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Quark-Gluon Plasma

® Quark-gluon plasma(QGP) is a phase of QCD matter with
temperature above transition temperature 7T, .

Hadronic

Liquid-Gas

® Where to find quark-gluon plasma?



Where to find Quark-Gluon
Plasma(QGP)?Option I:

® Traveling back to the early universe.
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Where to find Quark-Gluon
Plasma(QGP)?Option Il:

Directions from Physics Department to Relativistic Heavy lon Collider Walk 1.6 mi, 30 min
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Heavy-lon collisions and
hydrodynamics

® The thermal equilibrium stage of heavy-ion collisions is
well-described by relativistic hydrodynamics.
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Hydrodynamics and heavy-ion collisions

® Hydrodynamics:
® Low energy and low momentum effective theory.

® Degree of freedom: conserved quantities such as energy
density, momentum density, charge density.

. , | y
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We know hydrodynamic evolution of the
fireball !

® Given a fluid cell labelled by its temporal and spatial
coordinates, its temperature flow profile are known:
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Exploring properties of QGP with
realistic hydrodynamic background

® Taking temperature-flow profile as known background, how
much information one could infer from the experiment!?

® This talk: two examples.

4 Story I: Effects of chiral anomaly ¢ Story Il: Transport properties of QGP

---------------------------------------
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Story |: chiral anomaly in heavy-ion
collisions



Chiral anomaly and hydrodynamics

® The constitute relation of a chiral fluid is modified by chiral anomaly:

Jo = nyut + AJY + dissipative terms

V,anom
AJH 24 po u_ 1 vap B, I8 == 2 B
V,anom 27{'2 (B — 56 uuFaB) 1Y A 27-[-2
® Nielsen-Ninomia argument(l983): /
dna _ pa

HA— 1 27]_2 -B=F"- AJV,anom

\Energy = Work "

® Microscopically: effective velocity of a chiral fermi is modified by
Berry curvature( e.g. M. Stephanov,YY PRL 2012).

® Similarly: ads

A,anom 27T

BN



Chiral anomaly and heavy-ion collisions

induced by anomaly: magnetic field, and axial/

vector charge density . q \
yl 4 / /4

® Strong magnetic field is created in heavy- X (deines ¥,
ion collisions. 2B o m72r ~ 1017 Qauss

r4
. . . Reaction H
® Basic ingredients for the anomalous current e &5[ . ’

® Axial charges are generated by topological Q0
fluctuations. B| |

® Experimentalist could select events with non-zero
vector charges.



Anomaly induced charge asymmetry

® Anomalous current leads to charge quadrupole. _
P
O
AJ}% anom = %BN A']Z anom — _%B“ . .
’ (s ’ T P =

® There will be more positive charges Qy = 0, +0, 6 0,
around the polar than around equator.

Qa=Qr—QrL=0
Around the polar: COS(2¢) < 0 Ly
Around the equator: COS(2¢) > 0 _++++++_ ' .
® Quadrupole distribution leads to charge P ;ﬁgggio»n

asymmetry in pion elliptic flow:

vy () > v3 (m)



Charge-dependent in experiment

® In experiment, vy (1) — v (7)) >0 and the difference is
approximately proportional to charge asymmetry.
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How much would chiral anomaly
contribute to the data!

® The effects of anomaly is qualitatively consistent with the data.

® Quantitatively, how much would chiral anomaly contribute to
the data?

® Two groups have opposite conclusions:

® Burnier-Kharzeev-Liao-Yee(2012), solving anomalous equation in static
temperature and flow background.

® Hongo-Hirono-Hirano(2013), solving full set of hydro. equation with
separating the initial effects and the effects of evolution.

® To resolve the controversial, a realistic computation is
Imperative.



Realistic implementation of chiral

charge transportation

® Ho-ung, Yee and | revisited this problem(1311.2574). The slope
parameter can be interpreted as a response to charge
asymmetry. Ve then treat charge density as a probe.

® The back-reaction from charge density to the temperature flow
profile can be neglected. We solve anomalous hydrodynamic
equation linearized around the realistic hydrodynamic
background. (hydro. background from P&R Romatschke).

® We choose the initial condition in such way that the slope
parameter is zero in the absence of chiral anomaly.

® A lot of numerics! No if we formulate the problem in a physical
Intuitive way.



ldeal hydrodynamics without anomaly
and streamline

® What does current conservation imply for a normal fluid?

8# (J#orm) = al-’» ('n’uu) = uuaﬂ (n) TN (aﬂu#) =0

® Total charge is fixed in a fluid cell along the streamline. Change
of charge density is compensated by the expansion of the
volume.



Streamlines of anomalous
hydrodynamics

® Rewrite the constitute relation of chiral current similar to
normal current as much as possible.

N

[ e Gi¥e B B ol s ~

JL,R =N, RU" + A2 )U'L,RB = NL.R (U o uanom) _ nL,RuL,R
; qN.B*

® Solving anomalous hydrodynamic equation is translated into the
determination of streamline for chiral charges.

dX*(A) _ -,
d)\ — u’L,R(X”)

® The streamlines for left and right charge are different due to
chiral anomaly.



Streamline in heavy-ion collisions
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® Anomalous fluid velocity changes the streamline of chiral
charges.This leads to v; (1) —v3 (1) >0 |



Results

® Chiral anomaly will give sizable contribution to the data if life
time of magnetic field is a few fm.
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® Otherwise, it is more likely that the difference in elliptic flow it
is due to initial distribution.(See Bzdak-Bozek(2013) for other
sources of contributions)



Summary of Story I:

® We have developed a physically intuitive method to solve
anomalous hydrodynamics in realistic background.

® As an application, we have studied charged dependent elliptic in
experiment.

® The method based streamline gives a transparent picture on the
chiral charge transportation in heavy-ion collisions.

® We could solve the anomalous hydrodynamic equation with
arbitrary initial conditions.



Quantification of chiral magnetic
effect

® Axial charge created in heavy-ion collisions will lead to vector
current(chiral magnetic effect) thus charge dipole.

AJE = E4 pw
V,anom 271'2
® Charge dipole implies non-trivial correlations o+

between particle pairs(Kharzeev-McLerran- | A |
Warringa).

(cos (¢1 + + P2+ —2¥Rp)) <O | QS# 0

B
(cos (@1 + + ¢2.— —2URp)) >0 /. N

® Due to large background effects, quantify such effects in realistic
background is imperative(in progress with Jinfeng, Liao).



Story ll: Electrical conductivity of
QGP from photon production



Photon as a probe of QGP

® The properties of condensed matter can be measured by scatterings
experiments.
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® Quark-gluon plasma is radiating. Photon produced in heavy-ion
collisions is a probe of QGP .  (ap) < o)
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Photon as a probe of QGP

® Photon produced per volume per time is related to Green’s function
of QGP:
dF - np(w/T)
d3 (27r)3

P =6Y —p'p’
P”Im [GR (w = |ﬁ])] Retarded correlator: G%’ ~ (J*J)

® Photons are produced during the full evolution of the fireball with
shifted frequency:

dN.
o = d* TWsnis o4

o
— ) Wshift — P Uy,
pidpidopdY  Jr>r, d>p’ Lab

wshiftzlﬁl

Photon frequency is shifted in the rest frame of fluid.

® To study photon spectrum, we need i) theoretical understanding of
photon rate and ii) hydrodynamic evolution.



Photon and thermal correlators

® Photon production in heavy-ion collisions has been studied by
evolving pQCD photon rate with hydrodynamic simulations.

® QGP is strongly coupled! pQCD rate may not be applicable for
photon energy below a few GeV!

® Determination of correlation functions from microscopic theory is
challenging.

® In low frequency limit,a macroscopic description is possible!

QEMWOQ
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Soft Photon and conductivity

® | owest pt in experiment: 0.5 GeV. (by PHENIX) 7Tgcp =~ 1GeV
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® Strongly interacting system has a wider hydrodynamic regime!

® VWe will use the hydrodynamic approximation to study the lowest pt

photon data
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Electrical conductivity of QGP

® Ve write down the rate

dNy, _ agMm /% dC/)p/ Wshift T Wenite = P
2npidpidY 2 T>T; CXp (wshige/T) — 1 — Lab =4

® We estimate conductivity at QGP temperature by computing the
following ratio.

dN, < From the data
( o >: Zﬂ'ptdptdy
e2T! = agm [27 d‘f’p f d4 Wshift 1.
< JO T>Ty exp(wshifs /T)—1

(NB: /T is dimensionless, similar to n/s .)

® VWe evolve the integral with realistic hydrodynamic background.

(The realistic hydrodynamic background is from Heinz’ group, available online:
https://wiki.bnl.gov/ TECHOM/index.php/Main_Page )



https://wiki.bnl.gov/TECHQM/index.php/Main_Page

Electrical conductivity of QGP

® PHENIX data, different for different centralities.
® Hydrodynamic background, different for different centralities.

® The ratio has a weak-dependence on centralities! Conductivity is the
properties of QGP!
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Summary of Story |l

® We have estimated electrical conductivity, for the first time in
literature, from soft photon data.

® Thermal correlations function at other pt window! More
information from dileptons!?



The spherical cow

® Theorists always use highly simplified scientific models to study
complex real phenomena.
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The actual cow

In heavy-ion collisions, studying the problems in realistic environment
is important!




Conclusion and outlook

® We have shown two examples on exploring the properties of QGP
with realistic hydrodynamic background.

® Effects of chiral anomaly and pion elliptic flow.

® conductivity and photon spectrum.

® More fruitful results in future.



