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ABSTRACT

T review current theoretical evidence for the coexistence of
asymptotic freedom and quark confinement in a non-Abelian gauge theory
of the strong interaction.

It is rather incongruous to discuss quark confinement at a session
on quark searches. Indeed, many theorists find the idea of unconfined
quarks so repulsive that they directly reject any evidence to the con-
trary. This prejudice stems from the observed copious production of
all conventional strongly interacting particles. Only by having quarks
be very heavy could we understand why present synchrotrons have not
provided us with separated quark beams. However, a large quark mass
would represent an extravagent new parameter im hadronic physics and
would make it difficult to understand the remarkable successes of the
naive non-relativistic quark model. It has become easier to imagine
exact quark imprisoument rather than an approximate confinement that
breaks down at some unknown energy. '

An underlying gauge field forms the basis of most theoretical
models of confinement. Quarks are coupled to a vector "gluo—electric”
field through a generalization of Gauss's law V - = p where p is the
quark demsity. In theories with a non-Abelian symmetry this equation
is embeiished with intermal symmetry indlces and extra source terms
from the charged gluon field. Confinement in an automatic consequence
of Gauss's law if the theory does not have massless gauge bosons in
its spectrum. Without a mggsless field to support a Coulombic spread-
ing the conserved flux of G must form itself into "flux tubes" which
can only end on the other sources.! The only finte energy states are
neutral clusters of quarks joined by these tubes with finite energy
per unit length. At large separation this ylelds the conventional
linearly rising interquark potential.

The behavior of hypothetical magnetic monopoles in a superconduc-—
ting medium represents a simple example of this phenomenon. Here
represents the magnetic field and can pass through the medium only in
the quantized form of "vortices" or "tubes" of magpetic flux which
only end om sources carrying monopole charge. Modules of a strong
interaction dynamics based on this idea have been proposed, although
in complexity they appear somewhat contrived. :

The desire for an economical theory has led to an essentially
universal enthusiasm for a Yang Mills theory of non-Abelian gauge
mesons interacting with the quarks. This elegant generalization of
electrodynamics endows the gauge bosons with an internal symmetry,
and these "gluons" are charged with respect to each other. The con-

’ finement conjecture presumes an inherent instability of a theory of
massless gluons. Consequently, a spreading gluonic field will auto-
matically draw itself into the flux tubes necessary for confinement.
A semiclassical analysis based on classical solutigns to Euclidian
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Yang-Mills equations has suggested a possible mechanism for this flux
colliapse.?

If it occurs in four-dimensional space-time, confinement must be
a non-perturbative phenomenon. Indeed, simple renormalization group
arugments show that K, the energy per unit length of the flux tube,
must exhibit an essential singularity in the bare coupling constant
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Here 8, is the base coupling constant, defined with a cutoff of length
a imposed to remove ultraviolet divergences. The numerical constants
8, and B, are the first terms in a perturbative expansion of the Gell-
Mann Low function
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Equation (1) should be valid in the limit of cutoff removal by taking
a ‘to zero. The important consequence of Eq. (1) is the impossibility
of any perturbation calculation of K.

A non-perturbation treatment requires an ultraviolet cutoff that
is not based on the Feynman expansion. The most extensively studied
such regulator is the lattice proposed by Wilson." Here the cutoff
parameter a is the latrice spacing, which is to be taken eventually
to zero. Before this is done, the path integral defining the quantum
theory is formally equivalent to a partition function for a system of
variables on a four dimensional crystal. In this analogy the bare
coupling constant squared corresponds to temperature. Applying high
temperature series techniques to this system, Wilson showed that in
the strong coupling limit the theory describes quarks connected by
strings with a finite energy per unit length. 1In other words, confine-
ment is automatic in the lattice theory for stromg enough coupling.
However, a low temperature expansion at weak coupling reproduces con~
ventional Feynman perturbation theory. This series is at best asymp-
totic, but its existance suggests a possible low temperature phase of
free quarks and massless gluons. As this is a behavior qualitatively
distinct from confinement, one expects at least one phase transition
gseparating the high and low temperature domains, if the free quark
phase exists. Balian, Drouffe, and Itzzkson have argued that such a
confinement-nonconfinement phase transition will occur in large space-
time dimensionality.5

Ultimately we are interested in the continuum limit of the theory.
In the language of solid state physics, this requires taking the bare
coupling comstant to a critical value so that correlation scales, i.e.,
physical Compton wavelengths, become large relative to the cutoff rep-
resented by the lattice spacing. The perturbative renormalization
group indicates one such critical point at vanishing bare coupling.

A continuum limit at this point yields the phenomenon of asymptotic
freedom; the effective renormalized coupling will go to zero when
defined on decreasing length scales. This phenomenon allows pertur-—
bative predictions of scaling phenomena in high momentum transfer

' processes. ‘

To have asymptotic freedom in the same phase that Wilson's expan-



sion demonstrates confinement, four dimensional space time must be in-
adequate to exhibit the deconfining phase transitiom mentioned above.
Based on an approximate analysis of Migdal and Kadanoff, current lore
is that four dimensions are critical for gauge theories.® In more than
four dimensions all gauge groups should exhibit a spin-wave phase
transition whereas for less than four dimensions any continuous gauge
group will always confine. In exactly four dimensions only Abelian
groups should show a non-trivial phase structure; indeed, this is
necessary if Wilson's formalism is to describe quantum electrodynamics,
the prototype of all gauge theories.

Recently from two rather different techniques strong evidence has
appeared supporting the “standard" picture of the phase structure of
lattice gauge theory. The first technique is to extrapolate the strong
coupling series into a region where weak coupling predictions should
apply.7 In being able to smoothly join the weak and strong coupling
behavior, one obtains evidence for the lack of a phase transition
separating these regimes. These methods have been quite successful in
identifying the parameters characterizing this matching; in particular
they agree to the A parameter discussed below.

The other technique supporting the standard picture is Monte Carlo
simulation. Considering the path integral as a partition fumction for
a statistical system at a given temperature, a Monte Carlo procedure
generates a sequence of configurations which are typical of an ensemble
in thermal equilibrium. This is done by making random changes in the
gauge fields in such a way that the probability of obtaining any con~
figuration C is proportional to the Boltzmann factor
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where S(c) is the action associated with the gauge field configuration
and B is the inverse temperature or inverse coupling squared.

As the entire lattice is stored in the computer memory, one can
measure any desired correlation fumction. One is effectively doing
experiments on a four dimensional crystal. For SU(2) gauge theory my
crystals have been up to 10% sites in size while for SU(3) I have se
far been limited to 6.

In Figure 1 I show the results of thermal cycles on the internal
energy of several of the models.® The internal energy P is the expec~
tation value of the action density and is normalized so that at infinite
temperature it has value 1 and at zero temperature it vanishes. By
slowly increasing the temperature from cold to hot and then reducing
it, regions of slow convergence will appear as hysteresis effects.
These are hints of phase transitions, where the convergence time should
diverge on an infinite lattice. The figure shows SU(2) gauge theory
in both four and five dimensions as well as the SO(2) theory of elec-
trodynamics in four dimensions. I include SU(2) in five dimensions to
illustrate the criticality of four dimensions. The signals of phase
transitions in the four dimensional S0(2) and the five dimensional
SU(2)} models are clear whereas the four dimensional SU(2) model appears
much smoother.

To provide more support for the lack of a transition in the four
dimensional non-Abelian case, I have studied the interaction between
external sources with quark quantum numbers, This is done by measuring
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Fig. 1. Thermal cycles on (a) SU(2)

gauge theory in 5 dimensions, (b)
SU(2) in 4 dimensioms, and (¢) SO(2)

in 4 dimensions.

The quantity B is

the inverse temperature and P is the
internal energy.
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Fig. 2. The cutoff squared
times the string tension as
a function of 8. The solid
lines are the strong and
weak coupling limits.

expectation values of Wilsom
loops, exponentials of the
gauge field integrated about
closed curves in the lattice.
From this analysis I have ex-
tracted the coefficient K of
the linear potential between
widely separated quarks.? 1In
Figure 2 I plot the measure-—

© ments of a2K versus the inverse
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and the asymptotic freedom prediction of Eq. (1) with the prefactor ne-—

glected and an arbitrarily chosen normalization.

If a?K for large 8

does indeed follow the asymptotic freedom prediction, then the linear
potential will survive the continuum limit and confinement is the con-

sequence,

One previously unknown number follows from this analysis.
the overall normalization in Eq.

This is

(2} and is a parameter relating the

short distance asymptotic freedom behavior to the long distance con-

fining potential.
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Defining the parameter Ay by
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At first sight these small numbers are surprising; indeed, I argued
earlier that large parameters are undesirable in stong interaction
physics. However, the value of Ap is strongly dependent on renormal-
ization scheme. Perturbative calculation to one loop order can relate
different schemes and Hasenfratz and Hasenfratz have recently related
this Ay to a more conventionmal ATOT defined by the three. point vertex
in momentum space and in Feymman gauge.11 They find )
mom

A

57.5 Ag SU(2) (8)

mom
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|
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These large factors largely cancel the small numbers in Egs. (6)1and
(7). : ’
Using the string model comnection between K and the Regge slope
gives Jﬁ A 400 MeV; consequently, for the physical group SU(3) we
obtain

ATO™ = 170 # 50 MeV (10) |

This number is phenomenologically encouraging but T do not know what
corrections arise from inclusion of virtual light quark loops.

In conclusion, lattice gauge theory has given strong evidence that
a non-Abelian gauge theory of quarks and gluoms can exhibit an exact
confinement of quarks into hadroms. Most theorists regard this as a
more aesthetic situation than the possibility of almost but not quite
confined constituents of the proton. Perhaps experimentalists will
prove this position wrong, but persistance will be needed to persuade us,

REFERENCES

J. Kogut and L. Susskind, Phys. Rev. D3, 3501 (1974).
. Y. Nambu, in Proceedings of Johus Hopkins Workshop on Current
Problems in High Energy Particle Theory (Baltimore, 1974)
M. Creutz, Phys. Rev. D10, 2696 (1974); G. Parisi, Phys. Rev. D11,
970 (1975).
3. C€.G. Callan, R.F. Dashen and D.J. Gross, FPhys. Rev. D19, 1826
{1979). '
4. K. Wilson, Phys. Rev. D10, 2445 (1975).
5. R. Balian, J.M. Drouffe, and C. Itzyksonm, Phys. Rev. D10, 3376
(1974); D11, 2098 (1975); D11, 2104& (1975).
6. A.A, Migdal, zh. Eksp. Teor. Fiz. 69, 810 (19753
[Sov. Phys. - JETP 42, 413 (1975); 42,743 (1975)1;
Rev. Mod. Phys. 49, 267 (1977). ‘

LS

69 1457 (1973
L.P. Kadanoff,



7. J. Kogut, R.B. Pearson and J. Shigemitsu, Phys. Rev. Lett. 43,
484 (1979); J.B. Kogut and J. Shigemitsu, Preprint (1980);
- G. Minster, DESY Preprint 80/44 (1980);: G. Miinster and P. Weisz,
Preprint (1980).

- 8. M. Creutz, Phys. Rev. Lett. 43, 553 (1979).

9. M. Creutz, Phys. Rev. D21, 2308 (1980).

10. M. Creutz, Preprint BNL-27752 (1980).

1l. A. Hasenfratz and P. Hasenfratz, Preprint TH. 2727-CERN (1980).




	1
	2
	3
	4
	5
	6

