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Motivation:
Can we make sense out of quantum field theory?

Can we define quantum field theory in continuum?
Dyson (‘51) QED, ‘t Hooft (‘79) QCD
Main issue: Perturbation theory is divergent.
Yes, even after reqularization and renormalization!
General Motivation: How can we reconcile perturbation

expansion with global properties of the underlying
function?



A typical perturbative expansion in quantum field theory
or quantum mechanics (ground state energy, matrix
element, etc...):

[e.9]

f(g2> ~ chg2n

n=0

diverges as ¢, ~ n! for large n = asymptotic series

Instability at -g? < zero radius of convergence (Dyson)

How can we sum an asymptotic series?



“Divergent series are the invention of the deuvil,
and it is shameful to base on them any
demonstration whatsoever

That most of these things are correct, in spite of
that, is extraordinarily surprising. I am trying to
find a reason for this; it is an exceedingly

interesting question.”
January 1820

N. Abel, 1802-1829



Borel summation

Introduce the Borel transform of the series f(g?):

This new series typically has finite radius of convergence.

Borel resummation of the original asymptotic series:
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Borel summation

Introduce the Borel transform of the series f(g?):

This new series typically has finite radius of convergence.

Borel resummation of the original asymptotic series:
1 [ w)a?
SH) =5 [ Bl du
0

But B[f](u) in general can have singularities in the u plane.
They can be on R

How to deal with those singularities?



Borel singularities
We can avoid the singularities on R*:

Lateral Borel sums:
1 eiooo
—u/g?
St =5 [ Bl du
0

In particular we can go above/below the singularity: 6 = 0%
but this will leave us with an ambiguity: +Zm[Syf(g?)]
This is problematic if we are calculating real quantities.

In quantum mechanics/quantum field theory, this
ambiguous imaginary part of pert. series is exactly
cancelled by instanton/anti-instanton ambiguity!

Im[Sof(9%)] +Im[II] =0

(Bogomolnyi,Zinn-Justin, Balitsky, Yung)



Borel singularities and Stokes’ phenomenon

A function may have different asymptotic
expansions depending on the direction of the
expansion in complex plane.

An exponentially small correction might become
comparable than the original series as one rotates in
complex plane.

This new term “is born” when a Stokes line is crossed.

In Borel plane: Stokes line < Line of singularities



Resurgence

To keep track of all the Stokes jumps introduce trans-series

k—

=> 3 ankig”" lexp(—s/g)]" [log(—1/g°)]"

n=0 k=0 [=0

._\

Resurgence: (Ecalle,Dingle,Berry,Howls,Pham,...)

The analytical continuation in the Borel plane enforces relations
between the lateral sums By[f]. This translates into stringent
constraints between the coefficients a,, 1 ;.

perturbative < non-perturbative

“resurgent functions display at each of their singular points a
behaviour closely related to their behaviour at the origin. Loosely
speaking, these functions resurrect, or surge up - in a slightly different
guise, as it were - at their singularities”

Ecalle



Resurgence in quantum mechanics: uniform WKB

—g" (@) + V(2)¥n(z) = PEM Yn(z) , o h

V(x) : degenerate, harmonic potential, Ex < 1/g?

o k-1 =\ F !
1
E(N) (92) pert Z Z < 2N+1> (10g |::l:g2:|> Ck,lapg2p

k,p=0 =1

D, Lu(z
Uniform WKB: ¢(z) = \S%))) [Dunne, Unsal]

D'(z)+ (v+1/2—2%/4)D,(z) =0

e Expand E(v) = Ey(v) + ¢*E1(v) + ... , u(x) = up(z) + g?ur(x) + ...

e solve order by order



E(v) = Ey(v) + ¢*E1(v) + ...

, u(r) = up(x) + g2ur (z) + ..
» v = N = Perturbation series: E(v = N;g?) = Epert(g%)

«0O)>» «F>r «=>»

<

it
N

DA



Resurgence in quantum mechanics: uniform WKB

E(v) = Eo(v) + ¢ Er(v) + ..., u(z) = uo(x) + g*ur (z) + ...
» v = N = Perturbation series: E(v = N;g?) = Epert(g%)

» Non-perturbative part < boundary conditions on ¥ (z)

g ety 2~ /g
PN ey 2
N N v, —z°/4
LN X Dy ~ e
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i . . /‘3_ny e:l:mruez /4
2%, 2 2 2
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Resurgence in quantum mechanics: uniform WKB

E(v) = Ey(v) + ¢*E1(v) + ..., u(z) = uo(x) + g°ur(z) + . ..
» v = N = Perturbation series: E(v = N;g?) = Epert(g%)

» Non-perturbative part < boundary conditions on ¥ (z)

l . g /,"‘\\ /,u-u\\ DV(Z) ~ Zye_z2/4<1 + . )
." AN 4 N .
: : = ; +i 2/4
For A | Dor A Lot
! \/ﬁr(—y)zlﬁ-u

» Exact quantization: ( o) (Qegi;w) = \_/S/—q]:(l/ 9%)
mg?
Sv=N+e 59 )+...
> E(v,g%) = B(N +6v,6%) = ESN(6%) + ES)eri(9?)

pert non—pert



Resurgence from the path integral perspective

Semiclassical expansion of a path integral

Z(gQ) :/'D¢€S[¢>] ~ Z Fk(g2) PRl

saddles k

In QM with degenerate vacua or QFTs like Yang-Mills there are
instantons as non-perurbative saddles.

Resurgence: The asymptotic expansions around different
saddles of the path integral influence each other. (“functional

Darboux theorem”, extension of Berry-Howls to functional integrals)



Path integrals with complex saddles

In general, a path integral can have complex, even negative
saddles: “ghost instantons”

Z Gk(QQ) e"rg%‘skl
k

For sensible theories, the path integration exclude them.
Should we just ignore them?



Path integrals with complex saddles

In general, a path integral can have complex, even negative
saddles: “ghost instantons”

Z Gk<92> €+g%‘sk|
k

For sensible theories, the path integration exclude them.
Should we just ignore them? Certainly NO!

e They contribute to large order perturbation series.
e They can be important for extending the theory to
complex /negative couplings and/or analytical continuation.
e They can play a role in quantum phase transitions.

GB, G.Dunne and M. Unsal, arXiv:1308.1108, JHEP 10 (2013) 041



Path integrals with complex saddles

To illustrate the ideas, introduce a doubly periodic (periodic
in real and imaginary axes) potential

1
V(zlm) = Esdz(gdm)
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Path integrals with complex saddles

To illustrate the ideas, introduce a doubly periodic (periodic
in real and imaginary axes) potential

1
V(zlm) = Esdz(mm)

2z PN 2
| g
iK .SaddIeC ,,,,,,,,,,,, {9P0|e :?
: =
OeSaddleA SaddleB i =
0 K 2K 0 2K



Path integrals with complex saddles

To illustrate the ideas, introduce a doubly periodic (periodic
in real and imaginary axes) potential

1
V(zlm) = ?Sdz(mm)

T 2
: g
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: =
OeSaddleA SaddleB i =
0 K 2K 0 2K



Path integrals with complex saddles

To illustrate the ideas, introduce a doubly periodic (periodic
in real and imaginary axes) potential

1
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Path integrals with complex saddles

Self-duality and negative couplings:
V(elm) = -5 s(g =|m)
g
The potential has a remarkable property:
Vielm)ly = VEm)|l g, m'=1-m
For negative couplings, it can be mapped to tself.

Any perturbative series Y a,(m)g*" satisfies:
an(m) = (=1)"an(1 —m)

m — m' & g — —¢* & alternating — non-alternating



Zero dimensional prototype

Partition function:

— -5 sd?(z|m)

1 K
Zg2m :/ dze 9
(g°|m) a7 )«

Perturbative expansion
oo
2(92|m)|pert = Z an(m)g*"
n=0

is divergent for all m but is non-alternating for m < 1/2 and
alternating for m > 1/2.

Puzzle: Alternating = Borel summable?
What about “instantons” 7 They still exist for m > 1/2.



Further puzzle:

saddle point on the path: Sp =1/m' = a, ~

(n—1)!

ng+1/ 2
Compare with the actual series:

«0O)>» «F>r «=>»
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Zero dimensional prototype

Further puzzle:

saddle point on the path: Sp =1/m’ = a, ~ (n—1)!

n+1/2
wSg

Compare with the actual series:

naive ratio (d=0)

Disaster!



Resolution:

There is another saddle outside the integration path!
Se=—-1/m=a

(n 1)!(Sn+1/2+Sn+1/2)

«0O)>» «F>r «=>»

<

it
N

DA



Resolution:

There is another saddle outside the integration path!

Se = —1/m = a, ~ @=L (g2

B

+ (_1)n|SC|n+1/2)

DA



Zero dimensional prototype

Resolution:
There is another saddle outside the integration path!

So=—1/m = a, ~ L (SEH2 4 (—1)2|Se[1?)

™

Improved asymptotics:

ratio (d=0)
R
M
10 =
co00000000008
09
08
0 5 10015 20 2% 3"

Perturbation series “sees" all the saddles!"



Zero dimensional prototype

The big picture:

e Associated with each critical point z;, there is a unique
integration cycle J;, called a Lefschetz thimble, along which the
phase remains stationary.

e Around each saddle there is a contribution of the form:

I(k g’m f dZ €7£Sd zlm)

e The expansions around saddle are connected via the

exact resurgence relation:

59 ()= % o

ke{B CY}




Zero dimensional prototype
The most general expansion is the three term trans-series
Ze(g’lm) = 0a®a(g®) +ope BT Bp(g%) + o0 e T B (g?)

The coefficients of perturbative expansions are connected!

aim) = 3 I (“5'3)(’”) ‘ “§0)<m>>

n—j n=j
SB SC

=0

Pole Pole |_Z
€




Zero dimensional prototype

The view from the Borel plane:

u plane| meo
—e
|
“%=—1/m | S=1/m m=1/4
. l . m=1/2
. l o M=3/4
TS l m=1

Distance in Borel plane, AS = S; — S; (“Relative action”)
controls the divergence of perturbation series ®;

In particular for m > 1/2:
closest singularity is on R™ < alternating series ® 4

But the sub-series associated with the sing. on R is non-alternating



Zero dimensional prototype

Cancellation of ambiguities and Stokes’ phenomenon:

e For real path integration cycle, the partition function is a
truncation of the trans-series.

e Borel-Ecalle summation of this truncation renders a real,
unambigious result:

1 1
D(g?) Lie P Bp(g?) =  Spr Py tie WP Sy=Pp
1
ReSo® 4 + i (Imsoi Dyte W Soq>3)
ReS()(I)A



Zero dimensional prototype

Going off the real axis; to the complex g2 plane:

e Analytical continuation < smooth deformation of the

Lefshetz thimble

e Fxponentially suppressed term at RT becomes

exponentially large at R™. (e = e = em’\gﬂ)

Yet another puzzle:

The self-duality predicts a trans-series with terms O(1) and
o

O(e mis?) for g* < 0 since g*> — —g? & m — m/. But

analytical continuation leads to an exponentially large

term.



Zero dimensional prototype

Resolution: There is an independent Lefschetz thimble for
—g? which leads to the self dual trans-series.

arg (g?)=n



Zero dimensional prototype

Resolution: There is an independent Lefschetz thimble for
—g? which leads to the self dual trans-series.

¥ < T 5 < T




Zero dimensional prototype

Self-dual thimble and topology: The self dual thimble

belongs to a different homotopy class than the original one
They cannot be related with analytical continuation.




Quantum mechanics

In QM we have the path integral:
Z(g*m) = / D e 1 = / Dpe I ¥ (394 sooim)

There are real and ghost instantons

21K —— =
G 2

Tl

1

18

e
Z

2K

'
Z

o

with actions

Sz(m) 2sin~ (\/_) > 2 Sg(m) _ 2sin'(v/m/) < 2

g° > vVm 9> g° @2vVmm' T ¢?




Quantum mechanics

The large order growth of perturbation theory

ratio (d=1)
naiveratio (d=1)

-nuana
N ::,.:uo
0.8

0.6]

0.4

'SR 3850 8
] T1o] |15 20 no 0z
il 1 n
-1 0 5 0 15 20 25
without ghost instantons with ghost instantons

N_En 1 B (_1)n+1
am(m) ~ — ’((Sﬁ<m>>n+1 |Sgg-<m>\n+1>



Quantum mechanics

The large order growth of perturbation theory

ratio (d=1)

naiveratio (d=1)

0.2

n

0 5 10 15 20 25

without ghost instantons with ghost instantons

an(m)N—En!( 1 (= >

T \(Szz(m))"* |Sgg(m)|"+!

Notice the leading singularity is at [ZZ] or [GG]



Quantum mechanics

The big picture:

e The vacuum “talks to” the topologically trivial sector:
. [G%G% & [GG] ¢ pertvac & [TI] < [TPT7] ¢+ ...
e The QM trans-series:

Z(g*m) = { q>o(gz) + [Iz]_<1>[zf](g2) + [Ii@j]_cb[zziz](gj) +... —1< arg(g2) <0
Do (97) + [T1]+Pz7)(97) + [Z7L7]+ Pz2z2(97) + ... 0 <arg(g) <~

e The ambiguities cancel ad-infinitum (resurgence!)
Im (Sy+ Po + [ZZ]o+ ReSo®(z7)) =0 up to O(e™*1)
e Similar structure for one instanton, etc.. sector

e 163G o [I6G] & I « TP < |71 <+ ...



Quantum mechanics

Borel plane:

u plane M0
?S‘gé Sgé 3:7 2'51735ﬁ 4s,; m=1/4
—e ° ° ° ° ° m=1/2

———0—0—©
—o—0o—o m=1




Quantum mechanics

Negative coupling and the dual cycle:
e Analytical cont.: Instantons <> ghosts < et/ ol

e Dual thimble < Pure imaginary paths < No ghosts

g >0
< —4S(m') & —28(m') <« 0 < 2S8(m) <« 4S(m)
< GG [GG] < pertvac. & [II] <« [T?T
I I ! I I
< —4S(m) <« -2S(m) < 0 = 2S8(m') < 4S(m")



Quantum mechanics

Quantum phase transition:

self-duality in Hamiltonian picture:

“logm,

non-analyticty at origin < quantum phase transition



Resurgence in quantum field theory

e Asymptotically free QFTs, QM, path integrals:
Non-BPS objects < IR renormalons < confinement
(Argyres,GB, Dunne,Cherman,D()rig()ni,Unsal)

e String theory, matrix models, Chern-Simons, localization...
(Aniceto,Marino,Pasquetti,Schiappa, Weiss, Vaz,Vonk)

e Topological field theory (Garoufalidis, Costin)
e Path integral perspective (Kontsevich)

Aim: Continuum definition of QFT via exact
encoding of the theory via trans-series.



Resurgence in quantum field theory

In QFT: extra singularities due to momentum space integrals of
Green’s functions “Renormalons” (‘t Hooft)

Borel plane
instanton/anti instanton ~ 25,

N

UV renormalans ~ -n/p, IR renormalons ~ n/3,

Claim: IR renormalons < non-BPS defects with S ~ %
e semi-class. deformed Yang-Mills (bions) (Argyres,Unsal)
e CPN (kink-instantons) (Dunne,Unsal)

e PCM (fractons) (Cherman,Dorigoni,Dunne,Unsal)



Conclusions

e Resurgence provides a way of bridging perturbative and
non-perturbative world systematically (finer than
topology). They are all parts of the grand trans-series that
encodes all the information.

e Some saddles which are not included in the path integral
may still contribute to physical observables. They might
even be the leading objects that control the large order
behavior.

e The relation between analytical continuation and
resurgence is interesting. But there can be novel
phenomena which are associated with cycles that can only
be reached non-analytically. They can be associated with
different quantum phases of the theory.





