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We show that a vanishing total cross section for virtual longitudinal photons on a hadronic
target is compatible with the presence of nontrivial operator-valued Schwinger terms appear-
ing in the one-particle matrix element of the commutator of two electromagnetic currents.
However, this requires a violation of either Bjorken scaling or the usual subtraction assump-

tions on virtual Compton amplitudes.

Many authors have discussed connections be -
tween Schwinger terms and the total absorption
cross section for virtual longitudinal photons.'?
The primary conclusion of these discussions is
that if there are no g-number Schwinger terms,
then the Bjorken scaling function for longitudinal
photons must vanish. In this note we prove by ex-
plicit counterexample that the converse is not true.
We show that a longitudinal cross section which
identically vanishes for both timelike and space-
like photons is compatible with the occurrence of
g-number Schwinger terms in the one-particle ma-
trix element of the equal-time commutator of two
electromagnetic currents. However, a vanishing
longitudinal cross section does place some con-
straints on the form of the Schwinger term.

We begin with some definitions. We work with
the one-particle matrix element of the commutator
of two electromagnetic currents:

huy(x: p)
=P (2, 7, (0] =01 [ (x), 7, (O ][0} p) .
(1)

Here j, (x) is the electromagnetic current operator,
|0) is the vacuum state ({(0]|0)=1), and |p) is a one-
particle state of momentum p,. We give | p) unit
mass (p®=1) and normalize covariantly: (p’|p)

[en

=2p,(27)36°(p’ - p). Throughout this paper we work
to lowest nontrivial order in the electric charge.
Microcausality states that [ju(x),j,,(O)J vanishes
for x?<0. This means that 6(x,)k,,(x, p) can have
support only at X=0. By Schwinger term we mean
any term in [ Ju(x), 4,(0)] proportional to a first or
higher derivative of &6*(x) at x,=0. By g-number or
operator Schwinger term we mean any such deriv-
ative of a 6-function term surviving after the sub-
traction of the vacuum expectation value indicated
in Eq. (1). In momentum space we define

W, (q, p)= f d*xe't *hy, (x, p). )

If we average over the spins of |p) we can write

Wuy(q: p): (guu_q;;zqu>wx(uy q2)

+(Pu _ qu;)z-q )( y-q”é’z'q>Wz(v, ).

(3)
where v=p +q is the lab energy of q. We have the
crossing property W,(-v, ¢%)=-W,(v, ¢2) and the
support property W,(v, ¢2)=0 for ¢2< -2|v|. In
terms of W, and W,, the transverse and longitudi-

nal virtual photoabsorption cross sections o, and
o, are given by?®
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1
4m(v? -

(v, 4%)= :
oL\, q _4m(V2_q2)1/2!q21

op(v, g% = PR w.(v, ¢%),

(4)

x[(=q?W (v, a®) +(v? = ¢ )W, (v, ¢?)].

Both 0, and o, are non-negative for ¢*<0.
We now present our model commutator in mo-
mentum space,

Wuu: [guy(qz - Vz) - quupy_ qu qu
1
+u(puquwuqu)l56(46121/2 -(q®-0b)),

(5)
where ¢ and b are parameters satisfying O<a <1,
b=0. This W,, corresponds to

q%-v?

W, =L 04a%v? - (¢* - b)),

2
W= - t(4atv? - (¢* - b))

or

2 _ 2y1/2
T:——————(V 8:1) K4a?v? -(q® -b)?),
(7

o,=0.

Clearly W,,(q) has the correct crossing properties
and support properties in momentum space. To
show causality, we simply note that

i 2,2 2 2
21}0(461 v? —(q%-b))

=fdsf°dua(42+2vs—me(u)o(u—bw(az -89,
(8)

This is a special case of the Deser-Gilbert-Sudar -
shan representation® which in turn is a special
case of the Dyson representation® for Fourier
transforms of functions vanishing outside the light
cone. The additional momentum factors defining
W,,(q) in Eq. (5) correspond to derivatives in posi-
tion space implying that W, (¢) itself has a causal
Fourier transform. Knowing that &, (x, p) is caus-
al, it is easy to find the equal-time commutator;
we look at the 0 component (:€{1, 2, 3}):

ai = -
é(xo)ho{(x) p)z?[(pog _l)ai —piv'p.léq(x); (9)
clearly exhibiting the g-number Schwinger terms.
Having presented the example, we now make
several comments.

(1) In our example

limo (v, ¢?)

= constant . (10)
v—>o a2fixed

Such a behavior is expected in a simple diffraction

or Pomeranchukon exchange picture. The fact that
the asymptotic cross section is independent of g2
is inessential; we have made models where
op(v =, ¢?) is a nonconstant function of q°.

(2) Bjorken® has conjectured the scaling behavior

=fi(w),

2v/Q°=w

limW,(q2, v)

y—> o0

(11)

limvW,(q?, v)
s

=fo(w).

2v/¢"=w

Our model violates this conjecture for |w|>1/a
since

LimW (g%, v)

Y-

=, (12)

lwi>1/a

with a similar statement on vW,. The parameter
a is arbitrary in the range 0<a <1, implying that
the value of w above which Bjorken scaling breaks
down can be made as large as desired. Of course,
in our example the longitudinal structure function
scales in a trivial manner,

_ (v?-¢?
WpsW,-—r=—

wW,=0.

(3) The singularity in o, at v=0, ¢®=5 occurs
in the unphysical region. Thus the amplitude can
be modified in a neighborhood of this point to give
a finite o, without changing the commutator in any
way. Also note that the step in o, at g®=b+ 2av
can be smoothed out by smearing over a range of
a.

(4) By rotational invariance, if the equal-time
commutator is well-defined and has only first de-
rivative of 6-function terms, it must have the form
(assuming the spin states of |p) are averaged over)

8(Xo)hoy (%, ) =i C( o), +D( po)Dy(V - D)]6%(x) .

(13)
Our example is of this form with
Clpe)=2(pg - 1),
. (14)
D(po) = —; .

It can be readily verified that in our example
8(x) 1, (x, p) has no more than first derivative of
6%(x) for all u, v. This implies, as shown in Ref.
2, that for all u, v we have 8(x,)h,, (x, p) completely
determined by C(p,), D(p,), d/dp,C(p,), and
d/dp,D( p,)-

(5) The sum rule!?

w 2 1)
d QOL(V) q ) =‘"C(‘
f.ﬁz PR fixed labg 2 1q| (15)

implies that C(p,) vanishes in the rest frame of p.
This sum rule in the Bjorken scaling limit has
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been shown to imply that vanishing g-number
Schwinger terms require a vanishing longitudinal
scaling function'?; however, the vanishing of o,
only implies that C(p,) vanishes at p,=1.
(6) The example allows us to verify two sum
rules from Ref. 2:
2

“ |
J‘*quzoL(v,qz) 7
-q

q” I fixed
=%n[D<1>+éc'<nJ|a|+‘,‘a(}’,
(16)
B Loy (&L T
Jadaortvan)|.  =iacn)al+ g A,
(17)

Here the function A( p,) is defined by

f d%x 8(x,)8, Iy (x, p) =1LA(Po)&y; +B( po)bib;6%(x)
(18)
and C’(1) denotes

d_
d—poC(Po)

po=1

1= [t e e e)p 5,0, 5,(0)] 1)
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Note that a vanishing longitudinal cross section
implies

3C’(1)= -D(1) (19)
and
A(1)=0. (20)

Note also that absence of g-number Schwinger
terms would imply the sum rule

o

[ orv==,q?dq?=0. (21)

(7) If we try to find the light-cone commutator
8(xy +x5) Ry, (x, D) (22)

we discover that it is undefined. This perhaps is
expected since light-cone commutators are re-
lated to the limit p,~ < and lim, .. C(p,)==.

(8) We can show that there can be no g-number
Schwinger terms if we assume (1) Bjorken scal-
ing for all w, (2) the usual dispersion relations
for the virtual Compton amplitudes hold for both
finite ¢2 and in the scaling limit, and (3) o, (v, ¢?)
=0. To see this we first write the covariant and
gauge-invariant amplitude’

+2C( Po)(gm, _gpogyo) - ZD(po)( pu -pogpo)(pu _pogyo) +p1(q2) P 'Q)(qz guu - qu qu)
+0:0a%, 0P+ 9 &+ a*Puby = (D - DDy, + 1, q,))
= Vl(qzap .q)(nguu—ququ) +V2(q27p 'Q)[(p .q)zguu+qzﬁppu_(p 'q)(ppqu+puqu)]s (23)

where p, and p, are polynomials in their argu-
ments. Usual Regge lore gives an unsubtracted
dispersion relation for V, and a once-subtracted
dispersion relation for V,. Taking the limit g,

— 1% of this equation with the dispersion represen-
tations for V, and V, yields the result that C(p,) is
a constant and D( p,) vanishes. Coupling this re-
sult with equation (15) and the assumption that o,
=0 gives C(p,)=0.

We emphasize that all three above assumptions
are necessary to ensure against g-number
Schwinger terms. Our example shows that con-
dition (1) is necessary. It is not difficult to find

I
examples that show the necessity of the other con-
ditions. In addition, it is not sufficient to replace
condition (3) with its Bjorken limit.

In conclusion, we have proven by explicit exam -
ple the compatibility of nonvanishing g-number
Schwinger terms in 8(xo){p|[j,(x),j,(0)][p) with
vanishing longitudinal virtual photon total cross
sections. We also have transverse cross sections
constant asymptotically in energy at fixed virtual
photon mass. Our example does, however, violate
Bjorken scaling for |w|=|2v/q?| larger than an
arbitrary parameter in the model. This nonscal-
ing behavior is required by our other assumptions.
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The minimally coupled spin-2 wave equation is examined and is shown to lead to the correct
number of constraints. The difference between the equation used here and that considered by

Velo and Zwanziger is made explicit.

In a series of papers, Velo and Zwanziger'' 2
have given an account of the difficulties encoun-
tered when interactions are introduced into La-
grangian fields for higher-spin particles (S=1).
The main defect which they find is the propagation
of signals faster than the speed of light, thus vio-
lating special relativity. Their results are in ac-
cord with those of Johnson and Sudarshan,® whose
analysis of the minimally coupled Rarita-Schwin-
ger equation gave an indirect demonstration of the
lack of covariance by showing that the equal-time
anticommutator between fields is not positive def-
inite in all Lorentz frames. In particular the two
approaches give the same threshold value for the
magnitude of the magnetic field at which anoma-
lies appear. This is not unexpected since the
complete propagator and the anticommutation re-
lations are closely related.

The pathology exhibited by the minimally cou-
pled spin-2 equation considered® by Velo and
Zwanziger is more serious. When the interaction
is switched on, an equation of constraint turns
into an equation of motion, thereby increasing the
number of independent field components to six,
which is obviously inappropriate for describing a
spin-2 particle. It is shown here that a slight al-
teration to their Lagrangian, which retains the
minimal nature of the interaction, rids the theory
of this defect.

The minimally coupled spin-2 equation used in
Ref. 2 is

Luu = (".2 - mZ)wuu + nguu ¢ + é(ﬂ”ﬂ'u + "uﬂu)lp
+gu)/”c”ﬂ¢qp _guuﬂzlp_ TIOTT“le} _nqnuwou

=0, (1)

where 7, =p, +eA,, ¥=9,/, and y*” is assumed

a priovi to be symmetric. By contracting L*Y
with g,, and 7,7, and comparing the two resulting
equations we get

Smiy= ie(m,m, F' o + @, F, 1 y°”
+T, Fyom o = ah F, 0¥y = 37, 1OF,1 ),
(2)
where we have used
(7, 7,]=te(8,4,-08,4,)
=ieF,, .

When no interaction is present, the right-hand
side of (2) is zero, thus giving the constraint
$=0. However, (2) is an equation of motion since
it involves second-order time derivatives of the
wave function in the term

("0)2Fio¢io .

The spin-2 equation we start with here is given
by 4,5

AGpy°f =0, (3)
where
NG ==3(p* = mP)(gh gb +ghg)
- zam*(ghgh —ghgh)
+3(85P by +8 5P Dy +& 5 P D6 +&4 D D)
+a(g" b, +P D8 0p) + BPE" &1,
-ymghig,,, (4)

B=35(8a*+2a+1), y=a+2B, and o #—%. When
a+0 the symmetry of y*” may be derived by mul-
tiplying (3) by the antisymmetric projector



