−kþ1 ≫ % % % ≫ l−N: ð56Þ

579 Thus, repeating the usual strong ordering region deriva-
580 tion we would presumably get the same answer as in the

581 full theory if we started to work on the graph MðNÞ
Gn̄…n̄.

582 Similarly we can show that every other relevant graph is
583 identical to one another, since they all contain the strong
584 ordering region as their sub-region.
585 An analogous statement holds for any of the loop
586 integrals involving Glauber gluons. These subsets of graphs
587 are the only ones out of entire set that allow on-shell
588 intermediate states. Our observation that the multi-overlap

589of these regions plays an important role has a simple
590interpretation. At N-loop order the single isolated momen-
591tum region that gives the leading Regge behavior is
592the multi-overlap of all on-shell modes n…nG=n…
593nGn̄…n̄=…=Gn̄…n̄. It is easy to verify by a straightfor-
594ward calculation similar to what we did at three-loop
595order

ImMðNÞ
n…nG=n…nGn̄…n̄=…=Gn̄…n̄ ¼

πg2βðtÞ
s

ðβðtÞ ln sÞN−1

ðN − 1Þ!
;

ð57Þ

596which reproduces the QCD Regge limit. In this
597section we showed that all leading modes have a strong
598ordering momentum region as their subregion, thus
599including only the multiple overlap of all these
600modes is sufficient and no surprise leads to the correct
601answer.

602VIII. CONCLUSIONS

603We have shown how one obtains Regge physics using
604the mode expansion of SCET. In the effective field theory,
605the key contributions come from overlap regions which
606must be carefully treated. The simplest and most consistent
607approach includes the Glauber modes of the effective field
608theory SCETG.
609In the scalar theory that we discuss, the one-loop
610contribution that starts the Regge ladder sum comes from
611the imaginary part of the box diagram. The box diagram
612can be reproduced in an effective theory which includes
613only the hard and collinear modes. However, this comes at
614the cost of seemingly violating the unitarity property of
615field theory in that the imaginary part of the amplitude
616arises from a hard intermediate state which the effective
617theory says is far off shell. This result tells us that in fact
618the contribution comes from an overlap region with an on-
619shell mode. By including the exchange of Glauber modes
620in the description, we can again recover the full box
621diagram via the mode expansion. In this case, after
622accounting for the overlap regions, the imaginary part
623of the amplitude is properly obtained from the t-channel
624Glauber exchange with s-channel on-shell collin-
625ear modes.
626At higher order the deconstruction of the various
627overlap regions continues, with a final result that is simple
628to state. Collinear modes provide many of the legs in the
629ladder sum, and all of the s-channel on-shell states.
630However, at any given loop order, a Glauber mode is
631responsible for the connection between the collinear n and
632n̄ modes. We have explicitly demonstrated this at two
633loops, and provided an argument that this continues for all
634higher loops.

6Note, that in this expression all the “þ” components are
negative and all the “−” components are positive. This is imposed
by the theta functions in the expression for the QCD cut graph.
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183 in the effective theory language they can be treated as an
184 effective potential.
185 There is an array of possibilities in the choice of infrared
186 regulators for our calculation. Among them is the analytic
187 regulator used in [4], off shellness of external momenta
188 p2

i ≠ 0, or internal masses mi ≠ 0. If one uses off shellness
189 as a regulator with vanishing internal masses within the
190 loop, one finds that the modes in the effective theory or
191 method of regions are not regularized in four dimensions.
192 Hence, off shellness by itself fails to regulate the infrared
193 behavior of the theory and one needs to add a dimensional
194 regulator in order to regulate the infrared divergences.
195 In this paper we regulate the infrared through the use of
196 an internal mass for each internal line in any graph, keeping
197 the external four-vectors on shell with zero invariant mass.
198 This fully controls the infrared region. For the leading high
199 energy behavior the answer is the same if one uses massive
200 external four-vectors with the same m2 as in the original
201 Polkinghorne calculation.
202 In the remainder of this paper we study how Regge
203 behavior in the toy scalar theory arises in the effective theory.
204 It has to be noted however that this paper is lacking a
205 complete consistent effective theory derivation of Regge
206 behavior for QCD. This understanding is very important and
207 is beyond the scope of this paper.What this paper contains is
208 the method of region derivation of Regge behavior and is
209 supposed to pave the way into a consistent EFT formulation
210 of Regge physics. Themodes that we consider in themethod
211 of regions are those of SCET and SCETG.
212 For concreteness we present the Lagrangians of effective
213 theories for the toy scalar QCD theory. Pulling out the label
214 momentum from the scalar field ϕðxÞ ¼

P
~pe

−i ~p·xϕn;p,
215 where ~p ¼ ð0; n̄ · p; p⊥Þ, we get2

LSCET ¼
X

n

LðnÞ
c þ Ls þ Lcs;

LðnÞ
c ¼

X

~p

1

2
½j∂μϕn;pj2 −m2jϕn;pj2&

þ g
3!

X

~p1; ~p2; ~p3

e−ið ~p1− ~p2− ~p3Þ·xϕn;p1
ϕ†
n;p2

ϕ†
n;p3

: ð15Þ

216 We only specify the collinear sector of SCET because for
217 reasons that are spelled out in the next section we do not
218 consider graphs with soft gluons. The Lagrangian of
219 SCETG has an additional four-point interaction where
220 the Glauber gluon is integrated out:

LSCETG
¼ LSCET −

X

~p1; ~p2; ~p3; ~p4

g2e−ið ~p1þ ~p2− ~p3− ~p4Þ·x

ðp1⊥ − p3⊥Þ2

× ϕn;p1
ϕn̄;p2

ϕ†
n;p3

ϕ†
n̄;p4

: ð16Þ
221

222In what follows we identify the contributions to the
223Regge behavior using the method of regions by keeping
224modes of either of the two effective theories mentioned
225above. We emphasize that SCETand SCETG in our case are
226understood in the sense of the toy theory and should not be
227confused with effective theories for real QCD like Ref. [1]
228and an effective theory for jets in medium [12].

229IV. ONE-LOOP BOX

230In this section we calculate the one-loop Oðg4Þ con-
231tribution to Regge physics of the binary scattering
232explained above. We start off by computing the appropriate
233graphs in the full theory and then repeat the calculation
234using the method of regions to isolate the modes respon-
235sible for Regge behavior. The graphs at the one-loop level
236which concern Regge physics are the ones with boxlike
237topology shown in Fig. 3. In fact, the last graph has a
238suppressed leading behavior (by a power of s) compared to
239the first two and thus we neglect this graph all together. To
240fix the nomenclature, we refer to the first graph as the
241“direct box” and the second as the “crossed box.”

242A. The box diagram in the full theory

243The full Regge amplitude is simply obtained by sum-
244ming the two graphs to find

Mð1Þ
QCD¼ð−iÞg4 1

2

Z
d4l
ð2πÞ4

1

ðl2−m2þ i0ÞððlþqÞ2−m2þ i0Þ

×
!

1

ðl−p1Þ2−m2þ i0
þ 1

ðlþp3Þ2−m2þ i0

"

×
!

1

ðlþp2Þ2−m2þ i0
þ 1

ðl−p4Þ2−m2þ i0

"
:

ð17Þ

245In the above expression we combined the graphs after
246symmetrizing each under the interchange l↔ − ðlþ qÞ,
247and hence the factor of half. This does not prove useful for
248the full theory calculation but considerably simplifies the
249calculation in the method of regions. The intermediate steps
250of the computation are rather complicated and we move the
251details to Appendix A but the final result in the limit
252s ≫ −t, m2 takes the simple form

Mð1Þ
QCD ¼ iπg2βðtÞ

s
; ð18Þ

253where βðtÞ is defined in Eq. (6) and explicitly reads

βðtÞ ¼ g2

8π2ð−tÞχðtÞ
ln
χðtÞ þ 1

χðtÞ − 1
; and

χðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
> 1: ð19Þ2For real field ϕðxÞ we have ϕn;p ≡ ϕ†

n;−p.
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183 in the effective theory language they can be treated as an
184 effective potential.
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202 In the remainder of this paper we study how Regge
203 behavior in the toy scalar theory arises in the effective theory.
204 It has to be noted however that this paper is lacking a
205 complete consistent effective theory derivation of Regge
206 behavior for QCD. This understanding is very important and
207 is beyond the scope of this paper.What this paper contains is
208 the method of region derivation of Regge behavior and is
209 supposed to pave the way into a consistent EFT formulation
210 of Regge physics. Themodes that we consider in themethod
211 of regions are those of SCET and SCETG.
212 For concreteness we present the Lagrangians of effective
213 theories for the toy scalar QCD theory. Pulling out the label
214 momentum from the scalar field ϕðxÞ ¼

P
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−i ~p·xϕn;p,
215 where ~p ¼ ð0; n̄ · p; p⊥Þ, we get2

LSCET ¼
X

n

LðnÞ
c þ Ls þ Lcs;

LðnÞ
c ¼

X

~p

1

2
½j∂μϕn;pj2 −m2jϕn;pj2&

þ g
3!

X

~p1; ~p2; ~p3

e−ið ~p1− ~p2− ~p3Þ·xϕn;p1
ϕ†
n;p2

ϕ†
n;p3

: ð15Þ

216 We only specify the collinear sector of SCET because for
217 reasons that are spelled out in the next section we do not
218 consider graphs with soft gluons. The Lagrangian of
219 SCETG has an additional four-point interaction where
220 the Glauber gluon is integrated out:
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X

~p1; ~p2; ~p3; ~p4

g2e−ið ~p1þ ~p2− ~p3− ~p4Þ·x

ðp1⊥ − p3⊥Þ2

× ϕn;p1
ϕn̄;p2

ϕ†
n;p3

ϕ†
n̄;p4

: ð16Þ
221

222In what follows we identify the contributions to the
223Regge behavior using the method of regions by keeping
224modes of either of the two effective theories mentioned
225above. We emphasize that SCETand SCETG in our case are
226understood in the sense of the toy theory and should not be
227confused with effective theories for real QCD like Ref. [1]
228and an effective theory for jets in medium [12].

229IV. ONE-LOOP BOX

230In this section we calculate the one-loop Oðg4Þ con-
231tribution to Regge physics of the binary scattering
232explained above. We start off by computing the appropriate
233graphs in the full theory and then repeat the calculation
234using the method of regions to isolate the modes respon-
235sible for Regge behavior. The graphs at the one-loop level
236which concern Regge physics are the ones with boxlike
237topology shown in Fig. 3. In fact, the last graph has a
238suppressed leading behavior (by a power of s) compared to
239the first two and thus we neglect this graph all together. To
240fix the nomenclature, we refer to the first graph as the
241“direct box” and the second as the “crossed box.”

242A. The box diagram in the full theory

243The full Regge amplitude is simply obtained by sum-
244ming the two graphs to find
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245In the above expression we combined the graphs after
246symmetrizing each under the interchange l↔ − ðlþ qÞ,
247and hence the factor of half. This does not prove useful for
248the full theory calculation but considerably simplifies the
249calculation in the method of regions. The intermediate steps
250of the computation are rather complicated and we move the
251details to Appendix A but the final result in the limit
252s ≫ −t, m2 takes the simple form

Mð1Þ
QCD ¼ iπg2βðtÞ

s
; ð18Þ

253where βðtÞ is defined in Eq. (6) and explicitly reads

βðtÞ ¼ g2

8π2ð−tÞχðtÞ
ln
χðtÞ þ 1

χðtÞ − 1
; and

χðtÞ ¼
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12 I. INTRODUCTION

13 One indication that our effective field theory for high
14 energy QCD is incomplete is that it presently does not
15 reproduce Regge phenomena. This is dangerous because
16 Regge behavior can convert logarithms in a scattering
17 amplitude into powers of the energy. In this paper we find
18 Regge behavior in a related effective field theory, and
19 explore the modes that are needed to produce it.
20 The soft collinear effective theory (SCET) [1] is an
21 effective field theory for QCD that is relevant for
22 describing the dynamics of highly energetic quarks
23 and gluons. In order to obtain the Lagrangian of
24 SCET one divides a single field into modes correspond-
25 ing to distinct kinematic behavior and keeps leading
26 terms consistent with the power counting. Using these
27 modes individually, one can reconstruct the behavior of
28 the Feynman diagrams of the full theory. Much of the
29 insight into which modes to include has been obtained
30 from original work by Collins, Soper, and Sterman on
31 all-order factorization theorem proofs [2] and from the
32 method of regions [3]. In this method one starts with the
33 QCD Lagrangian and writes down an amplitude to a
34 given order in the perturbation theory and expands it in
35 one of the momentum regions that are identified using
36 the pinch technique and power counting. Overviews with
37 further references can be found in the book by Smirnov
38 [4] or the review by Jantzen [5]. Sometimes the indi-
39 vidual modes are not fully kinematically distinct—there
40 are overlap regions where more than one mode is active
41 [6]. These must be carefully dealt with. It will turn out
42 that the Regge physics lives in these overlap regions and
43 involves a complicated interplay of regions and overlaps.
44 The most consistent and efficient way to describe it uses
45 SCET including Glauber modes (SCETG), as will be
46 described below.

47The simplified model is that of a scalar field with a
48trilinear interaction, which can be considered a scalar
49model for QCD.1

L ¼ 1

2
∂μϕ∂μϕ −

g
3!
ϕ3: ð1Þ

50The kinematic region where Regge behavior emerges
51is s → ∞, t fixed. In such theory, the leading Regge
52behavior appears from summing an infinite set of ladder
53graphs, shown in Fig. 1 along with crossed ladder dia-
54grams. The original calculation is due to Polkinghorne
55[8,9]. It is also very useful to know that we can reconstruct
56the Regge behavior of the ladder sum from consideration of
57the s-channel discontinuities in the diagrams, where the
58relevant discontinuities are those where the cut lines are the
59rungs of the ladder, as in Fig. 2. In the cut analysis, it is
60required that all the ladder rungs correspond to on-shell
61modes, so this fact needs to be accommodated in the mode
62expansion.
63Our analysis will start with the mode expansion for the
64scalar box diagram, the first diagram in Fig. 3. Along the
65way we will resolve a paradox that exists in the usual
66method of regions treatment of the box. In [4] Smirnov
67demonstrates how the box diagram can be reconstructed by
68the use of collinear modes for the vertical legs of the ladder,
69although an extra “analytic regularization” in which the
70propagators are modified is required. Indeed, we will also
71find this result with our regularization. However, when the
72legs are collinear modes, at least one of the horizontal rungs
73of the box must be a hard mode which is far of shell. (We
74will review the terminology and kinematics in more detail
75below.) By unitarity, the off-shell mode should not be able
76to produce the imaginary part of the box diagram. However,
77we will show that the imaginary part arises from an overlap

*donoghue@physics.umass.edu
†bmahmoud@physics.umass.edu
‡ovanesyan@umass.edu

1For more on the relation of this model to Regge behavior in
QCD, see the book by Forshaw and Ross [7]. In this paper wewill
refer to the full theory as QCD and the effective theory alternately
as SCET without Glauber modes or SCETG with them.
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78 region which the collinear mode shares with Glauber
79 exchange. By removing the overlap, the box can be
80 reformulated in a version of SCET including the Glauber
81 mode, SCETG, in which case the horizontal rung is in fact
82 an on-shell (collinear) mode. The need to include Glauber
83 modes in SCET has been shown by [10] (see also [11]);
84 they have been shown to be important in the context of jets
85 in a medium [12], and the relevance of these modes for
86 Regge physics was first shown in [13].
87 The plan of this paper involves a brief overview of Regge
88 behavior in Sec. 2, and of SCET kinematics in Sec. 3. Then
89 in Sec. 4 (along with Appendix A) we provide a detailed

90treatment of the box diagram, paying particular attention to
91the overlap regions between modes and demonstrating the
92importance of the Glauber mode. Section 5 treats the two-
93loop ladder graph and shows how to count the modes and
94match to the full theory. This is continued to higher orders
95in Secs. 6 and 7. A conclusion summarizes what has been
96accomplished. While this paper was being finalized, an
97important related work by Fleming was released [14], and
98we also discuss the relation of our work to his in the
99conclusion. Three appendices provide some relevant tech-

100nical details.

101II. REGGE BEHAVIOR IN FIELD THEORY

102For the purposes of this paper we will refer to Regge
103behavior as the dependence of the scattering amplitude on a
104power of the center-of-mass energy

MQCD ∼ sαðtÞ ð2Þ

105in the limit s → ∞, t fixed. The Regge exponent αðtÞ is
106dynamically generated through loop diagrams. At each
107order in perturbation theory, the loops generate logs, but in
108this kinematic region the logs exponentiate into a power. In
109general one finds

MQCD ∼ a0sa
X∞

n¼0

βnðtÞ
n!

lnnsþ % % % → a0saþβðtÞ þ % % % :;

ð3Þ

110where we have allowed an extra possible overall factor of sa

111to the amplitude. (In our example a ¼ −1.) It is this
112conversion of logs into powers that makes the phenomenon
113important for phenomenology. In real QCD one sees a
114variety of Regge exponents depending on the quantum
115numbers, including the Pomeron with αð0Þ ∼ 1.
116Polkinghorne [8] was the first to show how this behavior
117emerges in a field theory, using a massive scalar field with
118the ϕ3 interaction of Eq. (1). Although the ladder diagrams
119cannot be calculated completely, the leading high energy
120behavior emerges from a corner of the Feynman parameter
121integration and this corner can be analyzed and summed.
122For example, the direct box diagram shown in Fig. 3 after
123momentum integration becomes

F2:1 FIG. 2. The cut ladder graphs.

F1:1 FIG. 1. The ladder graphs.

F3:1 FIG. 3. One-loop Feynman diagrams with boxlike topology. We only show one internal momentum enough to clarify our conventions.
F3:2 The graphs represent the (s, t), (u, t), and (s, u) channels respectively. The last graph is suppressed by t=s compared to the first two.
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In the remainder of this paper we study how Regge behavior in the toy scalar theory arises in the e↵ective theory. It
has to be noted however that this paper is lacking a complete consistent e↵ective theory derivation of Regge behavior
for QCD. This understanding is very important and is beyond the scope of this paper. What this paper contains is
method of region derivation of Regge behavior and is supposed to pave the way into a consistent EFT formulation of
Regge physics. The modes that we consider in the method of regions are those of SCET and SCET

G

.
For concreteness we present the Lagrangians of e↵ective theories for the toy scalar QCD theory. Pulling out the

label momentum from the scalar field �(x) =
P

p̃

e�ip̃·x
�

n,p

, where p̃ = (n̄·p, p?, 0), we get 2

L
SCET

=
X

n

L(n)

c

+ L
s

+ L
cs

,

L(n)

c

=
X

p̃

1

2

h
(@

µ

�

n,p

)2 �m

2

�

2

n,p

i
+

g

3!

X

p̃

1

,p̃

2

,p̃

3

e�i(p̃

1

�p̃

2

�p̃

3

)·x
�

n,p

1

�

†
n,p

2

�

†
n,p

3

. (15)

We only specify the collinear sector of SCET because for reasons that are spelled out in the next section we do
not consider graphs with soft gluons. The Lagrangian of SCET

G

has an additional four-point interaction where the
Glauber gluon is integrated out:

L
SCET

G

= L
SCET

�
X

p̃

1

,p̃

2

,p̃

3

,p̃

4

g

2 e�i(p̃

1

+p̃

2

�p̃

3

�p̃

4

)·x

(p
1? � p

3?)2
�

n,p

1

�

n̄,p

2

�

†
n,p

3

�

†
n̄,p

4

. (16)

In what follows we identify the contributions to the Regge behavior using method of regions by keeping modes of
either of the two e↵ective theories mentioned above. We emphasize that SCET and SCET

G

in our case are understood
in the sense of the toy theory and should not be confused with e↵ective theories for real QCD like Ref.[1] and an
e↵ective theory for jets in medium [12].

4. ONE-LOOP BOX

In this section we calculate the one-loop O(g4) contribution to Regge physics of the binary scattering explained
above. We start o↵ by computing the appropriate graphs in the full theory and then repeat the calculation using
the method of regions to isolate the modes responsible for Regge behavior. The graphs at the one-loop level which
concern Regge physics are the ones with box-like topology shown in Figure 3. In fact, the last graph has a suppressed
leading behavior (by a power of s) compared to the first two and thus we neglect this graph all together. To fix the
nomenclature, we refer to the first graph as the ’direct-box’ and the second as ’crossed-box’.

The box diagram in the full theory

The full Regge amplitude is simply obtained by summing the two graphs to find

M(1)

QCD

= (�i)g4
1

2

Z
d4l

(2⇡)4
1

(l2 �m

2 + i0) ((l + q)2 �m

2 + i0)

✓
1

(l � p

1

)2 �m

2 + i0
+

1

(l + p

3

)2 �m

2 + i0

◆

⇥
✓

1

(l + p

2

)2 �m

2 + i0
+

1

(l � p

4

)2 �m

2 + i0

◆
. (17)

In the above expression we combined the graphs after symmetrizing each under the interchange l $ �(l + q), and
hence the factor of half. This does not prove useful for the full theory calculation but considerably simplifies the
calculation in the method of regions. The intermediate steps of the computation are rather complicated and we move
the details to Appendix A but the final result in the limit s � �t,m

2 takes the simple form

M(1)

QCD

=
i⇡g

2

�(t)

s

, (18)

where �(t) is defined in Eq. (6) and explicitly reads

�(t) =
g

2

8⇡2 (�t)�(t)
ln

�(t) + 1

�(t)� 1
, and �(t) =

r
1� 4m2

t

> 1. (19)

2
For real field �(x) we have �n,p ⌘ �

†
n,�p .

15

In the Regge limit, u ⇡ �s and hence

Mcross

QCD

=
g

4

16⇡2

[I
1

(�s, t,m

2) + I

2

(�s, t,m

2) + I

1

(t,�s,m

2) + I

2

(t,�s,m

2)] . (A8)

Upon summing both amplitudes, all terms cancel except the dilogarithms whose arguments approach infinity in the
Regge limit. Those must be expanded and handled carefully, with the final result being

M
QCD

=
ig

4

8⇡st�(t)
ln

✓
�(t)� 1

�(t) + 1

◆
. (A9)

2. Modes in the EFT

Expanding the one-loop box integral in the n-collinear region we get

M(1)

n

= (�i)g4
1

2

Z
d4l

(2⇡)4
1

(l2 �m

2 + i0) (l�(l + q)+ � (l? + q?)2 �m

2 + i0)

⇥
✓

1

(l� �p
s)l+ � l2? �m

2 + i0
+

1

(l� +
p
s)(l + q)+ � (l? + q?)2 �m

2 + i0

◆

⇥
✓

1p
sl

� + i0
+

1

�p
sl

� + i0

◆
. (A10)

This integral nicely collapses upon using the following identity

1

x+ i✏

� 1

x� i✏

= �2i⇡ �(x) . (A11)

The n̄-collinear region yields an identical result, and we find7

M(1)

n

= M(1)

n̄

= M(1)

QCD

. (A12)

The overlap contribution of these two modes is non-vanishing and must be taken into account in order to correctly
reproduce the full theory result

M(1)
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= (�i)g4
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sl

� + i0

⌘
⇥
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+
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�p
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+ + i0

⌘
, (A13)

with the final result

M(1)

n/n̄

= M(1)

QCD

. (A14)

In Soft Collinear E↵ective Theory with Glauber modes an additional graph appears where the loop momentum is
that of Glauber scaling l(�2

,�

2

,�). The box integral in that momentum region reads
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. (A15)

7
Note that from using the Eq. (A11) it becomes clear that the true leading momentum region that contributes to this loop integral

comes from a subregion where l

�
= 0. This is precisely the Glauber region, which is the subregion of the collinear region. Thus the

final answer which is imaginary arises from an on-shell intermediate mode, consistently with the unitarity. We thank our referee for

emphasizing this point to us.

6

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

FIG. 4: ’Direct-box’ diagrams in SCETG. The box represents an o↵-shell propagator and the dashed lines refer to Glauber
modes. The momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.

To arrive at this expression we have kept all the finite terms in the expansion t/s,m

2

/s and only dropped power-
suppressed ones.

Below we concentrate on the method of regions for the calculation of the Regge behavior using the modes of two
e↵ective theories SCET and SCET

G

. Usually the power counting and pinch analysis are used to determine which
modes to include into the method of region. For the massive one-loop QCD box integral such analysis identifies
only two regions: collinear and anti-collinear. The ultrasoft mode (�2

,�

2

,�

2) is power suppressed and the soft mode
(�,�,�) is leading order but is not pinched. As is well-known the Glauber mode is not pinched for the box topology.
This mode only becomes pinched in the pentagon topology. Based on these facts we first consider only the two
collinear graphs, which we refer to as the modes of SCET (in this case all leading modes of SCET

I

� EFT with
collinear and ultrasoft particles). As will be mentioned later, there is a paradox in reproducing the Regge behavior
with only these two modes, because of the imaginary part of the combined result and unitarity issues. As we will see
below, including the Glauber mode resolves this issue, and our second EFT of choice is SCET

G

, where again only
leading graphs of SCET

I

are considered plus Glauber region.
It should be noted that Fleming [14] considered modes of SCET

II

with Glaubers and also reproduced the Regge
behavior in QCD. Thus, it seems that the correct QCD behavior in the Regge kinematics can be recovered from
either of SCET

I

and SCET
II

e↵ective theories. In fact we will argue that the momentum region relevant to the
leading Regge contribution, or Regge mode, is a multi-overlap region of all leading modes that contribute. We link
this to strong ordering, and perhaps it also is at the core of the reason why either of e↵ective theories gives the
correct result. More detail about this connection is beyond the scope of the current paper.

The box diagram in SCET without Glauber modes

Using the modes of SCET we get two leading graphs, when the loop momentum is either n-collinear or n̄-
collinear. An ultra-soft loop momentum (�2

,�

2

,�

2) on the other hand is power suppressed because m

2 scales as �2.
With some details in Appendix A we find that both n and n̄ collinear graphs shown in Figure 4 are equal

M(1)

n

= M(1)

n̄

= M(1)

QCD

. (20)

Hence, summing both contributions gives a result twice as big as the full theory. It turns out that the overlap
contribution of these two modes is non-vanishing and must be taken into account in order to correctly reproduce the
full theory result

M(1)

n/n̄

= M(1)

QCD

. (21)

We derive a master formula in Appendix C that takes into account correct subtraction terms when combining N

momentum regions in the method of regions. Applying it for two modes, we reproduce the QCD result

M(1)

SCET

= M(1)

n

+M(1)

n̄

�M(1)

n/n̄

= M(1)

QCD

. (22)

We have found that using the modes of SCET we recover the full QCD loop integral. This should not be surprising
since for the box integral the pinch analysis leads to no Glauber pinch [10, 17], i.e. modes of SCET are su�cient.
However there is something strange with this result. Indeed the full answer for the QCD integral (defined by including
the crossed box graph) is purely imaginary, see Eq. (18). This imaginary part can be obtained from the discontinuity
of the direct box integral. This discontinuity comes from on-shell intermediate states, however both collinear graphs
M

n

and M
n̄

have one propagator far o↵-shell. Thus, the imaginary part should come from sub-region of these two
modes and is contained in a di↵erent kinematic region. In the book [4] the one-loop box integral with the Regge
kinematics was calculated using analytic regulator. It was found that the box integral is recovered from two collinear
graphs, similarly to our finding in this section with our regularization. Note, that with their regulator the overlap
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Upon summing both amplitudes, all terms cancel except the dilogarithms whose arguments approach infinity in the
Regge limit. Those must be expanded and handled carefully, with the final result being
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2. Modes in the EFT

Expanding the one-loop box integral in the n-collinear region we get

M(1)

n

= (�i)g4
1

2

Z
d4l

(2⇡)4
1

(l2 �m

2 + i0) (l�(l + q)+ � (l? + q?)2 �m

2 + i0)

⇥
✓

1

(l� �p
s)l+ � l2? �m

2 + i0
+

1

(l� +
p
s)(l + q)+ � (l? + q?)2 �m

2 + i0

◆

⇥
✓

1p
sl

� + i0
+

1

�p
sl

� + i0

◆
. (A10)

This integral nicely collapses upon using the following identity
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The n̄-collinear region yields an identical result, and we find7
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The overlap contribution of these two modes is non-vanishing and must be taken into account in order to correctly
reproduce the full theory result

M(1)

n/n̄

= (�i)g4
1

2

Z
d4l

(2⇡)4
1

(l2 �m

2 + i0) (l+l� � (l? + q?)2 �m

2 + i0)
⇣ 1

�p
sl

� + i0
+

1p
sl

� + i0

⌘
⇥
⇣ 1p

sl

+ + i0
+

1

�p
sl

+ + i0

⌘
, (A13)

with the final result

M(1)
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. (A14)

In Soft Collinear E↵ective Theory with Glauber modes an additional graph appears where the loop momentum is
that of Glauber scaling l(�2

,�
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,�). The box integral in that momentum region reads
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7
Note that from using the Eq. (A11) it becomes clear that the true leading momentum region that contributes to this loop integral

comes from a subregion where l

�
= 0. This is precisely the Glauber region, which is the subregion of the collinear region. Thus the

final answer which is imaginary arises from an on-shell intermediate mode, consistently with the unitarity. We thank our referee for

emphasizing this point to us.
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78 region which the collinear mode shares with Glauber
79 exchange. By removing the overlap, the box can be
80 reformulated in a version of SCET including the Glauber
81 mode, SCETG, in which case the horizontal rung is in fact
82 an on-shell (collinear) mode. The need to include Glauber
83 modes in SCET has been shown by [10] (see also [11]);
84 they have been shown to be important in the context of jets
85 in a medium [12], and the relevance of these modes for
86 Regge physics was first shown in [13].
87 The plan of this paper involves a brief overview of Regge
88 behavior in Sec. 2, and of SCET kinematics in Sec. 3. Then
89 in Sec. 4 (along with Appendix A) we provide a detailed

90treatment of the box diagram, paying particular attention to
91the overlap regions between modes and demonstrating the
92importance of the Glauber mode. Section 5 treats the two-
93loop ladder graph and shows how to count the modes and
94match to the full theory. This is continued to higher orders
95in Secs. 6 and 7. A conclusion summarizes what has been
96accomplished. While this paper was being finalized, an
97important related work by Fleming was released [14], and
98we also discuss the relation of our work to his in the
99conclusion. Three appendices provide some relevant tech-

100nical details.

101II. REGGE BEHAVIOR IN FIELD THEORY

102For the purposes of this paper we will refer to Regge
103behavior as the dependence of the scattering amplitude on a
104power of the center-of-mass energy

MQCD ∼ sαðtÞ ð2Þ

105in the limit s → ∞, t fixed. The Regge exponent αðtÞ is
106dynamically generated through loop diagrams. At each
107order in perturbation theory, the loops generate logs, but in
108this kinematic region the logs exponentiate into a power. In
109general one finds

MQCD ∼ a0sa
X∞

n¼0

βnðtÞ
n!

lnnsþ % % % → a0saþβðtÞ þ % % % :;

ð3Þ

110where we have allowed an extra possible overall factor of sa

111to the amplitude. (In our example a ¼ −1.) It is this
112conversion of logs into powers that makes the phenomenon
113important for phenomenology. In real QCD one sees a
114variety of Regge exponents depending on the quantum
115numbers, including the Pomeron with αð0Þ ∼ 1.
116Polkinghorne [8] was the first to show how this behavior
117emerges in a field theory, using a massive scalar field with
118the ϕ3 interaction of Eq. (1). Although the ladder diagrams
119cannot be calculated completely, the leading high energy
120behavior emerges from a corner of the Feynman parameter
121integration and this corner can be analyzed and summed.
122For example, the direct box diagram shown in Fig. 3 after
123momentum integration becomes

F2:1 FIG. 2. The cut ladder graphs.

F1:1 FIG. 1. The ladder graphs.

F3:1 FIG. 3. One-loop Feynman diagrams with boxlike topology. We only show one internal momentum enough to clarify our conventions.
F3:2 The graphs represent the (s, t), (u, t), and (s, u) channels respectively. The last graph is suppressed by t=s compared to the first two.
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Figure 5: Scaling of SCET modes appropriate for angularities �a, a = 0, 1. For a = 0, the collinear
modes dominating the �a distribution have virtualities p2 � (Q�)2, parametrically separated from
the soft scale p2 � (Q�2)2. These scalings correspond to the e⇧ective theory known as SCETI . For
a = 1, the collinear modes in the distribution have typical p2 � (Q�2)2, coinciding with the soft
scale. The collinear and soft modes are no longer separated by virtuality but instead by rapidity.
These scalings correspond to SCETII . Collinear modes dominating angularity distributions for
other values of a between 0 and 1 live at scales intermediate between these limits.

the angularity distribution have not actually been separated. In SCETI , soft, collinear,
and hard modes can be distingushed by their well-separated virtualities, namely, p2

S �
(Q�2)2, p2

J � (Q�1/(1�a/2))2, and p2
H � Q2. At a = 1, the virtualities of soft and collinear

modes contributing to the �a distribution coincide, and SCETI must be matched onto
SCETII where collinear and soft modes both have virtualities p2 � (Q�2)2. In this case,
the modes are no longer distinguished by their virtuality, but instead by their rapidity, as
illustrated in Fig. 5. Ref. [28] suggested a modified version of the factorization theorem
Eq. (1.1) in which soft and jet functions are defined either with cuto⇧s on rapidity or in
dimensional regularization with the scale µ separated into two light-cone scales µ±, which
must satisfy µ+µ� = µ2, with each of the two jet functions depending on one of these
scales, and the soft function on both. However, in the present paper we do not pursue such
a strategy and limit our analysis to angularities with strictly a < 1. For arbitrary values of
a, the virtuality of collinear modes p2

J � (Q�1/(1�a/2))2 suggests an interpretation as the
modes of an e⇧ective theory “SCET1+a.”5 Since our analysis and calculations utilize the
framework of SCETI , we may expect non-negligible corrections to our results to arise for
values of a less than but approaching 1, and for reasonable criteria for when corrections
are negligible, our analysis is reliable for values of a . 1/2 [23].

4. NLL Resummation of Logarithms and Fixed-order Matching to QCD

The fixed-order NLO cross-section, obtained by using the fixed-order expressions for the

5We would like to thank M. Strassler for suggesting this terminology to CL.
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254 To arrive at this expression we have kept all the finite terms
255 in the expansion t=s, m2=s and only dropped power-
256 suppressed ones.
257 Below we concentrate on the method of regions for the
258 calculation of the Regge behavior using the modes of two
259 effective theories, SCET and SCETG. Usually the power
260 counting and pinch analysis are used to determine which
261 modes to include into the method of region. For the massive
262 one-loop QCD box integral such analysis identifies only
263 two regions: collinear and anticollinear. The ultrasoft mode
264 ðλ2; λ2; λ2Þ is power suppressed and the soft mode ðλ; λ; λÞ
265 is leading order but is not pinched. As is well known, the
266 Glauber mode is not pinched for the box topology. This
267 mode only becomes pinched in the pentagon topology.
268 Based on these facts we first consider only the two collinear
269 graphs, which we refer to as the modes of SCET (in this
270 case all leading modes of SCETI-EFT with collinear and
271 ultrasoft particles). As will be mentioned later, there is a
272 paradox in reproducing the Regge behavior with only these
273 two modes, because of the imaginary part of the combined
274 result and unitarity issues. As we will see below, including
275 the Glauber mode resolves this issue, and our second EFT
276 of choice is SCETG, where again only leading graphs of
277 SCETI are considered plus Glauber region.

278 B. The box diagram in SCET without Glauber modes

279 Using the modes of SCET we get two leading graphs,
280 when the loop momentum is either n collinear or n̄
281 collinear. An ultrasoft loop momentum ðλ2; λ2; λ2Þ on the
282 other hand is power suppressed because m2 scales as λ2.
283 With some details in Appendix A, we find that both n- and
284 n̄-collinear graphs shown in Fig. 4 are equal

Mð1Þ
n ¼ Mð1Þ

n̄ ¼ Mð1Þ
QCD: ð20Þ

285 Hence, summing both contributions gives a result twice as
286 big as the full theory. It turns out that the overlap
287 contribution of these two modes is nonvanishing and must
288 be taken into account in order to correctly reproduce the full
289 theory result

Mð1Þ
n=n̄ ¼ Mð1Þ

QCD: ð21Þ

290 We derive a master formula in Appendix C that takes into
291 account correct subtraction terms when combining N

292momentum regions in the method of regions. Applying
293it for two modes, we reproduce the QCD result

Mð1Þ
SCET ¼ Mð1Þ

n þMð1Þ
n̄ −Mð1Þ

n=n̄ ¼ Mð1Þ
QCD: ð22Þ

294We have found that using the modes of SCET we recover
295the full QCD loop integral. This should not be surprising
296since for the box integral the pinch analysis leads to no
297Glauber pinch [10,17], i.e., modes of SCET are sufficient.
298However, there is something strange with this result. Indeed
299the full answer for the QCD integral (defined by including
300the crossed-box graph) is purely imaginary; see Eq. (18).
301This imaginary part can be obtained from the discontinuity
302of the direct box integral. This discontinuity comes from
303on-shell intermediate states; however, both collinear graphs
304Mn and Mn̄ have one propagator far off shell. Thus, the
305imaginary part should come from the subregion of these
306two modes and is contained in a different kinematic region.
307In the book [4], the one-loop box integral with the Regge
308kinematics was calculated using an analytic regulator. It
309was found that the box integral is recovered from two
310collinear graphs, similarly to our finding in this section with
311our regularization. Note, that with their regulator the
312overlap contribution vanishes and does not play role.
313Thus, the same comment that the imaginary part of the
314box graph is coming from a different kinematic region and
315is outside of collinear graphs holds for the calculation in
316[4]. Below we repeat the one-loop calculation with our
317regulator by including all the modes of SCETG with their
318overlaps and this paradox is resolved.

319C. The problem of the imaginary part

320The imaginary part of the collinear amplitudes hints that
321we are missing insight into Regge physics. The imaginary
322part of the full theory should not be expected to come from
323collinear exchange. In simple words, this is because the
324collinear graphs indeed have one intermediate state off
325shell. To elucidate this point, we directly employ Cutkosky
326rule to compute the imaginary part of the direct-box graph.
327Hence,

ImMð1Þ
QCD¼

g4

8π2

Z
d4l

δþððp1−lÞ2−m2Þδþððlþp2Þ2−m2Þ
ðl2−m2ÞððlþqÞ2−m2Þ

ð23Þ

F4:1 FIG. 4. Direct-box diagrams in SCETG. The box represents an off-shell propagator and the dashed lines refer to Glauber modes. The
F4:2 momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.
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295the full QCD loop integral. This should not be surprising
296since for the box integral the pinch analysis leads to no
297Glauber pinch [10,17], i.e., modes of SCET are sufficient.
298However, there is something strange with this result. Indeed
299the full answer for the QCD integral (defined by including
300the crossed-box graph) is purely imaginary; see Eq. (18).
301This imaginary part can be obtained from the discontinuity
302of the direct box integral. This discontinuity comes from
303on-shell intermediate states; however, both collinear graphs
304Mn and Mn̄ have one propagator far off shell. Thus, the
305imaginary part should come from the subregion of these
306two modes and is contained in a different kinematic region.
307In the book [4], the one-loop box integral with the Regge
308kinematics was calculated using an analytic regulator. It
309was found that the box integral is recovered from two
310collinear graphs, similarly to our finding in this section with
311our regularization. Note, that with their regulator the
312overlap contribution vanishes and does not play role.
313Thus, the same comment that the imaginary part of the
314box graph is coming from a different kinematic region and
315is outside of collinear graphs holds for the calculation in
316[4]. Below we repeat the one-loop calculation with our
317regulator by including all the modes of SCETG with their
318overlaps and this paradox is resolved.

319C. The problem of the imaginary part

320The imaginary part of the collinear amplitudes hints that
321we are missing insight into Regge physics. The imaginary
322part of the full theory should not be expected to come from
323collinear exchange. In simple words, this is because the
324collinear graphs indeed have one intermediate state off
325shell. To elucidate this point, we directly employ Cutkosky
326rule to compute the imaginary part of the direct-box graph.
327Hence,
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F4:1 FIG. 4. Direct-box diagrams in SCETG. The box represents an off-shell propagator and the dashed lines refer to Glauber modes. The
F4:2 momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.
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274 result and unitarity issues. As we will see below, including
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276 of choice is SCETG, where again only leading graphs of
277 SCETI are considered plus Glauber region.
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282 other hand is power suppressed because m2 scales as λ2.
283 With some details in Appendix A, we find that both n- and
284 n̄-collinear graphs shown in Fig. 4 are equal
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291 account correct subtraction terms when combining N

292momentum regions in the method of regions. Applying
293it for two modes, we reproduce the QCD result

Mð1Þ
SCET ¼ Mð1Þ

n þMð1Þ
n̄ −Mð1Þ

n=n̄ ¼ Mð1Þ
QCD: ð22Þ

294We have found that using the modes of SCET we recover
295the full QCD loop integral. This should not be surprising
296since for the box integral the pinch analysis leads to no
297Glauber pinch [10,17], i.e., modes of SCET are sufficient.
298However, there is something strange with this result. Indeed
299the full answer for the QCD integral (defined by including
300the crossed-box graph) is purely imaginary; see Eq. (18).
301This imaginary part can be obtained from the discontinuity
302of the direct box integral. This discontinuity comes from
303on-shell intermediate states; however, both collinear graphs
304Mn and Mn̄ have one propagator far off shell. Thus, the
305imaginary part should come from the subregion of these
306two modes and is contained in a different kinematic region.
307In the book [4], the one-loop box integral with the Regge
308kinematics was calculated using an analytic regulator. It
309was found that the box integral is recovered from two
310collinear graphs, similarly to our finding in this section with
311our regularization. Note, that with their regulator the
312overlap contribution vanishes and does not play role.
313Thus, the same comment that the imaginary part of the
314box graph is coming from a different kinematic region and
315is outside of collinear graphs holds for the calculation in
316[4]. Below we repeat the one-loop calculation with our
317regulator by including all the modes of SCETG with their
318overlaps and this paradox is resolved.

319C. The problem of the imaginary part

320The imaginary part of the collinear amplitudes hints that
321we are missing insight into Regge physics. The imaginary
322part of the full theory should not be expected to come from
323collinear exchange. In simple words, this is because the
324collinear graphs indeed have one intermediate state off
325shell. To elucidate this point, we directly employ Cutkosky
326rule to compute the imaginary part of the direct-box graph.
327Hence,

ImMð1Þ
QCD¼

g4

8π2

Z
d4l

δþððp1−lÞ2−m2Þδþððlþp2Þ2−m2Þ
ðl2−m2ÞððlþqÞ2−m2Þ

ð23Þ

F4:1 FIG. 4. Direct-box diagrams in SCETG. The box represents an off-shell propagator and the dashed lines refer to Glauber modes. The
F4:2 momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.
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183 in the effective theory language they can be treated as an
184 effective potential.
185 There is an array of possibilities in the choice of infrared
186 regulators for our calculation. Among them is the analytic
187 regulator used in [4], off shellness of external momenta
188 p2

i ≠ 0, or internal masses mi ≠ 0. If one uses off shellness
189 as a regulator with vanishing internal masses within the
190 loop, one finds that the modes in the effective theory or
191 method of regions are not regularized in four dimensions.
192 Hence, off shellness by itself fails to regulate the infrared
193 behavior of the theory and one needs to add a dimensional
194 regulator in order to regulate the infrared divergences.
195 In this paper we regulate the infrared through the use of
196 an internal mass for each internal line in any graph, keeping
197 the external four-vectors on shell with zero invariant mass.
198 This fully controls the infrared region. For the leading high
199 energy behavior the answer is the same if one uses massive
200 external four-vectors with the same m2 as in the original
201 Polkinghorne calculation.
202 In the remainder of this paper we study how Regge
203 behavior in the toy scalar theory arises in the effective theory.
204 It has to be noted however that this paper is lacking a
205 complete consistent effective theory derivation of Regge
206 behavior for QCD. This understanding is very important and
207 is beyond the scope of this paper.What this paper contains is
208 the method of region derivation of Regge behavior and is
209 supposed to pave the way into a consistent EFT formulation
210 of Regge physics. Themodes that we consider in themethod
211 of regions are those of SCET and SCETG.
212 For concreteness we present the Lagrangians of effective
213 theories for the toy scalar QCD theory. Pulling out the label
214 momentum from the scalar field ϕðxÞ ¼

P
~pe

−i ~p·xϕn;p,
215 where ~p ¼ ð0; n̄ · p; p⊥Þ, we get2

LSCET ¼
X

n

LðnÞ
c þ Ls þ Lcs;

LðnÞ
c ¼

X

~p

1

2
½j∂μϕn;pj2 −m2jϕn;pj2&

þ g
3!

X

~p1; ~p2; ~p3

e−ið ~p1− ~p2− ~p3Þ·xϕn;p1
ϕ†
n;p2

ϕ†
n;p3

: ð15Þ

216 We only specify the collinear sector of SCET because for
217 reasons that are spelled out in the next section we do not
218 consider graphs with soft gluons. The Lagrangian of
219 SCETG has an additional four-point interaction where
220 the Glauber gluon is integrated out:

LSCETG
¼ LSCET −

X

~p1; ~p2; ~p3; ~p4

g2e−ið ~p1þ ~p2− ~p3− ~p4Þ·x

ðp1⊥ − p3⊥Þ2

× ϕn;p1
ϕn̄;p2

ϕ†
n;p3

ϕ†
n̄;p4

: ð16Þ
221

222In what follows we identify the contributions to the
223Regge behavior using the method of regions by keeping
224modes of either of the two effective theories mentioned
225above. We emphasize that SCETand SCETG in our case are
226understood in the sense of the toy theory and should not be
227confused with effective theories for real QCD like Ref. [1]
228and an effective theory for jets in medium [12].

229IV. ONE-LOOP BOX

230In this section we calculate the one-loop Oðg4Þ con-
231tribution to Regge physics of the binary scattering
232explained above. We start off by computing the appropriate
233graphs in the full theory and then repeat the calculation
234using the method of regions to isolate the modes respon-
235sible for Regge behavior. The graphs at the one-loop level
236which concern Regge physics are the ones with boxlike
237topology shown in Fig. 3. In fact, the last graph has a
238suppressed leading behavior (by a power of s) compared to
239the first two and thus we neglect this graph all together. To
240fix the nomenclature, we refer to the first graph as the
241“direct box” and the second as the “crossed box.”

242A. The box diagram in the full theory

243The full Regge amplitude is simply obtained by sum-
244ming the two graphs to find

Mð1Þ
QCD¼ð−iÞg4 1

2

Z
d4l
ð2πÞ4

1

ðl2−m2þ i0ÞððlþqÞ2−m2þ i0Þ

×
!

1

ðl−p1Þ2−m2þ i0
þ 1

ðlþp3Þ2−m2þ i0

"

×
!

1

ðlþp2Þ2−m2þ i0
þ 1

ðl−p4Þ2−m2þ i0

"
:

ð17Þ

245In the above expression we combined the graphs after
246symmetrizing each under the interchange l↔ − ðlþ qÞ,
247and hence the factor of half. This does not prove useful for
248the full theory calculation but considerably simplifies the
249calculation in the method of regions. The intermediate steps
250of the computation are rather complicated and we move the
251details to Appendix A but the final result in the limit
252s ≫ −t, m2 takes the simple form

Mð1Þ
QCD ¼ iπg2βðtÞ

s
; ð18Þ

253where βðtÞ is defined in Eq. (6) and explicitly reads

βðtÞ ¼ g2

8π2ð−tÞχðtÞ
ln
χðtÞ þ 1

χðtÞ − 1
; and

χðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
> 1: ð19Þ2For real field ϕðxÞ we have ϕn;p ≡ ϕ†

n;−p.
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FIG. 4: ’Direct-box’ diagrams in SCETG. The box represents an o↵-shell propagator and the dashed lines refer to Glauber
modes. The momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.

To arrive at this expression we have kept all the finite terms in the expansion t/s,m

2

/s and only dropped power-
suppressed ones.

Below we concentrate on the method of regions for the calculation of the Regge behavior using the modes of two
e↵ective theories SCET and SCET

G

. Usually the power counting and pinch analysis are used to determine which
modes to include into the method of region. For the massive one-loop QCD box integral such analysis identifies
only two regions: collinear and anti-collinear. The ultrasoft mode (�2

,�

2

,�

2) is power suppressed and the soft mode
(�,�,�) is leading order but is not pinched. As is well-known the Glauber mode is not pinched for the box topology.
This mode only becomes pinched in the pentagon topology. Based on these facts we first consider only the two
collinear graphs, which we refer to as the modes of SCET (in this case all leading modes of SCET

I

� EFT with
collinear and ultrasoft particles). As will be mentioned later, there is a paradox in reproducing the Regge behavior
with only these two modes, because of the imaginary part of the combined result and unitarity issues. As we will see
below, including the Glauber mode resolves this issue, and our second EFT of choice is SCET

G

, where again only
leading graphs of SCET

I

are considered plus Glauber region.
It should be noted that Fleming [14] considered modes of SCET

II

with Glaubers and also reproduced the Regge
behavior in QCD. Thus, it seems that the correct QCD behavior in the Regge kinematics can be recovered from
either of SCET

I

and SCET
II

e↵ective theories. In fact we will argue that the momentum region relevant to the
leading Regge contribution, or Regge mode, is a multi-overlap region of all leading modes that contribute. We link
this to strong ordering, and perhaps it also is at the core of the reason why either of e↵ective theories gives the
correct result. More detail about this connection is beyond the scope of the current paper.

The box diagram in SCET without Glauber modes

Using the modes of SCET we get two leading graphs, when the loop momentum is either n-collinear or n̄-
collinear. An ultra-soft loop momentum (�2

,�

2

,�

2) on the other hand is power suppressed because m

2 scales as �2.
With some details in Appendix A we find that both n and n̄ collinear graphs shown in Figure 4 are equal

M(1)

n

= M(1)

n̄

= M(1)

QCD

. (20)

Hence, summing both contributions gives a result twice as big as the full theory. It turns out that the overlap
contribution of these two modes is non-vanishing and must be taken into account in order to correctly reproduce the
full theory result

M(1)

n/n̄

= M(1)

QCD

. (21)

We derive a master formula in Appendix C that takes into account correct subtraction terms when combining N

momentum regions in the method of regions. Applying it for two modes, we reproduce the QCD result

M(1)

SCET

= M(1)

n

+M(1)

n̄

�M(1)

n/n̄

= M(1)

QCD

. (22)

We have found that using the modes of SCET we recover the full QCD loop integral. This should not be surprising
since for the box integral the pinch analysis leads to no Glauber pinch [10, 17], i.e. modes of SCET are su�cient.
However there is something strange with this result. Indeed the full answer for the QCD integral (defined by including
the crossed box graph) is purely imaginary, see Eq. (18). This imaginary part can be obtained from the discontinuity
of the direct box integral. This discontinuity comes from on-shell intermediate states, however both collinear graphs
M

n

and M
n̄

have one propagator far o↵-shell. Thus, the imaginary part should come from sub-region of these two
modes and is contained in a di↵erent kinematic region. In the book [4] the one-loop box integral with the Regge
kinematics was calculated using analytic regulator. It was found that the box integral is recovered from two collinear
graphs, similarly to our finding in this section with our regularization. Note, that with their regulator the overlap

183 in the effective theory language they can be treated as an
184 effective potential.
185 There is an array of possibilities in the choice of infrared
186 regulators for our calculation. Among them is the analytic
187 regulator used in [4], off shellness of external momenta
188 p2

i ≠ 0, or internal masses mi ≠ 0. If one uses off shellness
189 as a regulator with vanishing internal masses within the
190 loop, one finds that the modes in the effective theory or
191 method of regions are not regularized in four dimensions.
192 Hence, off shellness by itself fails to regulate the infrared
193 behavior of the theory and one needs to add a dimensional
194 regulator in order to regulate the infrared divergences.
195 In this paper we regulate the infrared through the use of
196 an internal mass for each internal line in any graph, keeping
197 the external four-vectors on shell with zero invariant mass.
198 This fully controls the infrared region. For the leading high
199 energy behavior the answer is the same if one uses massive
200 external four-vectors with the same m2 as in the original
201 Polkinghorne calculation.
202 In the remainder of this paper we study how Regge
203 behavior in the toy scalar theory arises in the effective theory.
204 It has to be noted however that this paper is lacking a
205 complete consistent effective theory derivation of Regge
206 behavior for QCD. This understanding is very important and
207 is beyond the scope of this paper.What this paper contains is
208 the method of region derivation of Regge behavior and is
209 supposed to pave the way into a consistent EFT formulation
210 of Regge physics. Themodes that we consider in themethod
211 of regions are those of SCET and SCETG.
212 For concreteness we present the Lagrangians of effective
213 theories for the toy scalar QCD theory. Pulling out the label
214 momentum from the scalar field ϕðxÞ ¼

P
~pe

−i ~p·xϕn;p,
215 where ~p ¼ ð0; n̄ · p; p⊥Þ, we get2

LSCET ¼
X

n

LðnÞ
c þ Ls þ Lcs;

LðnÞ
c ¼

X

~p

1

2
½j∂μϕn;pj2 −m2jϕn;pj2&

þ g
3!

X

~p1; ~p2; ~p3

e−ið ~p1− ~p2− ~p3Þ·xϕn;p1
ϕ†
n;p2

ϕ†
n;p3

: ð15Þ

216 We only specify the collinear sector of SCET because for
217 reasons that are spelled out in the next section we do not
218 consider graphs with soft gluons. The Lagrangian of
219 SCETG has an additional four-point interaction where
220 the Glauber gluon is integrated out:

LSCETG
¼ LSCET −

X

~p1; ~p2; ~p3; ~p4

g2e−ið ~p1þ ~p2− ~p3− ~p4Þ·x

ðp1⊥ − p3⊥Þ2

× ϕn;p1
ϕn̄;p2

ϕ†
n;p3

ϕ†
n̄;p4

: ð16Þ
221

222In what follows we identify the contributions to the
223Regge behavior using the method of regions by keeping
224modes of either of the two effective theories mentioned
225above. We emphasize that SCETand SCETG in our case are
226understood in the sense of the toy theory and should not be
227confused with effective theories for real QCD like Ref. [1]
228and an effective theory for jets in medium [12].

229IV. ONE-LOOP BOX

230In this section we calculate the one-loop Oðg4Þ con-
231tribution to Regge physics of the binary scattering
232explained above. We start off by computing the appropriate
233graphs in the full theory and then repeat the calculation
234using the method of regions to isolate the modes respon-
235sible for Regge behavior. The graphs at the one-loop level
236which concern Regge physics are the ones with boxlike
237topology shown in Fig. 3. In fact, the last graph has a
238suppressed leading behavior (by a power of s) compared to
239the first two and thus we neglect this graph all together. To
240fix the nomenclature, we refer to the first graph as the
241“direct box” and the second as the “crossed box.”

242A. The box diagram in the full theory

243The full Regge amplitude is simply obtained by sum-
244ming the two graphs to find

Mð1Þ
QCD¼ð−iÞg4 1

2

Z
d4l
ð2πÞ4

1

ðl2−m2þ i0ÞððlþqÞ2−m2þ i0Þ

×
!

1

ðl−p1Þ2−m2þ i0
þ 1

ðlþp3Þ2−m2þ i0

"

×
!

1

ðlþp2Þ2−m2þ i0
þ 1

ðl−p4Þ2−m2þ i0

"
:

ð17Þ

245In the above expression we combined the graphs after
246symmetrizing each under the interchange l↔ − ðlþ qÞ,
247and hence the factor of half. This does not prove useful for
248the full theory calculation but considerably simplifies the
249calculation in the method of regions. The intermediate steps
250of the computation are rather complicated and we move the
251details to Appendix A but the final result in the limit
252s ≫ −t, m2 takes the simple form

Mð1Þ
QCD ¼ iπg2βðtÞ

s
; ð18Þ

253where βðtÞ is defined in Eq. (6) and explicitly reads

βðtÞ ¼ g2

8π2ð−tÞχðtÞ
ln
χðtÞ þ 1

χðtÞ − 1
; and

χðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
> 1: ð19Þ2For real field ϕðxÞ we have ϕn;p ≡ ϕ†

n;−p.
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254 To arrive at this expression we have kept all the finite terms
255 in the expansion t=s, m2=s and only dropped power-
256 suppressed ones.
257 Below we concentrate on the method of regions for the
258 calculation of the Regge behavior using the modes of two
259 effective theories, SCET and SCETG. Usually the power
260 counting and pinch analysis are used to determine which
261 modes to include into the method of region. For the massive
262 one-loop QCD box integral such analysis identifies only
263 two regions: collinear and anticollinear. The ultrasoft mode
264 ðλ2; λ2; λ2Þ is power suppressed and the soft mode ðλ; λ; λÞ
265 is leading order but is not pinched. As is well known, the
266 Glauber mode is not pinched for the box topology. This
267 mode only becomes pinched in the pentagon topology.
268 Based on these facts we first consider only the two collinear
269 graphs, which we refer to as the modes of SCET (in this
270 case all leading modes of SCETI-EFT with collinear and
271 ultrasoft particles). As will be mentioned later, there is a
272 paradox in reproducing the Regge behavior with only these
273 two modes, because of the imaginary part of the combined
274 result and unitarity issues. As we will see below, including
275 the Glauber mode resolves this issue, and our second EFT
276 of choice is SCETG, where again only leading graphs of
277 SCETI are considered plus Glauber region.

278 B. The box diagram in SCET without Glauber modes

279 Using the modes of SCET we get two leading graphs,
280 when the loop momentum is either n collinear or n̄
281 collinear. An ultrasoft loop momentum ðλ2; λ2; λ2Þ on the
282 other hand is power suppressed because m2 scales as λ2.
283 With some details in Appendix A, we find that both n- and
284 n̄-collinear graphs shown in Fig. 4 are equal

Mð1Þ
n ¼ Mð1Þ

n̄ ¼ Mð1Þ
QCD: ð20Þ

285 Hence, summing both contributions gives a result twice as
286 big as the full theory. It turns out that the overlap
287 contribution of these two modes is nonvanishing and must
288 be taken into account in order to correctly reproduce the full
289 theory result

Mð1Þ
n=n̄ ¼ Mð1Þ

QCD: ð21Þ

290 We derive a master formula in Appendix C that takes into
291 account correct subtraction terms when combining N

292momentum regions in the method of regions. Applying
293it for two modes, we reproduce the QCD result

Mð1Þ
SCET ¼ Mð1Þ

n þMð1Þ
n̄ −Mð1Þ

n=n̄ ¼ Mð1Þ
QCD: ð22Þ

294We have found that using the modes of SCET we recover
295the full QCD loop integral. This should not be surprising
296since for the box integral the pinch analysis leads to no
297Glauber pinch [10,17], i.e., modes of SCET are sufficient.
298However, there is something strange with this result. Indeed
299the full answer for the QCD integral (defined by including
300the crossed-box graph) is purely imaginary; see Eq. (18).
301This imaginary part can be obtained from the discontinuity
302of the direct box integral. This discontinuity comes from
303on-shell intermediate states; however, both collinear graphs
304Mn and Mn̄ have one propagator far off shell. Thus, the
305imaginary part should come from the subregion of these
306two modes and is contained in a different kinematic region.
307In the book [4], the one-loop box integral with the Regge
308kinematics was calculated using an analytic regulator. It
309was found that the box integral is recovered from two
310collinear graphs, similarly to our finding in this section with
311our regularization. Note, that with their regulator the
312overlap contribution vanishes and does not play role.
313Thus, the same comment that the imaginary part of the
314box graph is coming from a different kinematic region and
315is outside of collinear graphs holds for the calculation in
316[4]. Below we repeat the one-loop calculation with our
317regulator by including all the modes of SCETG with their
318overlaps and this paradox is resolved.

319C. The problem of the imaginary part

320The imaginary part of the collinear amplitudes hints that
321we are missing insight into Regge physics. The imaginary
322part of the full theory should not be expected to come from
323collinear exchange. In simple words, this is because the
324collinear graphs indeed have one intermediate state off
325shell. To elucidate this point, we directly employ Cutkosky
326rule to compute the imaginary part of the direct-box graph.
327Hence,

ImMð1Þ
QCD¼

g4

8π2

Z
d4l

δþððp1−lÞ2−m2Þδþððlþp2Þ2−m2Þ
ðl2−m2ÞððlþqÞ2−m2Þ

ð23Þ

F4:1 FIG. 4. Direct-box diagrams in SCETG. The box represents an off-shell propagator and the dashed lines refer to Glauber modes. The
F4:2 momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.
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328 where δþðp2 −m2Þ ¼ δðp2 −m2ÞΘðp0Þ. This integral is
329 easily rewritten as

ImMð1Þ
QCD ¼ g4

16π2
ffiffiffi
s

p
Z

d4l

×
δððp1 − lÞ2 −m2Þδðl0Þ

ffiffiffi
s

p
ðl0 − lzÞð

ffiffiffi
s

p
ðl0− lzÞþq2− 2~l · ~qÞ

: ð24Þ

330 Notice that q0 ¼ 0 since we work in the center-of-mass
331 frame. The integral over l0 is readily done to absorb the
332 second delta function and forces l0 ¼ 0. This is very
333 interesting because this means that l% ¼ ∓lz, which shows
334 that the mode responsible for generating the leading Regge
335 behavior ought to have longitudinal components of equal
336 scaling, a condition clearly violated by collinear modes. We
337 continue the calculation by performing the lz integral where
338 a quadratic form appears in the argument of the delta
339 function with the following roots:

l%z ¼
ffiffiffi
s

p

2

"
1%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Δ
s

r #
; Δ ¼ l2⊥ þm2: ð25Þ

340 The “þ=−” refers to large/small root, respectively. Clearly,
341 the transverse integral has to be constrained since 4Δ ≤ s
342 for l%z to be real. The large root yields a result proportional
343 to 1=s2, and hence is power suppressed. On the other hand,
344 the small root can be Taylor expanded

l−z ¼ Δffiffiffi
s

p
"
1þ Δ

s
þ & & &

#
: ð26Þ

345 The first term in the expansion yields the leading result in
346 the Regge limit, and hence l−z ≈ Δ=

ffiffiffi
s

p
. This is the second

347 piece of information we need to pin down the Regge mode;
348 it has an excess in the transverse direction identical to the
349 momentum transfer. We conclude that Glauber scaling
350 l ∼

ffiffiffi
s

p
ðλ2; λ2; λÞ is genuinely responsible for Regge behav-

351 ior. Finally, the result agrees with the full calculation

ImMð1Þ
QCD ¼ πg2βðtÞ

s
: ð27Þ

352
353 D. The box diagram in SCETG

354 In soft collinear effective theory with Glauber modes an
355 additional graph appears where the loop momentum is that
356 of Glauber scaling lðλ2; λ2; λÞ. With details provided in
357 Appendix A, the box integral in this momentum region is
358 equal to

Mð1Þ
G ¼ Mð1Þ

QCD: ð28Þ

359 When adding the Glauber as an independent mode, over-
360 laps with collinear modes must be taken into account, we
361 calculate these in Appendix A. The result is

Mð1Þ
n=G ¼ Mð1Þ

n̄=G ¼ Mð1Þ
n=n̄=G ¼ Mð1Þ

G ¼ Mð1Þ
QCD: ð29Þ

362Our calculation indicates that the imaginary part of the full
363theory is coming precisely from the Glauber region (at the
364one-loop order). In other words, the matching in SCETG
365after all zero-bin (overlap) subtractions gives the same
366result as just the Glauber mode

Mð1Þ
SCETG

¼ Mð1Þ
n þMð1Þ

n̄ þMbox
G −Mð1Þ

n=n̄ −Mð1Þ
n=G

−Mð1Þ
n̄=G þMð1Þ

n=n̄=G ¼ Mð1Þ
G ¼ Mð1Þ

QCD: ð30Þ

367As is well known from factorization proofs of the Drell-Yan
368process, the Glauber region is not pinched for the box
369topology [17], (see also [10]). Thus, it is no surprise that we
370get the same answer in SCETG as in SCET. When one uses
371the modes of SCET, the collinear integrals each contain at
372least one of the intermediate propagators off shell; thus, the
373imaginary part3 ought to come from a subregion inside
374them. Our calculation above precisely shows that the
375correct momentum region for the full box integral in the
376Regge kinematics (when the direct and crossed box are
377added) is the Glauber region. What we mean by this is that
378the QCD box integral with the crossed box added at one
379loop can be reproduced by a single Glauber mode, which
380does not violate unitarity. As one adds the collinear graphs
381and Glauber one together, the interpretation can be made
382that the true collinear mode obtained from the naive
383collinear mode after zero-bin subtraction becomes purely
384real (as it should be due to unitarity) and cancels out
385between box and crossed box. Thus, we resolve the
386paradox of the imaginary part coming from collinear
387graphs. We will see below in this paper that this generalizes
388straightforwardly to higher orders in perturbation theory.

389E. The imaginary part via the Cutkosky rule

390For completeness and as a prelude to the next section, we
391directly use the Cutkosky rule to recalculate the imaginary
392part albeit taking the loop momentum in the Glauber
393region. The computation is very simple and the correct
394result is obtained effortlessly. Expanding the integrand of
395(23) and explicitly employing light-cone coordinates

ImMð1Þ
G ¼ g4

16π2

Z
d2l⊥dlþdl−

×
δð−l2⊥ −

ffiffiffi
s

p
lþ −m2Þδð−l2⊥ þ

ffiffiffi
s

p
l− −m2Þ

ðl2⊥ þm2Þððl⊥ þ q⊥Þ2 þm2Þ
:

ð31Þ
396The step functions are automatically satisfied. The longi-
397tudinal momenta integrals are used trivially to absorb the
398delta functions and we find

3Note that the entire one-loop expression of the QCD ampli-
tude is imaginary; see Eq. (18).

DONOGHUE, EL-MENOUFI, AND OVANESYAN PHYSICAL REVIEW D 90, 000000 (XXXX)

6

328 where δþðp2 −m2Þ ¼ δðp2 −m2ÞΘðp0Þ. This integral is
329 easily rewritten as

ImMð1Þ
QCD ¼ g4

16π2
ffiffiffi
s

p
Z

d4l

×
δððp1 − lÞ2 −m2Þδðl0Þ

ffiffiffi
s

p
ðl0 − lzÞð

ffiffiffi
s

p
ðl0− lzÞþq2− 2~l · ~qÞ

: ð24Þ

330 Notice that q0 ¼ 0 since we work in the center-of-mass
331 frame. The integral over l0 is readily done to absorb the
332 second delta function and forces l0 ¼ 0. This is very
333 interesting because this means that l% ¼ ∓lz, which shows
334 that the mode responsible for generating the leading Regge
335 behavior ought to have longitudinal components of equal
336 scaling, a condition clearly violated by collinear modes. We
337 continue the calculation by performing the lz integral where
338 a quadratic form appears in the argument of the delta
339 function with the following roots:

l%z ¼
ffiffiffi
s

p

2

"
1%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Δ
s

r #
; Δ ¼ l2⊥ þm2: ð25Þ

340 The “þ=−” refers to large/small root, respectively. Clearly,
341 the transverse integral has to be constrained since 4Δ ≤ s
342 for l%z to be real. The large root yields a result proportional
343 to 1=s2, and hence is power suppressed. On the other hand,
344 the small root can be Taylor expanded

l−z ¼ Δffiffiffi
s

p
"
1þ Δ

s
þ & & &

#
: ð26Þ

345 The first term in the expansion yields the leading result in
346 the Regge limit, and hence l−z ≈ Δ=

ffiffiffi
s

p
. This is the second

347 piece of information we need to pin down the Regge mode;
348 it has an excess in the transverse direction identical to the
349 momentum transfer. We conclude that Glauber scaling
350 l ∼

ffiffiffi
s

p
ðλ2; λ2; λÞ is genuinely responsible for Regge behav-

351 ior. Finally, the result agrees with the full calculation

ImMð1Þ
QCD ¼ πg2βðtÞ

s
: ð27Þ

352
353 D. The box diagram in SCETG

354 In soft collinear effective theory with Glauber modes an
355 additional graph appears where the loop momentum is that
356 of Glauber scaling lðλ2; λ2; λÞ. With details provided in
357 Appendix A, the box integral in this momentum region is
358 equal to

Mð1Þ
G ¼ Mð1Þ

QCD: ð28Þ

359 When adding the Glauber as an independent mode, over-
360 laps with collinear modes must be taken into account, we
361 calculate these in Appendix A. The result is

Mð1Þ
n=G ¼ Mð1Þ

n̄=G ¼ Mð1Þ
n=n̄=G ¼ Mð1Þ

G ¼ Mð1Þ
QCD: ð29Þ

362Our calculation indicates that the imaginary part of the full
363theory is coming precisely from the Glauber region (at the
364one-loop order). In other words, the matching in SCETG
365after all zero-bin (overlap) subtractions gives the same
366result as just the Glauber mode

Mð1Þ
SCETG

¼ Mð1Þ
n þMð1Þ

n̄ þMbox
G −Mð1Þ

n=n̄ −Mð1Þ
n=G

−Mð1Þ
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n=n̄=G ¼ Mð1Þ
G ¼ Mð1Þ

QCD: ð30Þ

367As is well known from factorization proofs of the Drell-Yan
368process, the Glauber region is not pinched for the box
369topology [17], (see also [10]). Thus, it is no surprise that we
370get the same answer in SCETG as in SCET. When one uses
371the modes of SCET, the collinear integrals each contain at
372least one of the intermediate propagators off shell; thus, the
373imaginary part3 ought to come from a subregion inside
374them. Our calculation above precisely shows that the
375correct momentum region for the full box integral in the
376Regge kinematics (when the direct and crossed box are
377added) is the Glauber region. What we mean by this is that
378the QCD box integral with the crossed box added at one
379loop can be reproduced by a single Glauber mode, which
380does not violate unitarity. As one adds the collinear graphs
381and Glauber one together, the interpretation can be made
382that the true collinear mode obtained from the naive
383collinear mode after zero-bin subtraction becomes purely
384real (as it should be due to unitarity) and cancels out
385between box and crossed box. Thus, we resolve the
386paradox of the imaginary part coming from collinear
387graphs. We will see below in this paper that this generalizes
388straightforwardly to higher orders in perturbation theory.

389E. The imaginary part via the Cutkosky rule

390For completeness and as a prelude to the next section, we
391directly use the Cutkosky rule to recalculate the imaginary
392part albeit taking the loop momentum in the Glauber
393region. The computation is very simple and the correct
394result is obtained effortlessly. Expanding the integrand of
395(23) and explicitly employing light-cone coordinates

ImMð1Þ
G ¼ g4

16π2

Z
d2l⊥dlþdl−

×
δð−l2⊥ −

ffiffiffi
s

p
lþ −m2Þδð−l2⊥ þ

ffiffiffi
s

p
l− −m2Þ

ðl2⊥ þm2Þððl⊥ þ q⊥Þ2 þm2Þ
:

ð31Þ
396The step functions are automatically satisfied. The longi-
397tudinal momenta integrals are used trivially to absorb the
398delta functions and we find

3Note that the entire one-loop expression of the QCD ampli-
tude is imaginary; see Eq. (18).
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254 To arrive at this expression we have kept all the finite terms
255 in the expansion t=s, m2=s and only dropped power-
256 suppressed ones.
257 Below we concentrate on the method of regions for the
258 calculation of the Regge behavior using the modes of two
259 effective theories, SCET and SCETG. Usually the power
260 counting and pinch analysis are used to determine which
261 modes to include into the method of region. For the massive
262 one-loop QCD box integral such analysis identifies only
263 two regions: collinear and anticollinear. The ultrasoft mode
264 ðλ2; λ2; λ2Þ is power suppressed and the soft mode ðλ; λ; λÞ
265 is leading order but is not pinched. As is well known, the
266 Glauber mode is not pinched for the box topology. This
267 mode only becomes pinched in the pentagon topology.
268 Based on these facts we first consider only the two collinear
269 graphs, which we refer to as the modes of SCET (in this
270 case all leading modes of SCETI-EFT with collinear and
271 ultrasoft particles). As will be mentioned later, there is a
272 paradox in reproducing the Regge behavior with only these
273 two modes, because of the imaginary part of the combined
274 result and unitarity issues. As we will see below, including
275 the Glauber mode resolves this issue, and our second EFT
276 of choice is SCETG, where again only leading graphs of
277 SCETI are considered plus Glauber region.

278 B. The box diagram in SCET without Glauber modes

279 Using the modes of SCET we get two leading graphs,
280 when the loop momentum is either n collinear or n̄
281 collinear. An ultrasoft loop momentum ðλ2; λ2; λ2Þ on the
282 other hand is power suppressed because m2 scales as λ2.
283 With some details in Appendix A, we find that both n- and
284 n̄-collinear graphs shown in Fig. 4 are equal

Mð1Þ
n ¼ Mð1Þ

n̄ ¼ Mð1Þ
QCD: ð20Þ

285 Hence, summing both contributions gives a result twice as
286 big as the full theory. It turns out that the overlap
287 contribution of these two modes is nonvanishing and must
288 be taken into account in order to correctly reproduce the full
289 theory result

Mð1Þ
n=n̄ ¼ Mð1Þ

QCD: ð21Þ

290 We derive a master formula in Appendix C that takes into
291 account correct subtraction terms when combining N

292momentum regions in the method of regions. Applying
293it for two modes, we reproduce the QCD result

Mð1Þ
SCET ¼ Mð1Þ

n þMð1Þ
n̄ −Mð1Þ

n=n̄ ¼ Mð1Þ
QCD: ð22Þ

294We have found that using the modes of SCET we recover
295the full QCD loop integral. This should not be surprising
296since for the box integral the pinch analysis leads to no
297Glauber pinch [10,17], i.e., modes of SCET are sufficient.
298However, there is something strange with this result. Indeed
299the full answer for the QCD integral (defined by including
300the crossed-box graph) is purely imaginary; see Eq. (18).
301This imaginary part can be obtained from the discontinuity
302of the direct box integral. This discontinuity comes from
303on-shell intermediate states; however, both collinear graphs
304Mn and Mn̄ have one propagator far off shell. Thus, the
305imaginary part should come from the subregion of these
306two modes and is contained in a different kinematic region.
307In the book [4], the one-loop box integral with the Regge
308kinematics was calculated using an analytic regulator. It
309was found that the box integral is recovered from two
310collinear graphs, similarly to our finding in this section with
311our regularization. Note, that with their regulator the
312overlap contribution vanishes and does not play role.
313Thus, the same comment that the imaginary part of the
314box graph is coming from a different kinematic region and
315is outside of collinear graphs holds for the calculation in
316[4]. Below we repeat the one-loop calculation with our
317regulator by including all the modes of SCETG with their
318overlaps and this paradox is resolved.

319C. The problem of the imaginary part

320The imaginary part of the collinear amplitudes hints that
321we are missing insight into Regge physics. The imaginary
322part of the full theory should not be expected to come from
323collinear exchange. In simple words, this is because the
324collinear graphs indeed have one intermediate state off
325shell. To elucidate this point, we directly employ Cutkosky
326rule to compute the imaginary part of the direct-box graph.
327Hence,

ImMð1Þ
QCD¼

g4

8π2

Z
d4l

δþððp1−lÞ2−m2Þδþððlþp2Þ2−m2Þ
ðl2−m2ÞððlþqÞ2−m2Þ

ð23Þ

F4:1 FIG. 4. Direct-box diagrams in SCETG. The box represents an off-shell propagator and the dashed lines refer to Glauber modes. The
F4:2 momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.
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328 where δþðp2 −m2Þ ¼ δðp2 −m2ÞΘðp0Þ. This integral is
329 easily rewritten as

ImMð1Þ
QCD ¼ g4

16π2
ffiffiffi
s

p
Z

d4l

×
δððp1 − lÞ2 −m2Þδðl0Þ

ffiffiffi
s

p
ðl0 − lzÞð

ffiffiffi
s

p
ðl0− lzÞþq2− 2~l · ~qÞ

: ð24Þ

330 Notice that q0 ¼ 0 since we work in the center-of-mass
331 frame. The integral over l0 is readily done to absorb the
332 second delta function and forces l0 ¼ 0. This is very
333 interesting because this means that l% ¼ ∓lz, which shows
334 that the mode responsible for generating the leading Regge
335 behavior ought to have longitudinal components of equal
336 scaling, a condition clearly violated by collinear modes. We
337 continue the calculation by performing the lz integral where
338 a quadratic form appears in the argument of the delta
339 function with the following roots:

l%z ¼
ffiffiffi
s

p

2

"
1%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Δ
s

r #
; Δ ¼ l2⊥ þm2: ð25Þ

340 The “þ=−” refers to large/small root, respectively. Clearly,
341 the transverse integral has to be constrained since 4Δ ≤ s
342 for l%z to be real. The large root yields a result proportional
343 to 1=s2, and hence is power suppressed. On the other hand,
344 the small root can be Taylor expanded

l−z ¼ Δffiffiffi
s

p
"
1þ Δ

s
þ & & &

#
: ð26Þ

345 The first term in the expansion yields the leading result in
346 the Regge limit, and hence l−z ≈ Δ=

ffiffiffi
s

p
. This is the second

347 piece of information we need to pin down the Regge mode;
348 it has an excess in the transverse direction identical to the
349 momentum transfer. We conclude that Glauber scaling
350 l ∼

ffiffiffi
s

p
ðλ2; λ2; λÞ is genuinely responsible for Regge behav-

351 ior. Finally, the result agrees with the full calculation

ImMð1Þ
QCD ¼ πg2βðtÞ

s
: ð27Þ

352
353 D. The box diagram in SCETG

354 In soft collinear effective theory with Glauber modes an
355 additional graph appears where the loop momentum is that
356 of Glauber scaling lðλ2; λ2; λÞ. With details provided in
357 Appendix A, the box integral in this momentum region is
358 equal to

Mð1Þ
G ¼ Mð1Þ

QCD: ð28Þ

359 When adding the Glauber as an independent mode, over-
360 laps with collinear modes must be taken into account, we
361 calculate these in Appendix A. The result is

Mð1Þ
n=G ¼ Mð1Þ

n̄=G ¼ Mð1Þ
n=n̄=G ¼ Mð1Þ

G ¼ Mð1Þ
QCD: ð29Þ

362Our calculation indicates that the imaginary part of the full
363theory is coming precisely from the Glauber region (at the
364one-loop order). In other words, the matching in SCETG
365after all zero-bin (overlap) subtractions gives the same
366result as just the Glauber mode

Mð1Þ
SCETG

¼ Mð1Þ
n þMð1Þ

n̄ þMbox
G −Mð1Þ

n=n̄ −Mð1Þ
n=G

−Mð1Þ
n̄=G þMð1Þ

n=n̄=G ¼ Mð1Þ
G ¼ Mð1Þ

QCD: ð30Þ

367As is well known from factorization proofs of the Drell-Yan
368process, the Glauber region is not pinched for the box
369topology [17], (see also [10]). Thus, it is no surprise that we
370get the same answer in SCETG as in SCET. When one uses
371the modes of SCET, the collinear integrals each contain at
372least one of the intermediate propagators off shell; thus, the
373imaginary part3 ought to come from a subregion inside
374them. Our calculation above precisely shows that the
375correct momentum region for the full box integral in the
376Regge kinematics (when the direct and crossed box are
377added) is the Glauber region. What we mean by this is that
378the QCD box integral with the crossed box added at one
379loop can be reproduced by a single Glauber mode, which
380does not violate unitarity. As one adds the collinear graphs
381and Glauber one together, the interpretation can be made
382that the true collinear mode obtained from the naive
383collinear mode after zero-bin subtraction becomes purely
384real (as it should be due to unitarity) and cancels out
385between box and crossed box. Thus, we resolve the
386paradox of the imaginary part coming from collinear
387graphs. We will see below in this paper that this generalizes
388straightforwardly to higher orders in perturbation theory.

389E. The imaginary part via the Cutkosky rule

390For completeness and as a prelude to the next section, we
391directly use the Cutkosky rule to recalculate the imaginary
392part albeit taking the loop momentum in the Glauber
393region. The computation is very simple and the correct
394result is obtained effortlessly. Expanding the integrand of
395(23) and explicitly employing light-cone coordinates

ImMð1Þ
G ¼ g4

16π2

Z
d2l⊥dlþdl−

×
δð−l2⊥ −

ffiffiffi
s

p
lþ −m2Þδð−l2⊥ þ

ffiffiffi
s

p
l− −m2Þ

ðl2⊥ þm2Þððl⊥ þ q⊥Þ2 þm2Þ
:

ð31Þ
396The step functions are automatically satisfied. The longi-
397tudinal momenta integrals are used trivially to absorb the
398delta functions and we find

3Note that the entire one-loop expression of the QCD ampli-
tude is imaginary; see Eq. (18).
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328 where δþðp2 −m2Þ ¼ δðp2 −m2ÞΘðp0Þ. This integral is
329 easily rewritten as

ImMð1Þ
QCD ¼ g4

16π2
ffiffiffi
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p
Z
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×
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ffiffiffi
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p
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ffiffiffi
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p
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330 Notice that q0 ¼ 0 since we work in the center-of-mass
331 frame. The integral over l0 is readily done to absorb the
332 second delta function and forces l0 ¼ 0. This is very
333 interesting because this means that l% ¼ ∓lz, which shows
334 that the mode responsible for generating the leading Regge
335 behavior ought to have longitudinal components of equal
336 scaling, a condition clearly violated by collinear modes. We
337 continue the calculation by performing the lz integral where
338 a quadratic form appears in the argument of the delta
339 function with the following roots:

l%z ¼
ffiffiffi
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1 −

4Δ
s
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340 The “þ=−” refers to large/small root, respectively. Clearly,
341 the transverse integral has to be constrained since 4Δ ≤ s
342 for l%z to be real. The large root yields a result proportional
343 to 1=s2, and hence is power suppressed. On the other hand,
344 the small root can be Taylor expanded

l−z ¼ Δffiffiffi
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1þ Δ
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345 The first term in the expansion yields the leading result in
346 the Regge limit, and hence l−z ≈ Δ=

ffiffiffi
s

p
. This is the second

347 piece of information we need to pin down the Regge mode;
348 it has an excess in the transverse direction identical to the
349 momentum transfer. We conclude that Glauber scaling
350 l ∼

ffiffiffi
s

p
ðλ2; λ2; λÞ is genuinely responsible for Regge behav-

351 ior. Finally, the result agrees with the full calculation

ImMð1Þ
QCD ¼ πg2βðtÞ

s
: ð27Þ

352
353 D. The box diagram in SCETG

354 In soft collinear effective theory with Glauber modes an
355 additional graph appears where the loop momentum is that
356 of Glauber scaling lðλ2; λ2; λÞ. With details provided in
357 Appendix A, the box integral in this momentum region is
358 equal to

Mð1Þ
G ¼ Mð1Þ

QCD: ð28Þ

359 When adding the Glauber as an independent mode, over-
360 laps with collinear modes must be taken into account, we
361 calculate these in Appendix A. The result is

Mð1Þ
n=G ¼ Mð1Þ

n̄=G ¼ Mð1Þ
n=n̄=G ¼ Mð1Þ

G ¼ Mð1Þ
QCD: ð29Þ

362Our calculation indicates that the imaginary part of the full
363theory is coming precisely from the Glauber region (at the
364one-loop order). In other words, the matching in SCETG
365after all zero-bin (overlap) subtractions gives the same
366result as just the Glauber mode

Mð1Þ
SCETG

¼ Mð1Þ
n þMð1Þ

n̄ þMbox
G −Mð1Þ

n=n̄ −Mð1Þ
n=G

−Mð1Þ
n̄=G þMð1Þ

n=n̄=G ¼ Mð1Þ
G ¼ Mð1Þ

QCD: ð30Þ

367As is well known from factorization proofs of the Drell-Yan
368process, the Glauber region is not pinched for the box
369topology [17], (see also [10]). Thus, it is no surprise that we
370get the same answer in SCETG as in SCET. When one uses
371the modes of SCET, the collinear integrals each contain at
372least one of the intermediate propagators off shell; thus, the
373imaginary part3 ought to come from a subregion inside
374them. Our calculation above precisely shows that the
375correct momentum region for the full box integral in the
376Regge kinematics (when the direct and crossed box are
377added) is the Glauber region. What we mean by this is that
378the QCD box integral with the crossed box added at one
379loop can be reproduced by a single Glauber mode, which
380does not violate unitarity. As one adds the collinear graphs
381and Glauber one together, the interpretation can be made
382that the true collinear mode obtained from the naive
383collinear mode after zero-bin subtraction becomes purely
384real (as it should be due to unitarity) and cancels out
385between box and crossed box. Thus, we resolve the
386paradox of the imaginary part coming from collinear
387graphs. We will see below in this paper that this generalizes
388straightforwardly to higher orders in perturbation theory.

389E. The imaginary part via the Cutkosky rule

390For completeness and as a prelude to the next section, we
391directly use the Cutkosky rule to recalculate the imaginary
392part albeit taking the loop momentum in the Glauber
393region. The computation is very simple and the correct
394result is obtained effortlessly. Expanding the integrand of
395(23) and explicitly employing light-cone coordinates

ImMð1Þ
G ¼ g4

16π2

Z
d2l⊥dlþdl−

×
δð−l2⊥ −

ffiffiffi
s

p
lþ −m2Þδð−l2⊥ þ

ffiffiffi
s

p
l− −m2Þ

ðl2⊥ þm2Þððl⊥ þ q⊥Þ2 þm2Þ
:

ð31Þ
396The step functions are automatically satisfied. The longi-
397tudinal momenta integrals are used trivially to absorb the
398delta functions and we find

3Note that the entire one-loop expression of the QCD ampli-
tude is imaginary; see Eq. (18).
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FIG. 4: ’Direct-box’ diagrams in SCETG. The box represents an o↵-shell propagator and the dashed lines refer to Glauber
modes. The momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.

To arrive at this expression we have kept all the finite terms in the expansion t/s,m

2

/s and only dropped power-
suppressed ones.

Below we concentrate on the method of regions for the calculation of the Regge behavior using the modes of two
e↵ective theories SCET and SCET

G

. Usually the power counting and pinch analysis are used to determine which
modes to include into the method of region. For the massive one-loop QCD box integral such analysis identifies
only two regions: collinear and anti-collinear. The ultrasoft mode (�2

,�

2

,�

2) is power suppressed and the soft mode
(�,�,�) is leading order but is not pinched. As is well-known the Glauber mode is not pinched for the box topology.
This mode only becomes pinched in the pentagon topology. Based on these facts we first consider only the two
collinear graphs, which we refer to as the modes of SCET (in this case all leading modes of SCET

I

� EFT with
collinear and ultrasoft particles). As will be mentioned later, there is a paradox in reproducing the Regge behavior
with only these two modes, because of the imaginary part of the combined result and unitarity issues. As we will see
below, including the Glauber mode resolves this issue, and our second EFT of choice is SCET

G

, where again only
leading graphs of SCET

I

are considered plus Glauber region.
It should be noted that Fleming [14] considered modes of SCET

II

with Glaubers and also reproduced the Regge
behavior in QCD. Thus, it seems that the correct QCD behavior in the Regge kinematics can be recovered from
either of SCET

I

and SCET
II

e↵ective theories. In fact we will argue that the momentum region relevant to the
leading Regge contribution, or Regge mode, is a multi-overlap region of all leading modes that contribute. We link
this to strong ordering, and perhaps it also is at the core of the reason why either of e↵ective theories gives the
correct result. More detail about this connection is beyond the scope of the current paper.

The box diagram in SCET without Glauber modes

Using the modes of SCET we get two leading graphs, when the loop momentum is either n-collinear or n̄-
collinear. An ultra-soft loop momentum (�2

,�

2

,�

2) on the other hand is power suppressed because m

2 scales as �2.
With some details in Appendix A we find that both n and n̄ collinear graphs shown in Figure 4 are equal

M(1)

n

= M(1)

n̄

= M(1)

QCD

. (20)

Hence, summing both contributions gives a result twice as big as the full theory. It turns out that the overlap
contribution of these two modes is non-vanishing and must be taken into account in order to correctly reproduce the
full theory result

M(1)

n/n̄

= M(1)

QCD

. (21)

We derive a master formula in Appendix C that takes into account correct subtraction terms when combining N

momentum regions in the method of regions. Applying it for two modes, we reproduce the QCD result

M(1)

SCET

= M(1)

n

+M(1)

n̄

�M(1)

n/n̄

= M(1)

QCD

. (22)

We have found that using the modes of SCET we recover the full QCD loop integral. This should not be surprising
since for the box integral the pinch analysis leads to no Glauber pinch [10, 17], i.e. modes of SCET are su�cient.
However there is something strange with this result. Indeed the full answer for the QCD integral (defined by including
the crossed box graph) is purely imaginary, see Eq. (18). This imaginary part can be obtained from the discontinuity
of the direct box integral. This discontinuity comes from on-shell intermediate states, however both collinear graphs
M

n

and M
n̄

have one propagator far o↵-shell. Thus, the imaginary part should come from sub-region of these two
modes and is contained in a di↵erent kinematic region. In the book [4] the one-loop box integral with the Regge
kinematics was calculated using analytic regulator. It was found that the box integral is recovered from two collinear
graphs, similarly to our finding in this section with our regularization. Note, that with their regulator the overlap

! 0
+overlap
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G ¼ πg2βðtÞ

s
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399 As previously mentioned, the kinematic exercise of
400 Eq. (14) combined with the Cutkosky rule for the on-shell
401 intermediate states of the box diagram requires that the
402 exchanged mode be in the Glauber region.4

403 V. TWO-LOOP LADDER

404 We saw at one loop that the underlying physics behind
405 Regge behavior is the imaginary part of the direct-box
406 graph caused by the s-channel discontinuity. This picture is
407 valid at any loop order as confirmed by the Polkinghorne
408 analysis [8]. Hence, we confine the subsequent discussion
409 to only the imaginary part of higher loop graphs that
410 contribute to Regge physics, i.e., ladder graphs.

411A. The double box ladder in the full theory

412The imaginary part of the two-loop ladder graph shown
413in Fig. 5 is given by

414415

ImMð2Þ
QCD ¼ g6

64π5

Z
d4l1d4l2

δþ½ðp1 − l1Þ2 −m2&δþ½ðl1 − l2Þ2 −m2&δþ½ðp2 þ l2Þ2 −m2&
ðl21 −m2Þðl22 −m2Þððl1 þ qÞ2 −m2Þððl2 þ qÞ2 −m2Þ

; ð33Þ

416 where δþ is defined as before. This integral has extensively
417 been studied before with the result

ImMð2Þ
QCD ≈

πg2β2ðtÞ
s

ln s: ð34Þ

418 For example, see the derivation in [7,13], where it is
419 shown that the leading region is the so-called strongly
420 ordered one. The formula above contains the leading

421logarithm as s → ∞. There are finite terms beyond
422this logarithm that are the same order in the t=s expansion
423and thus are expected to be captured by the method
424of regions or the mode expansion. For this reason we
425derived such terms in Appendix B, but for simplicity we
426have set t ¼ 0. This leads to a finite answer in four
427dimensions because our massive theory is infrared safe.
428The result is

429430

ImMð2Þ
QCDðt ¼ 0Þ ¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sðΔ1Δ2Þ2

!
ln

s
Δ12

− 2

"
θðs − ð

ffiffiffiffiffiffi
Δ1

p
þ

ffiffiffiffiffiffi
Δ2

p
þ

ffiffiffiffiffiffiffiffi
Δ12

p
Þ2Þ: ð35Þ

431 In the equation above we have made the following definitions in terms of transverse momenta:
432

Δ1 ¼ l21⊥ þm2; Δ2 ¼ l22⊥ þm2; Δ12 ¼ ðl1⊥ − l2⊥Þ2 þm2: ð36Þ

433434 B. Matching in SCETG

435 So far we have learned from the one-loop calculation
436 that the correct momentum region to understand the
437 Regge behavior is when all intermediate states are on
438 shell. The only way to do this at two loops is one
439 of the three possibilities ðl1; l2Þ is ðn;GÞ, ðG; n̄Þ,
440 ðG;GÞ. Power counting the mode integrals shows that
441 ðG;GÞ must be suppressed, due to the higher power
442 of the momentum-space volume factor d4lG ∼ λ6 as

443opposed to d4lcoll ∼ λ4. The fact that there are two
444leading modes (shown in Fig. 6) means that their
445overlap must be taken into account. The first of our
446modes equals to

F5:1FIG. 5. Two-loop direct graph in full theory (QCD).

F6:1FIG. 6. Two-loop graphs in SCETG. From left to right these
F6:2amplitudes are MnG, MGn̄. All other two-loop graphs in the
F6:3method of regions, for example Mn̄n, are power suppressed or
F6:4lead to intermediate off-shell propagators, such as Mnn.

4We note that the analytic regulator used in [4] sets the Glauber
region to zero. It is then not consistent with the Cutkosky rule and
we view this as a disadvantage of this regulator.
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Only	
  two	
  leading	
  graphs	
  in	
  SCETG	
  that	
  have	
  the	
  intermediate	
  states	
  on-­‐shell	
  

n

G
G
n̄

447

ImMð2Þ
nG ¼ g6

64π5

Z
d4l1d4l2

δþ½ð−lþ1 Þð
ffiffiffi
s

p
− l−1 Þ − Δ1&δþ½ðlþ1 − lþ2 Þl−1 − Δ12&δþ½

ffiffiffi
s

p
l−2 − Δ2&θð

ffiffiffi
s

p
þ lþ2 Þ

ðlþ1 l−1 − Δ1Þð−Δ2Þððlþ1 þ qþÞl−1 − Δ1qÞð−Δ2qÞ
; ð37Þ

448 where the theta function in each of the δþ that appear above
449 is the expanded expression in the QCD integral. We note
450 that with such strict manifest power counting the limits of
451 integration on the l−1 after the lþ1 , lþ2 , l−2 integrals are
452 performed using the delta functions are not regulated and
453 lead to a divergent result. To overcome this shortcoming we
454 restore the unexpanded theta function in the δþ½ðp2 þ
455 l2Þ2 −m2& present in QCD expression. We made this
456 explicit by inserting θð

ffiffiffi
s

p
þ lþ2 Þ in Eq. (39). This ad hoc

457 solution would not be satisfactory for a consistent EFT
458 description of Regge physics. A more rigorous and prom-
459 ising approach seems to be introducing a rapidity regulator
460 in the EFT; see Ref. [18]. In Ref. [14], the Regge behavior
461 was derived from using rapidity renormalization group
462 techniques developed in [18]. This approach is being
463 further developed in the ongoing work by Rothstein and
464 Stewart [19].
465 In the equation above we made the following definitions:

Δ1q ¼ ðl1⊥ þ q⊥Þ2 þm2; Δ2q ¼ ðl2⊥ þ q⊥Þ2 þm2:

ð38Þ

466 With details explained in Appendix B we derive the
467 expression for this mode for arbitrary values of t:

ImMð2Þ
nG ¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sΔ1Δ2Δ1qΔ2q

×
"
ln

s
Δ12

þ 1

2
ln
Δ1q

Δ1

−
arctanU

U

#
θ

× ðs − ð
ffiffiffiffiffiffiffiffi
Δ12

p
þ

ffiffiffiffiffiffi
Δ1

p
Þ2Þ; ð39Þ

468 where

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δ1Δ1q

ðtþ Δ1 þ Δ1qÞ2
− 1

s

: ð40Þ

469In the entire domain of integration over l1⊥, l2⊥ the value of
470U > 0 and the answer is well behaved. By the same
471argument as above it is clear that in the leading limit in
472the power expansion as s → ∞ the theta function in
473Eq. (39) can be ignored. Taking the leading logarithmic
474limit of Eq. (39) we get

ImMð2Þ
nG ≈

πg2β2ðtÞ
s

ln s: ð41Þ

475476The calculation of the second mode ðG; n̄Þ proceeds
477analogously and leads to the identical result:

ImMð2Þ
Gn̄ ¼ ImMð2Þ

nG: ð42Þ

478The fact that both modes yield identical results can also be
479seen from the following change of variables in the loop
480integrals:

l'1 ↔ − l∓2 ; l1⊥↔l2⊥: ð43Þ

481This change of variables transforms the integrand of the
482ðG; n̄Þ mode with the one of the ðn;GÞ mode. Note that
483both modes that we considered reproduce exactly the
484leading Regge behavior of QCD, so if one adds them
485together the result is that of twice of QCD. We should
486remember from our one-loop computation that overlaps
487need to be included, and thus we proceed to calculate the
488ðnG;Gn̄Þ overlap.

489C. The Regge mode

490Here, we show that the overlap is the generator of Regge
491physics. Expanding the integrand of (33) subsequently with
492the scaling of the modes nG and Gn̄, all propagators
493become transverse and factor out of the longitudinal
494integration

495496

ImMð2Þ
nG=Gn̄ ¼

g6

64π5

Z
d4l1d4l2

δþ½ð−lþ1 Þ
ffiffiffi
s

p
− Δ1&δþ½ð−lþ2 Þl−1 − Δ12&δþ½

ffiffiffi
s

p
l−2 − Δ2&θð

ffiffiffi
s

p
− l−1 Þθð

ffiffiffi
s

p
þ lþ2 Þ

ð−Δ1Þð−Δ2Þð−Δ1qÞð−Δ2qÞ
: ð44Þ

497 Note that the theta functions in δþ are also expanded in this momentum region and similarly to the nG mode considered
498 above we inserted additional theta functions present in the full QCD expression that help regulate integrals. Using the delta
499 functions yields

l̄þ1 ¼ −
Δ1ffiffiffi
s

p ; l̄−2 ¼ Δ2ffiffiffi
s

p ; l̄þ2 ¼ −
Δ12

lþ2
: ð45Þ
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447

ImMð2Þ
nG ¼ g6

64π5

Z
d4l1d4l2

δþ½ð−lþ1 Þð
ffiffiffi
s

p
− l−1 Þ − Δ1&δþ½ðlþ1 − lþ2 Þl−1 − Δ12&δþ½

ffiffiffi
s

p
l−2 − Δ2&θð

ffiffiffi
s

p
þ lþ2 Þ

ðlþ1 l−1 − Δ1Þð−Δ2Þððlþ1 þ qþÞl−1 − Δ1qÞð−Δ2qÞ
; ð37Þ

448 where the theta function in each of the δþ that appear above
449 is the expanded expression in the QCD integral. We note
450 that with such strict manifest power counting the limits of
451 integration on the l−1 after the lþ1 , lþ2 , l−2 integrals are
452 performed using the delta functions are not regulated and
453 lead to a divergent result. To overcome this shortcoming we
454 restore the unexpanded theta function in the δþ½ðp2 þ
455 l2Þ2 −m2& present in QCD expression. We made this
456 explicit by inserting θð

ffiffiffi
s

p
þ lþ2 Þ in Eq. (39). This ad hoc

457 solution would not be satisfactory for a consistent EFT
458 description of Regge physics. A more rigorous and prom-
459 ising approach seems to be introducing a rapidity regulator
460 in the EFT; see Ref. [18]. In Ref. [14], the Regge behavior
461 was derived from using rapidity renormalization group
462 techniques developed in [18]. This approach is being
463 further developed in the ongoing work by Rothstein and
464 Stewart [19].
465 In the equation above we made the following definitions:

Δ1q ¼ ðl1⊥ þ q⊥Þ2 þm2; Δ2q ¼ ðl2⊥ þ q⊥Þ2 þm2:

ð38Þ

466 With details explained in Appendix B we derive the
467 expression for this mode for arbitrary values of t:

ImMð2Þ
nG ¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sΔ1Δ2Δ1qΔ2q

×
"
ln

s
Δ12

þ 1

2
ln
Δ1q

Δ1

−
arctanU

U

#
θ

× ðs − ð
ffiffiffiffiffiffiffiffi
Δ12

p
þ

ffiffiffiffiffiffi
Δ1

p
Þ2Þ; ð39Þ

468 where

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δ1Δ1q

ðtþ Δ1 þ Δ1qÞ2
− 1

s

: ð40Þ

469In the entire domain of integration over l1⊥, l2⊥ the value of
470U > 0 and the answer is well behaved. By the same
471argument as above it is clear that in the leading limit in
472the power expansion as s → ∞ the theta function in
473Eq. (39) can be ignored. Taking the leading logarithmic
474limit of Eq. (39) we get

ImMð2Þ
nG ≈

πg2β2ðtÞ
s

ln s: ð41Þ

475476The calculation of the second mode ðG; n̄Þ proceeds
477analogously and leads to the identical result:

ImMð2Þ
Gn̄ ¼ ImMð2Þ

nG: ð42Þ

478The fact that both modes yield identical results can also be
479seen from the following change of variables in the loop
480integrals:

l'1 ↔ − l∓2 ; l1⊥↔l2⊥: ð43Þ

481This change of variables transforms the integrand of the
482ðG; n̄Þ mode with the one of the ðn;GÞ mode. Note that
483both modes that we considered reproduce exactly the
484leading Regge behavior of QCD, so if one adds them
485together the result is that of twice of QCD. We should
486remember from our one-loop computation that overlaps
487need to be included, and thus we proceed to calculate the
488ðnG;Gn̄Þ overlap.

489C. The Regge mode

490Here, we show that the overlap is the generator of Regge
491physics. Expanding the integrand of (33) subsequently with
492the scaling of the modes nG and Gn̄, all propagators
493become transverse and factor out of the longitudinal
494integration

495496

ImMð2Þ
nG=Gn̄ ¼

g6

64π5

Z
d4l1d4l2

δþ½ð−lþ1 Þ
ffiffiffi
s

p
− Δ1&δþ½ð−lþ2 Þl−1 − Δ12&δþ½

ffiffiffi
s

p
l−2 − Δ2&θð

ffiffiffi
s

p
− l−1 Þθð

ffiffiffi
s

p
þ lþ2 Þ

ð−Δ1Þð−Δ2Þð−Δ1qÞð−Δ2qÞ
: ð44Þ

497 Note that the theta functions in δþ are also expanded in this momentum region and similarly to the nG mode considered
498 above we inserted additional theta functions present in the full QCD expression that help regulate integrals. Using the delta
499 functions yields

l̄þ1 ¼ −
Δ1ffiffiffi
s

p ; l̄−2 ¼ Δ2ffiffiffi
s

p ; l̄þ2 ¼ −
Δ12

lþ2
: ð45Þ
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500 As a result the overlap integral is equal to

ImMð2Þ
nG=Gn̄ ¼

g6

256π5
1

s

Z
d2l1d2l2

1

Δ1Δ2Δ1qΔ2q
Il−1 ; ð46Þ

501 where

Il−1 ¼
Z ffiffi

s
p

Δ12=
ffiffi
s

p dl−1
1

l−1
¼ ln

"
s

Δ12

#
: ð47Þ

502 Thus, the overlap correctly captures the subregion
503 l−1 ≪

ffiffiffi
s

p
and thus the final result in the Regge limit

504 reads

ImMð2Þ
nG=Gn̄ ¼

πg2β2ðtÞ
s

ln s: ð48Þ

505 This is same answer as in the Regge limit of QCD.

506 D. Combining the modes of SCETG

507 Combining all the modes in the effective theory under
508 consideration, we get

ImMð2Þ
SCETG

¼ ImðMð2Þ
nG þMð2Þ

Gn̄ −Mð2Þ
nG=Gn̄Þ

¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sΔ1Δ2Δ1qΔ2q

×
$
ln

s
Δ12

þ ln
Δ1q

Δ1

− 2
arctanU

U

%
: ð49Þ

509 This combined answer reduced to the case t ¼ 0 repro-
510 duces the QCD result exactly

511
ImMð2Þ

SCETG
ðt ¼ 0Þ ¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sðΔ1Δ2Þ2

×
$
ln

s
Δ12

− 2

%

¼ ImMð2Þ
QCDðt ¼ 0Þ: ð50Þ

512It also reproduces the leading Regge behavior of the QCD
513integral for arbitrary t. The fact that the leading Regge
514behavior is present in both modes and in the overlap as
515well, simply means that the true region from which the
516leading logarithm is coming is the overlap region. This
517result must be intimately connected to the strong ordering
518in the leading Regge limit. Indeed, strong ordering is a very
519special region in the momentum space with the hierarchy of
520energies, and we argue that our observation that the leading
521mode is the overlap has the same roots. In the remaining
522sections we provide arguments why this conclusions
523persists to higher orders.

524VI. THREE-LOOP LADDER

525In this section, we demonstrate that the full overlap
526between all “on-shell” modes immediately yields the
527leading Regge behavior similar to the two-loop case. At
528three loops we find three leading modes: ðn; n;GÞ
529ðn;G; n̄Þ, ðG; n̄; n̄Þ. The imaginary part of the three-loop
530ladder is obtained via the Cutkosky rule and the expression
531is similar to (44). The three-fold overlap between the
532leading modes forces all the propagators to become trans-
533verse and factor out as before. A close look at the expansion
534of the arguments of the delta functions for this multiple
535overlap momentum region leads to

536537

ImMð3Þ
nnG=nGn̄=Gn̄ n̄ ¼

g8

512π8

Z
d4l1d4l2d4l3

δþð−
ffiffiffi
s

p
lþ1 − Δ1Þδþð−l−1 lþ2 − Δ12Þδþð−l−2 lþ3 − Δ23Þδþð

ffiffiffi
s

p
l−3 − Δ3Þ

Δ1Δ2Δ3Δ1qΔ2qΔ3q

¼ g8

512π8
1

23
1

s

Z
d2l1⊥d2l2⊥d2l3⊥

1

Δ1Δ2Δ3Δ1qΔ2qΔ3q
Il−1 l−2 : ð51Þ

538 Notice the nice feature that the appearance of Δi terms
539 inside the δ functions follows from the consistent power
540 counting of the multi-overlap region. We use the delta
541 function to integrate over all plus components in addition to
542 l−3 , and the remaining nontrivial integrals read 5

Il−1 l−2 ¼
Z ffiffi

s
p

Δ=
ffiffi
s

p
dl−2
l−2

Z ffiffi
s

p

l−2

dl−1
l−1

ð52Þ

543

¼ 1

2
ln2

"
s
Δ

#
; ð53Þ

544where Δ is a function of transverse momenta, but in the
545leading logarithmic approximation the answer does not
546depend on it. Finally, we get keeping only leading in the
547Regge limit term:

ImMð3Þ
nnG=nGn̄=Gn̄ n̄ ¼

πg2βðtÞ3

s
ln2s
2

: ð54Þ

548This matches the QCD result.

5The prescription adopted to get these limits of integration
relies on unexpanded theta functions adopted from full the QCD
expression. See the comment below Eq. (37) for a better way to
regulate such loop integrals in the effective field theory.
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549 VII. GENERALIZATION TO ALL ORDERS

550 From our explicit calculations at one- and two-loop
551 orders it is easy to guess the answer for higher orders.
552 We first guess the answer and then prove it further
553 below. We expect that the true momentum region for the
554 Regge kinematics at N-loop order is N leading graphs
555 which are subset of SCETG graphs with on-shell inter-
556 mediate states. These are the graphs with a number of
557 n-collinear gluons in the loops, a single Glauber gluon,
558 and after it a number of n̄-collinear momentum in the
559 loops

MðNÞ
n…nG; MðNÞ

n…nGn̄…n̄; …MðNÞ
Gn̄…n̄: ð55Þ

560 Each of these amplitudes includes, by our definition,
561 both the direct box and the crossed box. Each of these
562 amplitudes reproduces the leading Regge behavior as
563 s → ∞ and also any overlap of any subset of these
564 amplitudes reproduces the Regge behavior. Thus, once
565 one combines all the modes, the answer is identical to
566 only including a single mode which is the overlap of all
567 N momentum regions.
568 In order to prove the above statements we use the
569 strong ordering derivation to show that the arbitrary graph
570 in the method of regions gives an identical result as a
571 single loop integral in QCD. Consider, for example, an

572 MðNÞ
Gn̄…n̄ graph. The loop momenta, li where i ¼ 1…N,

573 scale as ðlþi ; l−i ; li⊥Þ ∼ ðλ2; λ2; λÞ; ð1; λ2; λÞ;…ð1; λ2; λÞ.
574 Thus, the plus momentum satisfies lþ1 ∼ λ2 ≪ lþ2 ∼ % % % ∼
575 lþk ∼ lþkþ1 ∼ % % % ∼ lþN ∼ 1 and l−1 ∼l−2 ∼ %%%∼l−k ∼l−kþ1∼ %%%∼
576 l−N∼λ2. Clearly the strong ordering region is a subregion
577 of this region, since for the strong ordered region we
578 have6

jlþ1 j ≪ jlþ2 j % % % ≪ jlþk j ≪ jlþkþ1j ≪ % % % ≪ jlþN j;
l−1 ≫ l−2 % % % ≫ l−k ≫ l−kþ1 ≫ % % % ≫ l−N: ð56Þ

579 Thus, repeating the usual strong ordering region deriva-
580 tion we would presumably get the same answer as in the

581 full theory if we started to work on the graph MðNÞ
Gn̄…n̄.

582 Similarly we can show that every other relevant graph is
583 identical to one another, since they all contain the strong
584 ordering region as their sub-region.
585 An analogous statement holds for any of the loop
586 integrals involving Glauber gluons. These subsets of graphs
587 are the only ones out of entire set that allow on-shell
588 intermediate states. Our observation that the multi-overlap

589of these regions plays an important role has a simple
590interpretation. At N-loop order the single isolated momen-
591tum region that gives the leading Regge behavior is
592the multi-overlap of all on-shell modes n…nG=n…
593nGn̄…n̄=…=Gn̄…n̄. It is easy to verify by a straightfor-
594ward calculation similar to what we did at three-loop
595order

ImMðNÞ
n…nG=n…nGn̄…n̄=…=Gn̄…n̄ ¼

πg2βðtÞ
s

ðβðtÞ ln sÞN−1

ðN − 1Þ!
;

ð57Þ

596which reproduces the QCD Regge limit. In this
597section we showed that all leading modes have a strong
598ordering momentum region as their subregion, thus
599including only the multiple overlap of all these
600modes is sufficient and no surprise leads to the correct
601answer.

602VIII. CONCLUSIONS

603We have shown how one obtains Regge physics using
604the mode expansion of SCET. In the effective field theory,
605the key contributions come from overlap regions which
606must be carefully treated. The simplest and most consistent
607approach includes the Glauber modes of the effective field
608theory SCETG.
609In the scalar theory that we discuss, the one-loop
610contribution that starts the Regge ladder sum comes from
611the imaginary part of the box diagram. The box diagram
612can be reproduced in an effective theory which includes
613only the hard and collinear modes. However, this comes at
614the cost of seemingly violating the unitarity property of
615field theory in that the imaginary part of the amplitude
616arises from a hard intermediate state which the effective
617theory says is far off shell. This result tells us that in fact
618the contribution comes from an overlap region with an on-
619shell mode. By including the exchange of Glauber modes
620in the description, we can again recover the full box
621diagram via the mode expansion. In this case, after
622accounting for the overlap regions, the imaginary part
623of the amplitude is properly obtained from the t-channel
624Glauber exchange with s-channel on-shell collin-
625ear modes.
626At higher order the deconstruction of the various
627overlap regions continues, with a final result that is simple
628to state. Collinear modes provide many of the legs in the
629ladder sum, and all of the s-channel on-shell states.
630However, at any given loop order, a Glauber mode is
631responsible for the connection between the collinear n and
632n̄ modes. We have explicitly demonstrated this at two
633loops, and provided an argument that this continues for all
634higher loops.

6Note, that in this expression all the “þ” components are
negative and all the “−” components are positive. This is imposed
by the theta functions in the expression for the QCD cut graph.
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  549 VII. GENERALIZATION TO ALL ORDERS

550 From our explicit calculations at one- and two-loop
551 orders it is easy to guess the answer for higher orders.
552 We first guess the answer and then prove it further
553 below. We expect that the true momentum region for the
554 Regge kinematics at N-loop order is N leading graphs
555 which are subset of SCETG graphs with on-shell inter-
556 mediate states. These are the graphs with a number of
557 n-collinear gluons in the loops, a single Glauber gluon,
558 and after it a number of n̄-collinear momentum in the
559 loops

MðNÞ
n…nG; MðNÞ

n…nGn̄…n̄; …MðNÞ
Gn̄…n̄: ð55Þ

560 Each of these amplitudes includes, by our definition,
561 both the direct box and the crossed box. Each of these
562 amplitudes reproduces the leading Regge behavior as
563 s → ∞ and also any overlap of any subset of these
564 amplitudes reproduces the Regge behavior. Thus, once
565 one combines all the modes, the answer is identical to
566 only including a single mode which is the overlap of all
567 N momentum regions.
568 In order to prove the above statements we use the
569 strong ordering derivation to show that the arbitrary graph
570 in the method of regions gives an identical result as a
571 single loop integral in QCD. Consider, for example, an

572 MðNÞ
Gn̄…n̄ graph. The loop momenta, li where i ¼ 1…N,

573 scale as ðlþi ; l−i ; li⊥Þ ∼ ðλ2; λ2; λÞ; ð1; λ2; λÞ;…ð1; λ2; λÞ.
574 Thus, the plus momentum satisfies lþ1 ∼ λ2 ≪ lþ2 ∼ % % % ∼
575 lþk ∼ lþkþ1 ∼ % % % ∼ lþN ∼ 1 and l−1 ∼l−2 ∼ %%%∼l−k ∼l−kþ1∼ %%%∼
576 l−N∼λ2. Clearly the strong ordering region is a subregion
577 of this region, since for the strong ordered region we
578 have6

jlþ1 j ≪ jlþ2 j % % % ≪ jlþk j ≪ jlþkþ1j ≪ % % % ≪ jlþN j;
l−1 ≫ l−2 % % % ≫ l−k ≫ l−kþ1 ≫ % % % ≫ l−N: ð56Þ

579 Thus, repeating the usual strong ordering region deriva-
580 tion we would presumably get the same answer as in the

581 full theory if we started to work on the graph MðNÞ
Gn̄…n̄.

582 Similarly we can show that every other relevant graph is
583 identical to one another, since they all contain the strong
584 ordering region as their sub-region.
585 An analogous statement holds for any of the loop
586 integrals involving Glauber gluons. These subsets of graphs
587 are the only ones out of entire set that allow on-shell
588 intermediate states. Our observation that the multi-overlap

589of these regions plays an important role has a simple
590interpretation. At N-loop order the single isolated momen-
591tum region that gives the leading Regge behavior is
592the multi-overlap of all on-shell modes n…nG=n…
593nGn̄…n̄=…=Gn̄…n̄. It is easy to verify by a straightfor-
594ward calculation similar to what we did at three-loop
595order

ImMðNÞ
n…nG=n…nGn̄…n̄=…=Gn̄…n̄ ¼

πg2βðtÞ
s

ðβðtÞ ln sÞN−1

ðN − 1Þ!
;

ð57Þ

596which reproduces the QCD Regge limit. In this
597section we showed that all leading modes have a strong
598ordering momentum region as their subregion, thus
599including only the multiple overlap of all these
600modes is sufficient and no surprise leads to the correct
601answer.

602VIII. CONCLUSIONS

603We have shown how one obtains Regge physics using
604the mode expansion of SCET. In the effective field theory,
605the key contributions come from overlap regions which
606must be carefully treated. The simplest and most consistent
607approach includes the Glauber modes of the effective field
608theory SCETG.
609In the scalar theory that we discuss, the one-loop
610contribution that starts the Regge ladder sum comes from
611the imaginary part of the box diagram. The box diagram
612can be reproduced in an effective theory which includes
613only the hard and collinear modes. However, this comes at
614the cost of seemingly violating the unitarity property of
615field theory in that the imaginary part of the amplitude
616arises from a hard intermediate state which the effective
617theory says is far off shell. This result tells us that in fact
618the contribution comes from an overlap region with an on-
619shell mode. By including the exchange of Glauber modes
620in the description, we can again recover the full box
621diagram via the mode expansion. In this case, after
622accounting for the overlap regions, the imaginary part
623of the amplitude is properly obtained from the t-channel
624Glauber exchange with s-channel on-shell collin-
625ear modes.
626At higher order the deconstruction of the various
627overlap regions continues, with a final result that is simple
628to state. Collinear modes provide many of the legs in the
629ladder sum, and all of the s-channel on-shell states.
630However, at any given loop order, a Glauber mode is
631responsible for the connection between the collinear n and
632n̄ modes. We have explicitly demonstrated this at two
633loops, and provided an argument that this continues for all
634higher loops.

6Note, that in this expression all the “þ” components are
negative and all the “−” components are positive. This is imposed
by the theta functions in the expression for the QCD cut graph.
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78 region which the collinear mode shares with Glauber
79 exchange. By removing the overlap, the box can be
80 reformulated in a version of SCET including the Glauber
81 mode, SCETG, in which case the horizontal rung is in fact
82 an on-shell (collinear) mode. The need to include Glauber
83 modes in SCET has been shown by [10] (see also [11]);
84 they have been shown to be important in the context of jets
85 in a medium [12], and the relevance of these modes for
86 Regge physics was first shown in [13].
87 The plan of this paper involves a brief overview of Regge
88 behavior in Sec. 2, and of SCET kinematics in Sec. 3. Then
89 in Sec. 4 (along with Appendix A) we provide a detailed

90treatment of the box diagram, paying particular attention to
91the overlap regions between modes and demonstrating the
92importance of the Glauber mode. Section 5 treats the two-
93loop ladder graph and shows how to count the modes and
94match to the full theory. This is continued to higher orders
95in Secs. 6 and 7. A conclusion summarizes what has been
96accomplished. While this paper was being finalized, an
97important related work by Fleming was released [14], and
98we also discuss the relation of our work to his in the
99conclusion. Three appendices provide some relevant tech-

100nical details.

101II. REGGE BEHAVIOR IN FIELD THEORY

102For the purposes of this paper we will refer to Regge
103behavior as the dependence of the scattering amplitude on a
104power of the center-of-mass energy

MQCD ∼ sαðtÞ ð2Þ

105in the limit s → ∞, t fixed. The Regge exponent αðtÞ is
106dynamically generated through loop diagrams. At each
107order in perturbation theory, the loops generate logs, but in
108this kinematic region the logs exponentiate into a power. In
109general one finds

MQCD ∼ a0sa
X∞

n¼0

βnðtÞ
n!

lnnsþ % % % → a0saþβðtÞ þ % % % :;

ð3Þ

110where we have allowed an extra possible overall factor of sa

111to the amplitude. (In our example a ¼ −1.) It is this
112conversion of logs into powers that makes the phenomenon
113important for phenomenology. In real QCD one sees a
114variety of Regge exponents depending on the quantum
115numbers, including the Pomeron with αð0Þ ∼ 1.
116Polkinghorne [8] was the first to show how this behavior
117emerges in a field theory, using a massive scalar field with
118the ϕ3 interaction of Eq. (1). Although the ladder diagrams
119cannot be calculated completely, the leading high energy
120behavior emerges from a corner of the Feynman parameter
121integration and this corner can be analyzed and summed.
122For example, the direct box diagram shown in Fig. 3 after
123momentum integration becomes

F2:1 FIG. 2. The cut ladder graphs.

F1:1 FIG. 1. The ladder graphs.

F3:1 FIG. 3. One-loop Feynman diagrams with boxlike topology. We only show one internal momentum enough to clarify our conventions.
F3:2 The graphs represent the (s, t), (u, t), and (s, u) channels respectively. The last graph is suppressed by t=s compared to the first two.
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• The medium is modeled with a finite number of 
scattering centers with static Debye-screened 
potential

H =
NX

n=1

H(q;x
n

) = 2⇡�(q0) v(q)
NX

n=1

eiqxn T a(R)⌦ T a(n)

v(q) =
4⇡↵s

q2z + q2 + µ2

Gyulassy, Wang, 94

• The momentum scaling of the 
exchange gluon is that of the 
Glauber gluon:  q(�2,�2,�)

Gyulassy-Wang model

⌦ ⌦ ⌦

⌦

⌦

⌦
⌦

⌦
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Lagrangian of SCETG

section 5 we evaluate the transverse momentum broadening of jets, induced by their collisional interactions

in the strongly interacting medium. Radiative processes are discussed in section 6. Our focus here is on the

soft gluon limit ⇤ ⇥ E for comparison to previous results. We demonstrate the gauge invariance of the jet

broadening and energy loss results in section 7. We deduce the kernels that describes the broadening and

medium-induced bremsstrahlung as a function of the quark interactions in the medium in section 8. An

application of the reaction operators for collisional and radiative processes is also discussed in this section.

The extension of radiative energy loss calculation beyond this soft gluon approximation is presented in

section 9. We also show how the process-dependent medium-induced radiative corrections factorize from

the hard jet production cross section. Our conclusions are given in section 10. We have moved some of the

background technical discussion to appendices.

2. A brief overview of SCET

SCET [8, 9, 10, 11] is an e⇥ective theory of QCD which describes the dynamics of highly energetic quarks

and gluons. The relevant physical scales in this e⇥ective theory are the hard scale Eh � ET � Ecm, jet scale

Ej � p⇤ that describes the width of the jet in momentum space and the scale of soft radiation Es � �QCD.

The degrees of freedom in SCET are collinear quarks (�n,p), collinear gluons (An,p) and soft gluons (As).

All other fields, such as the soft quarks, are integrated out from the QCD Lagrangian. Their e⇥ect on

the dynamics is contained into Wilson coe⇤cients of the SCET operators, which can be calculated using

a standard matching of full theory onto e⇥ective theory.

The Lagrangian of SCET [9] arises from substituting into the QCD Lagrangian ⇥ =
⌥

p̃ e�ip̃x ⇥n,p̃ and

integrating out the small component �n̄ of ⇥n, where �n = n/n̄/
4 ⇥n, �n̄ = n̄/n/

4 ⇥n and ⇥n = �n + �n̄. The result

for the collinear-soft Lagrangian is:

LSCET(�n, An, As) = �̄n

⇧
in·D + iD/⇤

1

in̄·D iD/⇤
⌃
n̄/

2
�n + LYM(An, As) , (2.1)

LYM(An, As) =
1

2g2
tr
⇤�
iDµ

s + gAµ
n,q, iD

�
s + gA�

n,q�
⇥⌅2

+ LG.F. , (2.2)

LG.F.(R⇥) =
1

�
tr
⇤�
iDsµ, A

µ
n,q

⇥⌅2
, (2.3)

LG.F.(LCG(b)) =
1

�
tr
⇤
bµA

µ
n,q

⌅2
. (2.4)

Here, the covariant derivative D contains both collinear and soft fields: iD = i⌅ + g (An +As), while Ds

includes only the soft gluons: iDs = i⌅ + gAs. Thus the collinear and soft modes are coupled in the

SCET Lagrangian. In the first term of Eq. (2.2) the summation over label momenta q, q⇥ is understood

implicitly, and in Eq. (2.3), Eq. (2.4) summation over the label momentum q is understood implicitly. We

have written out explicitly the gauge fixing terms for the covariant and the light-cone gauges. The ghost

terms are omitted for brevity.

A key ingredient of SCET formulation is the BPS transformation [11]. This transformation constitutes

a collinear field redefinition which involves soft Wilson lines and removes the interactions between soft and

collinear fields in the Lagrangian of SCET up to the power corrections. Such decoupling is essential in the

proof of factorization theorems in SCET. The BPS transformation redefines the collinear quark and gluon

– 3 –

All we need in order to derive all interactions between collinear(and soft) 
particles with Glaubers is the scaling rule for the vector potential   

The SCET Lagrangian contains everything  :)

iDµ = i@µ + g(Aµ
s +Aµ

c+Aµ
G)

Anti-collinear source of Glaubers
Aµ

G / (�4,�2,�3)

Aµ
G / (�2, 0,�)

covariant gauge

light-cone gauge
Idilbi, Majumder, 08
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• Our Glauber Lagrangian is invariant under the gauge symmetries 
of SCET

• We will use the static source and three gauge choices: 

• covariant(AG, Ac)

• light-cone(AG, Ac) and 

• hybrid(Ac+=0, covariant(AG))

of Table 4.1, where we have defined �1...�4,⇤1...⇤3 as follows:

�µ
1 = igT a nµ n̄/

2
, (4.6)

�µ
2 = igT a �

µ
⇤p/⇤ + p/⇥⇤�

µ
⇤

n̄·p
n̄/

2
, (4.7)

�µ
3 = igT a vµ, (4.8)

�µ
4 = igT a �µ, (4.9)

⇤µ,⇥,�
1 = gfabc nµ

 
g⇥� n̄·q1 + n̄⇥

⇤
q�2⇤ � q�1⇤

⌅
� n̄� (q⇥2⇤ � q⇥1⇤)�

1� 1
⇤

2

⇤
n̄�q⇥1 + n̄⇥q�2

⌅⌦
, (4.10)

⇤µ,⇥,�
2 = gfabc

⌥
gµ�⇤

⇧
�n⇥

2
q+1 + q⇥1⇤ � 2q⇥2⇤

⌃
+ gµ⇥⇤

⇧
�n�

2
q+1 + q�2⇤ � 2q�1⇤

⌃
+ g⇥�⇤

�
nµ n̄·q1 + qµ1⇤ + qµ2⇤

⇥�
,

⇤µ,⇥,�
3 = gfabc

⌥
gµ�⇤

⇧
n̄⇥

2
(q�1 � 2q�2 ) + q⇥1⇤ � 2q⇥2⇤

⌃
+ gµ⇥⇤

⇧
n̄�

2
(q�2 � 2q�1 ) + q�2⇤ � 2q�1⇤

⌃
+ g⇥�⇤

�
qµ1⇤ + qµ2⇤

⇥�
.

(4.11)

The derived rules allow us to write down the e⌅ective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (⇤n, An, AG) = LSCET(⇤n, An) + LG (⇤n, An, AG) , (4.12)

LG (⇤n, An, AG) =
↵

p,p⇥

e�i(p�p⇥)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
AGµ,a(x) , . (4.13)

Depending on the gauge and the source, the vertexes and the vector potential are di⌅erent and are provided

in the table above. The Lagrangian of this form for the collinear source in R⇤ and A� = 06 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for �qqAG in Table 4.1. We

slso note that for the covariant gauge and ⇤ = 1 our Feynman rule for �ggAG(R⇤) = ⇤µ⇥�
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.13) including

the source fields (see Eq. (4.1)):

LG (⇤n, An, ⇥) =
↵

p,p⇥,q

e�i(p�p⇥+q)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
⇥̄ �⇥,a

s ⇥⇥µ⇥(q),

(4.14)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (⇤n, An, ⇥) ⇤ LG

⇤
W †

n⇤n,Bn(An), ⇥
⌅
⇥ LG (⌅n,Bn, ⇥) , (4.15)

6In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n � n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A� = 0 gauge.
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of Table 4.1, where we have defined �1...�4,⇤1...⇤3 as follows:

�µ
1 = igT a nµ n̄/

2
, (4.6)

�µ
2 = igT a �

µ
⇤p/⇤ + p/⇥⇤�

µ
⇤

n̄·p
n̄/

2
, (4.7)

�µ
3 = igT a vµ, (4.8)

�µ
4 = igT a �µ, (4.9)

⇤µ,⇥,�
1 = gfabc nµ

⌥
g⇥� n̄·q1 + n̄⇥

⇤
q�2⇤ � q�1⇤

⌅
� n̄� (q⇥2⇤ � q⇥1⇤)�

1� 1
⇤

2

⇤
n̄�q⇥1 + n̄⇥q�2

⌅�
, (4.10)

⇤µ,⇥,�
2 = gfabc

⌦
gµ�⇤ (q⇥1⇤ � 2q⇥2⇤) + gµ⇥⇤ (q�2⇤ � 2q�1⇤) + g⇥�⇤

�
nµ n̄·q1 + qµ1⇤ + qµ2⇤

⇥↵
, (4.11)

⇤µ,⇥,�
3 = gfabc

⌦
gµ�⇤ (q⇥1⇤ � 2q⇥2⇤) + gµ⇥⇤ (q�2⇤ � 2q�1⇤) + g⇥�⇤

�
qµ1⇤ + qµ2⇤

⇥↵
. (4.12)

The derived rules allow us to write down the e⌅ective Lagrangian of SCETG . As a result, we obtain

the following interaction term between SCET collinear fields and the vector potential Aµ
G(x) of the Glauber

gluons:

LSCETG (⇤n, An, AG) = LSCET(⇤n, An) + LG (⇤n, An, AG) , (4.13)

LG (⇤n, An, AG) =
 

p,p⇥

e�i(p�p⇥)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
AGµ,a(x) , . (4.14)

Depending on the gauge and the source, the vertexes and the vector potential are di⌅erent and are provided

in the table above. The Lagrangian of this form for the collinear source in R⇤ and A� = 07 gauges was

derived in [32] and agrees with our expressions for corresponding two entries for �qqAG in Table 4.1. We

slso note that for the covariant gauge and ⇤ = 1 our Feynman rule for �ggAG(R⇤) = ⇤µ⇥�
1 disagrees with

that of [33].

Finally, in order to have a manifestly gauge invariant Lagrangian, we can rewrite Eq. (4.14) including

the source fields (see Eq. (4.1)):

LG (⇤n, An, ⇥) =
 

p,p⇥,q

e�i(p�p⇥+q)x

⇧
⇤̄n,p⇥�

µ,a
qqAG

n̄/

2
⇤n,p � i�µ⇥�,abc

ggAG

⇤
Ab

n,p⇥

⌅

⇥

�
Ac

n,p

⇥
�

⌃
⇥̄ �⇥,a

s ⇥⇥µ⇥(q),

(4.15)

where all the vertexes for the target and the source are provided conveniently in Table 4.1. In order to

make this Lagrangian collinear gauge invariant one needs to dress the quarks and gluons with collinear

Wilson lines Wn(x). As a result the Lagrangian that includes the Wilson lines can be obtained as follows:

LG (⇤n, An, ⇥) ⇤ LG

⇤
W †

n⇤n,Bn(An), ⇥
⌅
⇥ LG (⌅n,Bn, ⇥) , (4.16)

where W †
n⇤n(⇥ ⌅n), Bn(An) are the dressed collinear gauge invariant quark and gluon fields correspond-

ingly. In the next two subsections we will show that Lagrangian in Eq. (4.16) is invariant under the BPS

transformation [11] and the soft and collinear gauge transformations.

7In order to avoid confusion we note that in [32] the source was in the n direction while the target jet in the n̄ direction,

thus our formulas agree with that reference if n � n̄ as expected. For example in [32] the light-cone gauge A+ = 0 was

considered, while it is analogous to our A� = 0 gauge.
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Lagrangian of SCETG

(used in GLV calculations)
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3

probability not to emit a gluon, exp(−⟨Ng⟩). Con-
versely, solving Eqs. (8) and (9) numerically allows
us to unify the treatment of the vacuum and medium-
induced parton showers.
We now turn to the numerical comparison be-

tween the medium-modified evolution approach to
jet quenching and the traditional energy loss formal-
ism. We elect to include all QGP effects in the frag-
mentation functions, such that the invariant inclusive
hadron production cross section reads:

1

⟨Ncoll⟩
dσh

AA

dyd2pT
=
∑

c

∫ 1

zmin

dz
dσc(pc = pT /z)

dyd2pTc

×
1

z2
Dmed/quench

c (z) . (15)

Here, c = {q, q̄, g} and we choose the factorization,
fragmentation and renormalization scales Q = pTc

,
and dσc/dyd2pTc

is the unmodified hard parton pro-
duction cross section.
Should an energy loss approach be adopted, it is

important to realize that the soft gluon emission limit
must be consistently implemented. If the fractional
energy loss becomes significant, it is carried away
through multiple gluon bremsstrahlung. In the in-
dependent Poisson gluon emission limit, we can con-
struct the probability density Pc(ϵ) of this fractional
energy loss ϵ =

∑

i ωi/E ≈
∑

iQ
+
i /p

+, such that:

∫ 1

0
dϵ P (ϵ) = 1 ,

∫ 1

0
dϵ ϵP (ϵ) =

〈

∆E

E

〉

. (16)

A more detailed discussion is given in [7]. If a parton
loses this energy fraction ϵ during its propagation in
the QGP to escape with momentum pquenchTc

, immedi-

ately after the hard collision pTc
= pquenchTc

/(1 − ϵ).

Noting the additional Jacobian |dpquenchTc
/dpTc

| =
(1 − ϵ), the kinematic modification to the FFs due
to energy loss is:

Dquench
c (z) =

∫ 1−z

0
dϵ

Pc(ϵ)

(1 − ϵ)
Dc

(

z

1− ϵ

)

, (17)

and can be directly implemented in Eq. (15).
In Figure 1 we present our calculations of the nu-

clear modification factor RAA in the limit of soft
gluon bremsstrahlung. Results are obtained from the
parton energy loss approach (cyan band) and by us-
ing the analytic solution to the in-medium evolution
given in Eq. (12) (yellow band). The upper edge of
the uncertainty bands (solid lines) corresponds to a
coupling between the jet and the medium g = 2.0 and
the lower edge (dashed lines) corresponds to g = 2.1.
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FIG. 1: Nuclear modification factor comparison between
the traditional energy loss approach (cyan band) and the
analytic solution to QCD evolution in the soft gluon limit
(yellow band). The upper and lower edges of the bands
correspond to couplings between the jet and the medium
g = 2.0 and g = 2.1, respectively. The insets show the
ratios of different RAA curves. Data is form ALICE an
CMS.

The results of the two calculations are remarkably
similar and both reproduce well the suppression of
inclusive charged hadron production in 0-10% central
Pb+Pb collisions at the LHC measured by ALICE [4]
and CMS [5]. In both approaches the coupling g be-
tween the jet and the medium can be constrained
with an accuracy of 5% and the transport properties
of the medium, which scale as g4, can be extracted
with 20% uncertainty. The inset shows the ratio for
the different RAA curves relative to the g = 2.0 en-
ergy loss result. We observe from this inset that the
only difference between the two approaches is a small
variation in the shape of the nuclear modification ra-
tio as a function of pT . At any fixed transverse mo-
mentum the difference in the predicted magnitude of
jet quenching can be absorbed in less than 2% change
of the coupling g between the jet and the medium.

In Figure 2 we show RAAs obtained with medium-
modified FFs that are numerical solutions to the
DGLAP evolution equations, Eqs. (8), (9), with full
medium-induced splitting kernels [12] (cyan band)
and their small-x energy loss limit [20] (yellow band).
In this figure, the uncertainty bands correspond to
g = 1.9−2.0. The difference between the small-x and
full evolution is only noticeable below pT = 20 GeV,
as can be seen from the inset. At small and interme-
diate transverse momenta the solution to the DGLAP
equations beyond the soft gluon limit yields a slightly
better agreement between theory and experiment.

To understand the numerical results, we further
scrutinize the in-medium modification of FFs in Fig-

EvoluVon$equaVons$

The evolution equations are given by standard Altarelli-Parisi equations:

df
q

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (45)

df
q̄

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q̄

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (46)

df
g

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

(

P
g!gg

(z0, Q)f
g

⇣ z

z0
, Q

⌘

+P
q!gq

(z0, Q)
⇣

f
q

⇣ z

z0
, Q

⌘

+ f
q̄

⇣ z

z0
, Q

⌘⌘

)

. (47)

The complete medium-induced splitting functions look like:

P
(1)

i

(z,Q) = P vac

i

(z) [1 + g
i

(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = p

T

look like f
i/j

(z, p
T

), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = p

T

. For example f
g/q

(z, p
T

) is the solution for the gluon density from the evolution
equations with the initial conditions f

q

(z, µ
IR

) = �(1� z), f
q̄

(z, µ
IR

) = f
g

(z, µ
IR

) = 0, and so forth.
As a result of solving the A-P evolution equations we get the full LL series resummed by:

�(i)(p
T

) =
X

j=q,q̄,g

Z

1

0

dz �(j)

⇣p
T

z

⌘

f
i/j

(z, p
T

), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the
cross section formulas from initial state to the final state.

Small x approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for the
small x approximation and become uncoupled. To see this we present the small x approximation of
medium-induced splitting functions:

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)
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The$form$of$the$evoluVon$equaVons$is$same$as$the$
tradiVonal$AltareliPParisi$evoluVon$equaVons:$

For$the$FragmentaVon$funcVon$we$need$to$include$in$
addiVon$to$vacuum$evoluVon,$the$mediumPinduced$
spli_ng$terms.$$
Similarly$to$the$vacuum$case$the$virtual$pieces$we$
determine$from$the$momentum$and$flavor$sum$rules$

P=Pvac+Pmed$

Real$emission$
calculated$in$
GO,$Vitev,$2011$
using$SCETG$

Comparison$I:$Energy$loss$vs$EvoluVon$

•  QCD$evoluVon$in$the$small$x$evoluVon$agrees$almost$perfectly$with$
energy$loss$approach$(differences$at$any$value$of$the$pT$can$be$
absorbed$within$2%$change$in$the$jetPmedium$coupling$g)$

3

probability not to emit a gluon, exp(−⟨Ng⟩). Con-
versely, solving Eqs. (8) and (9) numerically allows
us to unify the treatment of the vacuum and medium-
induced parton showers.
We now turn to the numerical comparison be-

tween the medium-modified evolution approach to
jet quenching and the traditional energy loss formal-
ism. We elect to include all QGP effects in the frag-
mentation functions, such that the invariant inclusive
hadron production cross section reads:

1

⟨Ncoll⟩
dσh

AA

dyd2pT
=
∑

c

∫ 1

zmin

dz
dσc(pc = pT /z)

dyd2pTc

×
1

z2
Dmed/quench

c (z) . (15)

Here, c = {q, q̄, g} and we choose the factorization,
fragmentation and renormalization scales Q = pTc

,
and dσc/dyd2pTc

is the unmodified hard parton pro-
duction cross section.
Should an energy loss approach be adopted, it is

important to realize that the soft gluon emission limit
must be consistently implemented. If the fractional
energy loss becomes significant, it is carried away
through multiple gluon bremsstrahlung. In the in-
dependent Poisson gluon emission limit, we can con-
struct the probability density Pc(ϵ) of this fractional
energy loss ϵ =

∑

i ωi/E ≈
∑

iQ
+
i /p

+, such that:

∫ 1

0
dϵ P (ϵ) = 1 ,

∫ 1

0
dϵ ϵP (ϵ) =

〈

∆E

E

〉

. (16)

A more detailed discussion is given in [7]. If a parton
loses this energy fraction ϵ during its propagation in
the QGP to escape with momentum pquenchTc

, immedi-

ately after the hard collision pTc
= pquenchTc

/(1 − ϵ).

Noting the additional Jacobian |dpquenchTc
/dpTc

| =
(1 − ϵ), the kinematic modification to the FFs due
to energy loss is:

Dquench
c (z) =

∫ 1−z

0
dϵ

Pc(ϵ)

(1 − ϵ)
Dc

(

z

1− ϵ

)

, (17)

and can be directly implemented in Eq. (15).
In Figure 1 we present our calculations of the nu-

clear modification factor RAA in the limit of soft
gluon bremsstrahlung. Results are obtained from the
parton energy loss approach (cyan band) and by us-
ing the analytic solution to the in-medium evolution
given in Eq. (12) (yellow band). The upper edge of
the uncertainty bands (solid lines) corresponds to a
coupling between the jet and the medium g = 2.0 and
the lower edge (dashed lines) corresponds to g = 2.1.
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FIG. 1: Nuclear modification factor comparison between
the traditional energy loss approach (cyan band) and the
analytic solution to QCD evolution in the soft gluon limit
(yellow band). The upper and lower edges of the bands
correspond to couplings between the jet and the medium
g = 2.0 and g = 2.1, respectively. The insets show the
ratios of different RAA curves. Data is form ALICE an
CMS.

The results of the two calculations are remarkably
similar and both reproduce well the suppression of
inclusive charged hadron production in 0-10% central
Pb+Pb collisions at the LHC measured by ALICE [4]
and CMS [5]. In both approaches the coupling g be-
tween the jet and the medium can be constrained
with an accuracy of 5% and the transport properties
of the medium, which scale as g4, can be extracted
with 20% uncertainty. The inset shows the ratio for
the different RAA curves relative to the g = 2.0 en-
ergy loss result. We observe from this inset that the
only difference between the two approaches is a small
variation in the shape of the nuclear modification ra-
tio as a function of pT . At any fixed transverse mo-
mentum the difference in the predicted magnitude of
jet quenching can be absorbed in less than 2% change
of the coupling g between the jet and the medium.

In Figure 2 we show RAAs obtained with medium-
modified FFs that are numerical solutions to the
DGLAP evolution equations, Eqs. (8), (9), with full
medium-induced splitting kernels [12] (cyan band)
and their small-x energy loss limit [20] (yellow band).
In this figure, the uncertainty bands correspond to
g = 1.9−2.0. The difference between the small-x and
full evolution is only noticeable below pT = 20 GeV,
as can be seen from the inset. At small and interme-
diate transverse momenta the solution to the DGLAP
equations beyond the soft gluon limit yields a slightly
better agreement between theory and experiment.

To understand the numerical results, we further
scrutinize the in-medium modification of FFs in Fig-

RAA(pT ) =
�AA(pT )

hN
coll

i�pp(pT )

Kang,$LashofPRegas,$GO,$Saad,$Vitev,$2014$$

EvoluVon$equaVons$

The evolution equations are given by standard Altarelli-Parisi equations:

df
q

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (45)

df
q̄

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q̄

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (46)

df
g

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

(

P
g!gg

(z0, Q)f
g

⇣ z

z0
, Q

⌘

+P
q!gq

(z0, Q)
⇣

f
q

⇣ z

z0
, Q

⌘

+ f
q̄

⇣ z

z0
, Q

⌘⌘

)

. (47)

The complete medium-induced splitting functions look like:

P
(1)

i

(z,Q) = P vac

i

(z) [1 + g
i

(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = p

T

look like f
i/j

(z, p
T

), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = p

T

. For example f
g/q

(z, p
T

) is the solution for the gluon density from the evolution
equations with the initial conditions f

q

(z, µ
IR

) = �(1� z), f
q̄

(z, µ
IR

) = f
g

(z, µ
IR

) = 0, and so forth.
As a result of solving the A-P evolution equations we get the full LL series resummed by:

�(i)(p
T

) =
X

j=q,q̄,g

Z

1

0

dz �(j)

⇣p
T

z

⌘

f
i/j

(z, p
T

), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the
cross section formulas from initial state to the final state.

Small x approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for the
small x approximation and become uncoupled. To see this we present the small x approximation of
medium-induced splitting functions:

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)
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The$form$of$the$evoluVon$equaVons$is$same$as$the$
tradiVonal$AltareliPParisi$evoluVon$equaVons:$

For$the$FragmentaVon$funcVon$we$need$to$include$in$
addiVon$to$vacuum$evoluVon,$the$mediumPinduced$
spli_ng$terms.$$
Similarly$to$the$vacuum$case$the$virtual$pieces$we$
determine$from$the$momentum$and$flavor$sum$rules$

P=Pvac+Pmed$

Real$emission$
calculated$in$
GO,$Vitev,$2011$
using$SCETG$

•  Using	
  SCETG	
  and	
  DGLAP	
  
equa/ons,	
  we	
  improved	
  
the	
  previous	
  state-­‐of-­‐the	
  
art	
  energy	
  loss	
  predic/ons	
  
for	
  jet	
  quenching	
  



• An explicit calculation shows that for consistency of effective 
theory, SCET should be expanded with Glauber modes to 
describe Drell-Yan process

• It would be interesting to add the spectator interactions into 
the factorization analysis of Drell-Yan. SCETG would be the 
consistent EFT for purpose.

SCETG: effective theory for Drell-Yan

Bauer, Lange, GO(10)pp

l+

l�
�

g
Collins, Soper, Sterman, (82)
Bowdin, Brodsky, Lepage, (81)

Glauber gluon: q(�2,�2,�)
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Conclusions	
  

•  We	
  derived	
  the	
  Regge	
  behavior	
  for	
  scalar	
  QCD	
  from	
  method	
  of	
  
regions	
  

•  The	
  method	
  of	
  regions	
  (EFT)	
  with	
  only	
  collinear	
  modes	
  (SCET)	
  gives	
  
the	
  correct	
  QCD	
  result,	
  however	
  imaginary	
  part	
  comes	
  from	
  off-­‐shell	
  
modes	
  (sub-­‐regions)	
  

•  Using	
  SCET+Glauber,	
  also	
  reproduces	
  the	
  correct	
  QCD	
  behavior,	
  but	
  
has	
  the	
  advantage	
  that	
  the	
  imaginary	
  part	
  comes	
  from	
  the	
  true	
  on-­‐
shell	
  region	
  

•  At	
  one	
  and	
  two	
  loops	
  we	
  explicitly	
  recovered	
  the	
  leading	
  Regge	
  
behavior	
  and	
  we	
  made	
  a	
  simple	
  conjecture	
  at	
  an	
  arbitrary	
  order	
  

•  More	
  work	
  is	
  needed	
  for	
  consistent	
  EFT	
  formula/on	
  of	
  Regge	
  physics.	
  
•  Having	
  a	
  further	
  developed	
  SCET	
  with	
  Glauber	
  gluons	
  will	
  be	
  

beneficial	
  for	
  applica/ons	
  in	
  heavy	
  ion	
  and	
  hadron	
  collisions,	
  including	
  
Regge	
  physics	
  


