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Goals:

Compute amplitudes within framework of light -front perturbation
theory.

Construct recursive relations on the light-front.

Obtain insight into patterns and general structure of amplitudes
from the light-front theory perspective.
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Light-front formalism
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The instant form The front form

The front form has the advantage that it requires

only three Hamiltonians, instead of the four of the

REVIEWS OF MODERN PHYSICS VOLUME 21, NUMBER 3 JULY. 1949  other forms. This makes it mathematically the most
interesting form, and makes any problem of finding

FOI‘mS Of RelatiViStiC DynamiCS Hamiltonians substantially casicr."l'hc front form hl‘ls

the further advantage that there is no square root in

PoA. M. Dirac the H.amiltonia.ns (28), wh_ich means.that one can avoid

St. Johw's College, Cambridge, England negative energies for‘ partlch.:s by s.mtal)l_v choosn'lg the

values of the dynamical variables in the front, without

For the purposes of atomic theory it is necessary to combine the restricted principle of relativity with having to make a special convention about !hc. sign
the Hamiltonian formulation of dynamics. This combination leads to the appearance of ten fundamental of a square root. It may then be easier to eliminate
quantities for each dynamical system, namely the total energy, the total momentum and the 6-vector negative energies from the quantum theory. This
which has three components equal to the total angular momentum, The usual form of dynamics expresses - - S '
everything in terms of dynamical variables at one instant of time, which results in specially simple expres-
sions for six or these ten, namely the components of momentum and of angular momentum. There are
other forms for relativistic dynamics in which others of the ten are specially simple, corresponding to
various sub-groups of the inhomogeneous Lorentz group. These forms are investigated and applied to a

system of particles in interaction and to the electromagnetic field. Ihere is no conclusive argument in favor of one or

other of the forms. Even if it could be decided that one
of them is the most convenient, this would not neces-
sarily be the one chosen by nature, in the event that
only one of them is possible for atomic systems. Thus



Light-front formalism

Kogut,Soper

Infinite momentum frame: a limit of a
Lorentz frame moving in the -z direction
with a (nearly) the speed of light.

(t+ 2)

T =

Sl

Susskind
Isomorphism with the Galilean dynamics in 2 dimensions:

P > Hamiltonian Free particle example:

PT —> Mass m? = PP, =2P*H — P;
P2
H = L + VO
PT —> 2-dim. momentum 2P+
m2
Vo

~ op+t



Light-front rules

Non-covariant (light-front) time ordered diagram

Energy denominators \

Difference of light - cone energies:

D= ki;=p k
J v Particles are on-shell but
/ \ conservation of 3
Final state Intermediate state  Momentum components in

the intermediate states



Light-front rules

> T
" ,l vertices
-
typical graph o NS S JR N ~ g" J J -
n.""‘.v\:.o.,."".o' ﬁDg Hl kl \
B energy denominators internal lines

Need to sum over all vertex orderings in light - front time:

Dy # D3




Light-front formalism

Important simplification on the light front :

Only those diagrams contribute which have positive P_I_ for all internal lines

Weinberg: >©<
this diagram does not contribute —— §

Diagrams in which particles are created or destroyed out of vacuum
do not contribute in the light front formalism.

Note that in light front theory individual diagrams not need to be
Lorentz invariant. Only the sum of the diagrams is Lorentz invariant.



Amplitudes, wave functions, fragmentation functions

We are interested in computing on-shell amplitude

M2 —n-—1)
Various objects on the light-front:

M(1 — n)

transition amplitude

wave function: energy denominator in
the last state

fragmentation function: energy
denominator in the first state

0’
Here the sum over all light front time orderings has /

been performed
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Amplitudes, wave functions, fragmentation functions
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2 to N scattering amplitude

In calculation we want 2 to N amplitude. Since particles move forward and we need to sum over vertex
orderings there are different number of graphs depending whether we start from | or 2 particles.

Scattering amplitude Transition amplitude
I
0 2
3
I
0 2




2 to N scattering amplitude

Calculating scattering amplitude: find graphs of given topology

Make the outgoing k| gluon into incoming.

ko
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In 2 to N case we have significant increase number of graphs



2 to N scattering amplitude

It is however sufficient to compute just | to N transition and then reverse the momenta. Even though
the number of all topologically equivalent time ordered graphs is different, the result is identical (as it
should be since we need to recover Lorentz invariance).
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2 to N scattering amplitude

Relation on the light - front:

My, ({ky, 205 ki, 21158k, 225 - o5k Z0)) =

_M1—>n+1({k09 ZO}a {kAa ZA S kza YORER

Practical setup for computing off-shell/on-shell
amplitudes on the light front:

Compute, off-shell wave functions and/or
fragmentation functions.

This gives off shell amplitudes as in above
relation.

Set, D=0=>) kgau— > k. Which gives transition
amplitude and on-shell 2 to N amplitude.

‘s kna Zn})|/§A—>—/j1, ZA——2]




Wave-functions
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Note: all the calculations done in light - cone gauge.

First state is on-shell (no energy denominator), last state off-
shell energy denominator present.
To simplify, consider only the case with the same helicities:

il i

The initial particle is incoming, all the other particles are

outgoing.

Note that this corresponds to the 2 to n amplitude

all the particles outgoing, which for the on-shell case should be
identically zero. However, we are computing off-shell object
which does not have to be equal to zero.



Solving recurrence relation
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Light cone wave function

Case of the on-shell incoming gluon.
Can resum the wave function completely. Need to sum over all possible splittings.

—D, 0, (1,2,...,n) Z WCES) U, 1(1,2,...,(kk+1),...,n) n—1—n
\/f(kk+1
_Dn+1an+1(1,2,._,,n+1):gzﬂxp(12...,(m+1),...,n+1) n—mn-41

i=1 V f(z i+1)



Light cone wave function

Case of the on-shell incoming gluon.
Can resum the wave function completely. Need to sum over all possible splittings.

—D,V,(1,2,...,n) = gz m\pn_l(l,z,...,(kk+1),...,n) n—1-—n

n

vFo
Dyt U (1,2, n+ 1) = gy g, (1,2, (i + 1), n+ 1)

i—1 V 5(z‘,7;+1)

n—n-+1

Tree-level gluon wave function with exact kinematics
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Light cone wave function

Case of the on-shell incoming gluon.

Can resum the wave function completely. Need to sum over all possible splittings.
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Tree-level gluon wave function with exact kinematics
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Light cone wave function and the
Parke - Taylor amplitude

- Standard result vanishes for this
Wave function in the light-front choice of helicities.

formalism.
M(=+-4) ~ (DpVy(+ = +---+)) D=0 = 0
W, (+ — +---+) this wave function is non-singular when Dn — 0

Consistent with the standard result, the on-shell amplitude vanishes as it is proportional to the
denominator between initial and final states which vanishes due to the energy conservation.
However the off-shell wave function is non zero here.



Fragmentation functions

Energy denominator included the first state

Factorization property (see also cluster expansion Brodsky et al)

|
k) o000 2
: = u“““.o.
. O 0,
Tpi1 = k(12..n4+1) @ 200000,
O
: (i+1...n+1) Oun.. kpni1
|

Fragmentation function is factorized into sum over products of two fragmentation functions. This
property holds when summed over all the light-front time orderings of the intermediate states. It
does not hold at the level of the individual light-front diagrams since the energy denominators
couple all the parts of the graph.



Fragmentation functions

Factorization property (see also cluster expansion Brodsky et al)

for the special case of only ‘+’ helicities:

T,aql(12...n+1)—>1,2,....,n+1] = —

2ig - { v?l...i)(i+1...n+1)

D11 i1 \/éklnj)a+Juun+1)

x Ti[(1...i) — 1,...,i]Tn+1,-[(i+1...n+1)—>i+1,...,n+1]}

Special case of light-front Berends-Giele recursion relation

Explicit solution in this case

3/2
<l...n ) / 1

T.[(12...0)" > 1,2%,....n"] = (—ig)”—l(
Z1-.-Zn

Viun-1Vn-1n-2...V21

Tht1 — Ao



Fragmentation functions

Factorization property (see also cluster expansion Brodsky et al)

for the special case of only ‘+’ helicities:
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><T,-[(1...i)—>1,...,i]Tn+1,'[(i+1...n+1)—>i+1,...,n+1]}

Special case of light-front Berends-Giele recursion relation

Explicit solution in this case
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T.[(12...0)" > 1,2%,....n"] = (—ig)”—l(
Z1-.-Zn

Viun-1Vn-1n-2...V21

From this (off- shell) object one can obtain on-shell amplitude
Trny1 — Azn

k1 — —kq A1 — — A1 and remove the first energy

denominator
as a result of energy

D, — 0 A( > ++---4)=0 conservation




Relation to Parke-Taylor amplitudes

4 )
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{1,...,n}
~ J
Color part / \ Kinematical

part




Relation to Parke-Taylor amplitudes

g )
— Z tr taltag tan) (phel p27€27"'7pn76n ,

Color part \ Kinematical

part

Maximally Helicity Violating amplitude for gluons: 2 to n

Here: all
gluons are
outgoing




Relation to Parke-Taylor amplitudes

4 )

tr ta1ta2 ta”) (p1,€1 pQ,EQ,...,pn,En ;

Color part \ Kinematical

part

Maximally Helicity Violating amplitude for gluons: 2 to n

Here: all
gluons are
outgoing

Tree level,Parke-
Taylor formula

(12)°
(12)(23) ... (n—2n—1)(n—1n)(nl) "’
. J




Light-front to MHYV dictionary...

i£) = gulk) = QU £)o(k) . (] = Pa(k).

(@lg) =G —=1j+), lg]=0G+i-) spinor products
(ij) = /sz,;zj ). (@ _ i) [ij] = mﬁ(_) : (—_@ _ —_J>
) <3 2; Z;
4 ) 4 )

(17) = \/2%2;2; ) X ij] = /2722, g(_) W




Duality:

wave function vs fragmentation

Woave function
initial state

-

-

\_

W,

1

~

Y

V(12..n—1)n V(12...n—2)(n—1n) -+ V1(2...n)

J

Fragmentation
final state

.

15, ~

1

V12023 ... Un—1n

J

Nearly identical expressions (the same topology of
graphs): different combinations of momenta

ki1+ki2+---+kip

’U(z’lig...z’p)(jljg...jq) — Y 4z s
11 12 e o o Zp

-

(i) = /2225 €T - v,

~

kj1+kj2+°°°+qu

Zj1—|—2j2—|—...—|—2jq

Y

Similar form as in MHV



More general recursion

MHYV amplitude ( . —I—) (here all particles outgoing)

-
~—
~

. —|—) (Ist is incoming particle)

1 _
T(12...n)" — 17.2%.....n*] = ' M.,
\/Zl...nzl .+« +Zn Dn

Here M, is the off-shell amplitude with the denominator amputated.



More general recursion

MHYV amplitude ( . —I—) (here all particles outgoing)

-
~—
~

. —|—) (Ist is incoming particle)

1 F
T(12...n)" — 17.2%.....n*] = ' M.,
\/Zl...nZI .+« +Zn Dn

Here M, is the off-shell amplitude with the denominator amputated.

My = v+\/21Z2"‘Z”“ TAA... )t > 17,25 Tuo[(+ 1...n+ DY 5 GG+ D (n+ D]
= Z1...jZj+1..n+1
n
+Zv_\/Z1Z2"'Z”“ TA( ... = 120 1 Taai G+ Loen+ DT > G+ DY (n+ D]
= Z1...jZj+1..n+1
n 2122 .. .2
D D Vark Vo) ([ T () o 12
P Z1...i%i+1...j8 j+1..n+1
X Tii[G+1...p" > G+1D7,..., J1T-jlG+1...n+ D" > G+ D5, .., (n+1D7].

light-front analog of Berends-Giele recursion relation. It is written on the level of off-shell
fragmentation functions (or off-shell currents).



Recursion in terms of diagrams
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Coulomb term



All MHYV on the light front

Lowest order amplitudes:

Moy = 2i*g' My s,

(

My =2i"g> {Mj_4 —

\ \

off-shell

Dy Ty 11

Mz =2ig {M1—>3 -

D3 212321234 24 V4(1234)

-3 —

MHYV amplitudes

D3 {123 1 M1—>2}
D> 712 73 v3123) )

\
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All MHYV on the light front

Lowest order amplitudes:

— D 1 M,_,
My =2i*g'M_, M3 =2ig* {M1—>3 _ 3 =2 },

D> 712 z3 v3(123)

( 0 2 )

14 = 2087 S M _4 1—3 » ‘

\ K D3 212321234 24 Va(1234) D1 2122123 2324 V34 V3(123)
off-shell MHYV amplitudes

Solution by induction:

( n—1 )
| 1 Mi_,;
n_n-— 1 1—i
My, =2"g" " IM_, - 77, Z
\ ! 21002001 Zigl - Zn Vidl i42 -+ - V-1 Vi+1(1...i+1)Di}
e \
Z1..n 21 (1 )
M1—>n =
2233+« «Zn V12V23 .. . V-1 nVn(l...n)
- Y
4 )
s (12)"
19"

(12)(23) ... (n—2n—1){n—1n)(nl)
- J




Recursion formula

\ It is on-shell amplitude but evaluated for off-shell momenta

In the on-shell case the expected MHV
result is recovered.



Recursion formula

(" ( n—1 1 1 1 M \)
- : -1 2 1—i
My, = 20" M1y =23 Dy ) >

—d 71 iZ1..i+1 Zit1 - - - Zn Viel i42 - - - V=1 n Vir1(1..i+1)D;
_ \ =2 ))
- ; ~ - ~
1.0 21 V1.1 o (12)*
M-, = ~ g
. 2223+« +Zn V12V23 « « - Vn—1 nVa(l..n) . (12)(23) ... (n—2n—1)(n—1n)(nl) )

\ It is on-shell amplitude but evaluated for off-shell momenta

2ingn—1 ]‘41 L

In the on-shell case the expected MHV
result is recovered.



Recursion formula

What is the meaning of the derived recursion formula?

At gm n—1 [ (b= ) D= — i E; —E ;| = b
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Can be recast into more compact form:

n—1
.. D, — 1 . L.
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Recursion formula

What is the meaning of the derived recursion formula?

) 7 2 2
TFE= =) oonon1 [ g (bt L g =S &k
M;_,, = 2i"g M. _ D= &+ ;Ej By B
n—1 (F—=——4+)
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Can be recast into more compact form:
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Recursion formula

The second term is reminiscent of the BCFW formula but in the case of the off-shell amplitude.

However, it is not obvious how the first term arises in the context of BCFW (could it be
included in the sum as well). Also, shifts of the momenta into complex plane, which are the
basis of BCFWV are not entirely visible in this context. More analysis is needed here.

Interesting connection with gauge invariant off-shell amplitudes and Wilson lines P Kotko

Current with one off-shell leg

Amplitude with one off-shell leg:

M (g;e1,...,en) = ke, T" (e1,...,en) . o

Is not gauge invariant, thus does not satisfy VWard identity

M (e;er,... kiy...,en)#£0 fori=1,...,N



Gauge invariant off-shell amplitudes

Matrix element

1 .
maal...aN (5;51, o 7€N) — /d4ﬂf ezk-x
g

00 ‘
<O ‘T{Tr [taPeXp (zg/ ds AZ (x + se) 5“tb>] ezSYM} ki,e1,a1; .. .;kN,sN,aN>
Color ordered amplitude
M (e;e1,...,en) =0 (k—Fki—...—kn)0(c-k) M (e:e1,...,en)

Wilson line direction and the momentum need to be mutually transverse

Ward identity is satisfied with respect to the on-shell legs.

~

M (e;er,...,kiy...,en)=0 for i=1,..., N.
The relation between different objects is that:

M = M + terms required for gauge invariance.

AN

Ward identity ok Ward identity
not-ok



Gauge invariant off-shell amplitudes

Relation between the different objects: P. Kotko

It can be shown that ( at least for the sample choices of helicities (-+...+) and (--...+) )
the results are identical to the ones derived in the light-cone perturbation theory

3/2
Zl..n ) 1
Viun-1Vn-1n-2..-V21

1
Z?VN{C_;I+’”"pV+):: fEJUZ.”nf'—>Tﬂ2+“.qn+]=(—@ykl(

L1 -.-Zn

For the (--+...+) case the above relation is identical to the light-front recursion

n—1
(= —tt) o -1 (ot | Dy (=4t 1 i i1 (= —tt)
Mg—m ) =2u"g" "My, T2 E - My n it D, (2¢°g" My, )
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i=2 D?’L—i—|—1



Summary and next steps
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front. Recursion for wave functions and fragmentation functions.

Next steps: possibility of diagrammatic proof of BCFW (Britto-
Cachazo-Feng-Witten) recursion relation in the light-front
perturbation theory.

Ward identities on the light-front and their relation to the
recursion relations. One can recover them using the gauge
invariant extension for the off-shell amplitudes.

Can the last recursion (i.e. between off-shell and on-shell
amplitudes) be used for higher order computation?



