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PROGRAM SUMMARY

Title of program: SUUNFA
Catalogue number: AAOT

Program available from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue)

Computer: CDC 6600, CDC 7600; Installation: University of
London Computer Centre

Operating system: CDC NOS/BE, SCOPE

Programming language: FORTRAN 1V with a few CDC non-
standard features

High speed storage required: 26 K (maximum)

Number of bits in a word: 60

Peripherals used: card reader, line printer

Number of cards in combined program and test deck: 852

Card punching code: CDC

Keywords: lattice gauge theory, U(N), SU(N), U(N)/Z, and

SU(N)/Z, gauge theories, fundamental and adjoint represen-
tations, Yang-Mills theory, Abelian- and non-Abelian gauge
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theories, QED and QCD models, non-perturbative effects, phase
transitions, confining and deconfining phases, quark theory,
statistical mechanical analogies, action per plaquette, Metropo-
lis algorithm, Monte Carlo techniques

Nature of the physical problem

The program simulates thermal equilibrium for U(N) and
SU(N) lattice gauge theories with couplings in both the funda-
mental and adjoint representations. Gauge theories on a lattice
were originally proposed by Wilson [1] and Polyakov [2].

Method of solution

A Monte Carlo simulation of the system set up on a lattice of
variable dimensionality and lattice size generates a sequence of
field configurations on the lattice links. The Metropolis algo-
rithm [3], originally developed for Monte Carlo simulations in
statistical mechanics, is used to generate statistical equilibrium.
New configurations are generated link by link and convergence
to equilibrium is accelerated by performing the Metropolis
algorithm NTMAX times on a given link before passing to the
next link. The matrix for a given link is updated using a table
of matrices of the correct group symmetry. The program per-
mits the choice of a cold (ordered) or hot (disordered) start.

Restriction on the complexity of the program

In practice, the storage requirement is crucially connected with
the array ALAT which stores the link matrices for a given
configuration on the lattice. This array is placed via a LEVEL2
statement in the LARGE CORE MEMORY of the CDC 7600
computer, the statement being ignored by the CDC 6600
computer. ALAT is a complex array requiring a total storage of
2DSPN? words, where D is the dimensionality of the lattice
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space, S the number of sites per dimension and N the degree of
the group (i.e., U(N) or SU(N)). For efficient runs N should
be 2 or more. The U(1) case is added to the program merely for
completeness and for testing the program against other U(1)
programs. It is inefficient for two reasons:

(1) The heat bath method is usually more efficient than the
Metropolis algorithm for U(1).

(ii) The program for uniformity employs 1X 1 arrays for the
U(1) case.

Clearly from a computer point of view the location of real or
complex variables should prove more efficient than for real or
complex 1X 1 arrays. If a user wishes to make a series of U(1)
runs it would be better to use a program such as that in ref. [4)
to produce the results. It should be noted that for U(1) the
fundamental and adjoint representations are identical. For the
test run N, S, D took the values 2, 4, 4, respectively. Certain
other arrays in the program, to be found in COMMON
BLOCKS throughout the program, and also as local arrays in
subroutines MONTE and RENORM, are dependent for their
dimensions on the values of N and D. Comments in the
program indicate how these arrays should be dimensioned.

LONG WRITE-UP
1. Introduction

It has been the dream of physicists to produce a
grand unification scheme with which all the forces
in nature could be described by a single theory —
Grand Unification Theory (GUT). Maxwell in the
nineteenth century successfully unified the theories
of electricity and magnetism. Weinberg [1] and
Salam [2] were able to bring electromagnetism and
the weak interaction into a single theory, exploit-
ing a Yang—Mills gauge theory based on an SU(2)
® U(1) group. Gauge theories have become estab-
lished as the framework for building GUTs (see
books like those listed in ref. [3]). Georgi and
Glashow [4] have proposed an SU(5) model for
unification of the theory of strong, weak and elec-
tromagnetic interactions with the breakdown into
the respective groups for the interactions as:

SU(5) — SU(3) ® SU(2) ® U(1).

Because of certain inadequacies or controversial
features of the SU(5) model, even higher SU(N)
groups have been proposed as candidates for
GUTS:

Typical running time

The execution time increases with the number of links, the
degree N of the group and the number of complete Monte
Carlo iterations (or “passes™) through the lattice. It is also
dependent on the value for NTMAX (“number of hits per
link) used. It increases with NTMAX though convergence
towards equilibrium is accelerated. There can be an ultimate
payoff in having NTMAX fairly large, say 20. For the test run
NTMAX was set 5, § and D set 4, and the time for the 15
SU(2) iterations shown, was 109 s (i.e. = 0.1 s per link) for the
CDC 6600 computer, the CDC 7600 being approximately 5
times faster.
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SU(6): without proton decay [5];

SU(7): motivated by the persistently elusive na-
ture of the t-quark in experiments and
claims for observation of fractional charge
(+3e) [6);

SU(8): draw backs in SU(S) theory (see ref. [7]),
which is otherwise quite successful, may be
overcome by taking the fundamental par-
ticles that appear in SU(5) as a subset of
the SU(8) bound state of preons that be-
long to SO(8) extended supergravity [8].

Chaichian, Kolmakov and Nelipa [9] have argued
from a set of general requirements that only SU(6),
SU(7), SU(8) form allowed groups out of the
general SU(N) gauge group. In any case, large
gauge groups are worthy of further study.
Quantum electrodynamics (QED) has proved
very successful in describing the electromagnetic
force. QCD (quantum chromodynamics) as a de-
scription of the strong force has resisted such
detailed analysis, largely because of non-perturba-
tive effects. Lattice gauge theories proposed by
Wilson [10] provide a new calculational tool and
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have given the best evidence that QCD gives rise
to quark confinement (i.e., that quarks cannot be
isolated). As a preliminary to a study of the full
theory coupled to fermion fields, considerable sim-
plification can be achieved by using pure gauge
groups on a lattice. Thus, U(1) can provide a
discrete version of electrodynamics, U(2), an ap-
proximation to SU(2) ® U(l1) of the Wein-
berg—Salam electroweak theory, and SU(3) (or
even SU(2)) for strong interactions.

Further simplifications can be made within the
framework of the lattice itself. Periodic boundary
conditions, employed within the program, enable
the fields to be extended throughout space, though
the choice of the number of sites per period needs
to be taken with some care. It should be quite
small to speed computation but not so small that
spurious effects due to the periodicity are intro-
duced.

Dimensional considerations provide another
area of interest. Creutz [11] examined pure SU(2)
gauge fields in four and five space-time dimen-
sions. He found that five-dimensional SU(2) fields
exhibited a phase transition whereas its four-di-
mensional counterpart did not, i.e., the confine-
ment of quarks is connected to the dimensionality
of space—time. Bhanot and Creutz have numeri-
cally confirmed the arguments of Polyakov [12]
that for three space-time dimensions, U(l) ex-
hibits only a single phase whereas for four or five
dimensions, deconfining phase transitions are pre-
sent [12]. Balian, Drouffe and Itzykson have pre-
sented arguments that in a sufficient number of
space—time dimensions, any lattice theory will ex-
hibit such a phase transition [13]. Others have
examined 1 + 1 or 2 + 1 space-time either because
of similarities between the former and the full
3 + 1 space—time [14] or because certain theories
can be examined on a lattice and the results com-
pared with those derived using non-Monte Carlo
methods (e.g., variational or even analytic) [15].
The hope in the latter case is that some features of
the theory (e.g., QCD) will thereby emerge.

The program is designed to allow varying num-
bers of dimensions to be examined with a flexibil-
ity in numbers of lattice sites, for pure SU(N) and
U(N) gauge groups.

Considerable interest has also centred around

the choice of action. The form of the action to be
used on the lattice is not unique, in contrast to the
desired continuum limit. The traditional and sim-
plest form is that adopted by Wilson [10]. Other
forms have been used by Manton [16], Villain [17]
and others. Another approach is to take the ad-
joint representation which for SU(N) and U(N) is
equivalent to factoring out the center of the group.
This has been employed by a number of research
groups [18]. The adjoint trace Tr, is connected to
the fundamental trace Try by the simple relation-
ship

Tr,(U) = Tre(U))? -1

for SU(N) and, removing a trivial singlet piece,
for U(N) also. Thus, since Trg(U') represents the
Wilson action per plaquette where U is the prod-
uct of the group matrices around the plaquette, the
action in the adjoint representation can be easily
calculated. The reason for the interest shown in
alternative forms of the action lies in the presence
of new phase transitions absent with the Wilson
action. This is true for SU(2) and SU(3); see, for
example, ref. [18]. Of course, there is no guarantee
that the phase transitions produced are deconfin-
ing. The program enables phase diagrams to be
produced using different values of the coupling
constants for the fundamental and adjoint repre-
sentations, as shown in the papers of Bhanot and
Creutz, and Bhanot [18].

The Monte Carlo simulation bears a close cor-
respondence to statistical mechanics and algo-
rithms for generating statistical equilibrium can be
employed. Two of the most popular are the “heat
bath” method of Yang [19] introduced to gauge
theory by Creutz [20], and the Metropolis algo-
rithm [21]). The “heat bath” algorithm has the
advantage in that for continuous groups with sim-
ple manifolds, such as U(1) and SU(2), it can
result in savings of computer time over the
Metropolis algorithm [20]. However, it suffers from
the disadvantage that it requires detailed knowl-
edge of the Haar measure for each group used.
Pietarinen has used the heat bath approach in
examining the string tension in SU(3) lattice gauge
theory [22], in order to enable calculations to be
performed on large lattices. We have used the



100 R.W.B. Ardill et al. / Pure U(N) and SU(N) lattice gauge theories

Metropolis algorithm here, although in previous
published programs for U(1) [23] and SU(2) [24],
the heat bath method was adopted.

2. Code description

The program test deck used to produce the test
output consists of five routines SUUNFA,
WRTOUT, MONTE, RENORM and STATS.

(i) SUUNFA is the program routine. It con-
tains general comments on the program, on the
library routines needed, on the input data required
and on how to set up the COMMON blocks. It
also reads in the data, all of which is set up in the
form of floating point numbers. The data is writ-
ten out again for convenience using a call to
WRTOUT. Various parameters are initialized. The
link matrices, stored in ALAT, are all set to iden-
tity matrices. This puts the program to the config-
uration of an ordered (“cold”) start. If the input
data requires a disordered (“hot”) start, then one
complete pass is made through the lattice with the
inverse temperature 8¢ (B, in program) set small
(0.00001) and the other inverse temperature B,
(BA, in program) set to zero. This switches off the
adjoint part of the action and the small value of
B causes ALAT to be replaced by link matrices
whose elements are reasonably randomly distrib-
uted. The parameters By and 8, are then reset to
their input values. Calls to MONTE and RE-
NORM are made. RENORM is only called ap-
proximately every 50 passes through the lattice, as
this usually provides enough correction to ALAT
for loss of its SU(N) or U(N) symmetry through
machine rounding errors.

(il) WRTOUT causes the input data to be writ-
ten out for reference.

(iii) MONTE makes a specified number of
complete sweeps (called “iterations” in the pro-
gram) through the lattice. It first sets up a table of
random matrices of the correct SU(N) or U(N)
symmetry. This is done for each sweep through the
lattice. These provide matrices for transforming
the link matrices to new values to be accepted or
rejected with the Metropolis algorithm. For a given
link several such attempts (NTMAX in number)
are made before MONTE passes on to the next
link. This can result in considerable saving of

computing time. The value of NTMAX may be
chosen by making trial runs. Values between about
5 and 20 give reasonable performance in most
cases.

Two features in the construction of the table of
matrices are included to help improve efficiency
[25]. They are under the control of the user, and
are: (a) BEFF. This controls the bias of these
random matrices towards the identity. It is desig-
ned to become more important for large B¢ or S,,
when there should be a bias towards the com-
pletely ordered lattice configuration (when B¢ or
Bs — o). The actual form of BEFF can be varied
by the user to improve convergence to equilibrium.
Symmetrization to SU(N) or U(N) form of the
table of matrices is then carried out. (b) ZN. A
fraction of the matrices of the table were biassed
towards the center Z, of the SU(N) or U(N)
group. This again is chosen to aid convergence,
and is most important when B, is large.

To include matrices which bias in the opposite
direction, only half the table is set up, the re-
mainder of the matrices being their inverses which
are readily generated simply by taking the trans-
pose and complex conjugate of each matrix, due to
the unitarity.

(iv) RENORM resymmetrizes the link matrices
stored in the matrix ALAT. This is necessary to
overcome the effect of rounding errors produced
by the computer. It will be dependent on the word
length used by the computer. For the CDC 6600
or 7600 computers with a 60 bit word length
(giving an accuracy of about 14 significant figures)
usually a RENORM call was only necessary every
50 complete sweeps through the lattice.

(v) STATS produces calculations of the mean
and standard deviations of the results as each
sweep of the lattice is produced. This is achieved
by storing the sum over the number of sweeps of
the various quantities and their squares. Division
of the sum by the number of sweeps considered
gives the mean and the square root of the dif-
ference between the sum of the squares divided by
the number of sweeps and square of the mean
gives the standard deviation. Monte Carlo calcula-
tions have a relaxation time and a certain number
of sweeps are necessary to produce equilibrium.
To eliminate these “relaxation” sweeps, the first
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Initiatize variables.

l

Read in the input data and write out:
NDIM, I SIZE, NTMAX, NAV, NTPASS,
B,BA,STYPE,GTYPE, NGROUP.

]

Calculate number of plaguettes for the
lattice, number of plaquettes per link,
and the number of links.

{

Set link matrices (stored in ALAT)
toidentify matrices i.e.ordered(i.e.COLD

start).
!

X YES
Is @ HOT START required ?

Temporarily set B small (e.9.0.00001)

ond BA to zero. Make a sweep through
the lattice. This will produce random
matrices in ALAT i.e. disordered

NO

(i.e. HOT ) start

Reset B and BA to their original values.

Perform Monte Carlo sweeps through
the latticein batches of 50 as single
calls to MONTE, followed by calls to
RENORM for resymmetrization of the
link matrices in ALAT.

Details of therun are printed out

as each sweep is carried out in MONTE |

St

Fig. 1. Flow chart of the program.

NAYV (parameter set in input data) sweeps can be
ignored in the calculation of the mean and stan-
dard deviation. To facilitate the printout of the
results, fatuous use is made of a CDC feature: if
the number is too large to fit the format, a series
of *’s is output. Thus by setting the means and
standard deviations to arbitrary large numbers for
the first NAV sweeps, the means and standard

deviations will be written as a series of * for these
sweeps. The user of another make of computer
may have to alter this technique or the machine
will register an error.

Caution is necessary for the interpretation of
these thermal fluctuations as statistical errors be-
cause successive iterations are highly correlated. A
simple way to estimate the true errors on a long
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run is to divide it into a few blocks, each long
enough to be uncorrelated with the others., A
standard deviation of the mean may then be
calculated from the averages over the separate
blocks.

The flow chart of the program is shown in
fig. 1.

3. Specification of the lattice

MONTE is the most important routine in the
program. The other routines, apart from RE-
NORM, provide input to MONTE, output from it
or analysis of its results. The flow chart for
MONTE is presented in fig. 2.

The lattice is accessed in an orderly fashion. It
is traversed in a similar manner to that described
in ref. [24], but some slight differences. The theory,
described in section 5, requires evaluation of prod-
ucts of link matrices taken around plaquettes (ele-
mentary squares lying on the coordinate planes
and whose corners are adjacent sites). For ef-
ficiency of calculation, the plaquettes are grouped,
in pairs lying in the planes, around common links.
This is illustrated for a 3 dimensional lattice in
fig. 3. The six sites of a pair of plaquettes are
labelled by numbers enclosed in circles, and the
center link runs between (0 and .

To impose the periodic boundary condition in a
simple and efficient way, we introduce the arrays
MUP and MDOWN. Modulo ISIZE, these arrays
give their index shifted up or down, respectively,
by one unit.

To progress through the lattice the following
steps are carried out:

i) Select a location for the key site (D of the
plaquette group. This is done in sequence in a
manner which causes coordinates to change faster
from the left (e.g., for a lattice with 3 sites per
coordinate direction, i.e., ISIZE = 3, we have the
sequence: (1,1), 2, 1), 3, 1), (1,2), 2,2)..., in
two dimensions (i.e.,, NDIM=2) or (1,1, 1),
e LD, G LD, (1,2, 1), (2,2,1),..., in three
dimensions (i.e., NDIM = 3). In the program the
values of the coordinates of (D are stored in the
integer array X with X(1) the first coordinate

value, X(2) the second and so on.

ii) Next for a certain choice of site (D we select
a link from (D to (). This is done in sequence
according to values of a variable I1 running from 1
to NDIM. I1 = 1: (5) will have the same coordi-
nates as (D except that the first coordinate is
increased by 1, 11 =2: (5’s second coordinate,
instead, increased by 1, over the respective coordi-
nate of (D, and so on.

iii) For this choice of link, (NDIM-1) double
plaquettes lying in planes are constructed with this
link as common center link. These planes are
labelled by values of a variable 12 running from 1
to NDIM but not including the current value of
I1. 12 can be thought of as controlling the value of
the site labelled @) in a manner similar to that of
I1 on (®, ie, for: 2=1: @ will have its first
coordinate only differing by one unit from the
coordinates of (O and so on.

For a given common link, the individual
plaquettes are numbered (by variables IPL1, IPL2
and IP in the program). This is needed in calcula-
tions in the adjoint representation.

Fig. 4 shows how the doubled plaquettes are
oriented for different values of the direction varia-
ble I1 for a 2 dimensional lattice, appropriate to
selections of site (1) from the lattice shown in
fig. 5. Fig. 5 shows a two-dimensional lattice with
links drawn as unbroken lines. In order to il-
lustrate the periodic continuations, extra links are
drawn as dashed lines. The two dotted lines are
added for aesthetic reasons only. The crucial
parameters that are needed for the calculation are
the numbers assigned to the links (including the
continuation links). These enable the link matrices
appropriate to each link to be extracted from and
re-stored in the matrix ALAT. In the program the
value of L12 gives the link parameter for the link
from site (D to site @), L26 that from Q) to ®
and so on. The link parameters are shown in
square brackets in fig. 5. As a preliminary to ob-
taining these L parameters, the program calculates
numbers assigned to the sites of the lattice. For a

-given double plaquette, M1 gives the number for

site. (D, M2 for @ and so on. The full set of site
numbers is shown without brackets on fig. 5.
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C Enter subroutine MONTE. )
=

[ Set up thetoble of 50 roandom matrices properly symmetrized to SU(N)or U(N).

!

| Find tne tirst 1attice site. 44]
r&<More lattice points ? >

YES|

I
[ Select link from this site which istobe considered.

¥

[ Select plaquette plane for which this will form the centre link of a double ploquonoj

'

Locote neighbouring sites ond links for this double plaquette.

Obtain the link matrices for the double plaquette from AL AT,
Muitiply them together appopriately to obtain for the double plaquette,
the Wllson actlon (fundamental and adjoint representations).

|

Obtain o new value for the action by replacing the link matrix by a new value.
This is produced by muitiplying the original link matrix by a new value

Obtained by multiplying original one by a matrix selected at random

from the table of 50 random matrices.

i

Accumulate action (fundomental and adjoint ports).

For adjoint part,itis only necessary to accumulate square of fundamental
part of the action.

L
Does the new volue of the action for this double plagquette \NO
satisfy Metropolis criterion? J
Yes]

Accept the change on the link: Reploce old valuesby new ones.

)

I
€ More tinks available from thissite ?/ﬂs

NOJ

[ Attempt to find next lottice site (D from which links will emerge. —I

1

Calculote average action per plaquette (fundomental and adjoint representations)
ond call STATS to obtain means and stondord deviations.

l

‘V Print out results from this sweep of the lattice. 1

1

N Y
< More sweeps of the lattice 1o be made ?/ ES

NO

C Return to main routine SUUNFA. )

Fig. 2. Flow chart of subroutine MONTE.
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23 02
®
(1,1,2) @
(2,2/”@—--———';':((5"'” (2,0,1)=(2,3,1
® @1 | 6 12=2
e,n 0L (1,0,0=(1,3,1)
@ (2,1,00=(2,1,3)

(1,1,0)=0,1,3)

Fig. 3. Two double plaquettes with a common center link
(between sites D and ®) from a 3-dimensional lattice. The
variables I1 and 12 are the loop variables appearing in sub-
routine MONTE. 11 labels the common center links emanating
from a particular site chosen for (D and I2 the double plaquettes
with this as common center link.

4. The link matrices

The matrix ALAT is the dominant user of
computer memory, especially if the degree N of
the groups SU(N) or U(N) used is large and the
number of lattice sites is also large. Thus ALAT is
placed in LEVEL 2 - the large core memory
(LCM) on CDC 7600. This is not quite so quickly
accessed as the small core memory (SCM), but is
usually larger and cheaper to use. LEVEL 2 state-
ments are ignored on the CDC 6600, which does
not have the feature of distinguishing between
LCM and SCM. For other computers the LEVEL
2 statements will probably not be recognized and
should be removed.

® ®
J @ 06 ®
® ®

® ®
©) @ © (T1=2 ,12=1)
(I1=1,I2=2)

Fig. 4. Two double plaquettes with common links orientated in
the two directions possible for a 2-dimensional lattice. These
are representative of those present in the 2-dimensional lattice
given in fig. 5. The site numbering and parameters I1 and 12
are as for fig. 3.

ACE U U AN CY R SO
I (R N O I
L 11,3) i(2,3) (3,3) |

1o [9] -2 [7] [-1 [8] [o [9] -2

i (5] [13] (14] [1s] i[13]
L ) (2,2) (3,2) I

1-3 (6] |-5 [4] -4 [5] -5“['5]—'7:_5
:[uz] [10] [11] [12) :' [10]
: ________ (,n (2,1) (3,1 !

: -e D] !

[1e] [16) [17] | (18] i [16]
: I I !

: | |

Fig. 5. Link and site numbers and coordinates of sites for a
2-dimensional lattice with 3 sites per dimensional direction.
Link numbers have square brackets, site numbers have no
brackets and coordinates round brackets. The single numbers
in brackets are site numbers added for completeness. The
dotted lines are extensions to the lattice to produce periodic
links across the boundary. The dotted lines give a plaquette
added for completeness.

The first index of ALAT labels the correspond-
ing link of the lattice. It must be dimensioned at
least to NDIM X ISIZENPIM  where ISIZE is the
number of sites per dimension and NDIM the
number of dimensions. The other two indices have
both dimension N for the groups SU(N) or U(N)
on the lattice. They are the matrix indices for the
group elements.

The link matrices are constructed as follows.
They are set originally to identity matrices I, in
the main routine SUUNFA. They are then mod-
ified in the routine MONTE by multiplying by
matrices, of the correct SU(N) or U(N) symme-
try, under the control of the Metropolis algorithm
[21]. The latter matrices are generated in MONTE
and stored in a matrix A. Some comments on the
contruction of the matrices in A are given above in
section 2. The production of the table of matrices,
i.e., A, is carried out as follows:

i) Set the elements of half of the matrices (i.e.,
25 in number) of A to complex numbers whose
real and imaginary parts are random numbers,
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uniformly distributed, lying between —1/2 and
1/2, except for the real parts of the diagonal
elements, which lie between —1/2 and BEFF
-1,2.

ii) Each matrix of the table is then reduced to
SU(N) or U(N) symmetry; this is done by succes-
sively working through it row by row, first normal-
izing the current row and then projecting it out of
the subsequent rows of the matrix; on the comple-
tion of this process the matrix will be unitary -
indeed, this is the Gram-Schmidt orthogonaliza-
tion process [26]; the matrix has now U(N ) sym-
metry;

iii) If SU(N) symmetry is required, the matrix
after stage (ii) is reduced to unit determinant;

iv) The first 5 of the 25 matrices are multiplied
by exp(2#i/N); this does not alter the SU(N) or
U(N) symmetry;

v) using the unitary nature of matrices, their
inverses are generated and become the remainder
of the table of matrices.

The stages (i) and (iii) given above ((iii) only
used if required) form the basis of the routine
RENORM which serves to resymmetrize ALAT,
every 50 (or any other appropriate number, so
determined by the user) sweeps through the lattice.
The loss of symmetry arises due to the rounding
errors of the computer. Obviously the smaller the
precision of numbers capable of being stored in
the computer (due to small word length used in
the computer) and the values making up ( E'), the
more marked will be this effect.

It should be noted that the matrices assigned in
ALAT to the links are directed, i.e., if the link is
taken from one site to another such that any
coordinate between the sites is increased, then the
matrix on the link is taken without alteration,
otherwise the inverse is used. The unitary nature of
the matrices will facilitate the acquisition of the
inverse. The need for directed links will become
clear in the next section.

5. Underlying theory of the algorithms used

Wilson’s lattice gauge theory [10] is based on
evaluation of link matrices around plaquettes, with
appropriate link directions, as described in the last
section. Thus, in evaluating the matrix product Ug

on a plaquette, the product of the four link matrices
is involved. For a pair of plaquettes showing a
link, the directions are shown in fig. 4 by arrows.
The natural direction of the links has to be changed
only in the links from ® to ® from @O to @
and @ to (. This means that the link matrices
taken from ALAT in these cases have to be in-
verted. For a group of plaquettes with a common
link, only the link matrix on this common link is
updated in the Metropolis algorithm. This makes
the NTMAX Metropolis applications (described in
section 2) an efficient process as the bulk of the
calculation for U for the plaquette cluster need
not be repeated.

The action, following the theory of Wilson, is
written

§=YSq, (1)

where the sum extends over all plaquettes O, and
S5 is a function only of U,. Following Bhanot and
Creutz [25], we generalize their equation (3) to

1
SD=,BF[1—N Re Tr UD]

1
STy

This formula also appears in other papers (c.f., for
example ref. [27]). The program uses the relation

+ 8,

TrAUD] . (2)

TrU=TrU*-1, 3)

connecting the trace of the matrix U in the funda-
mental representation with the trace in the adjoint
representation. (For U(N), the adjoint representa-
tion contains a singlet piece which the —1 re-
moves.) Eq. (3) means that the calculation of S
for only the fundamental part can be readily used
to get the full result of (2). In the program, this
means that both the sum of Tr U, and the sum of
[Tr U,|* have to be accumulated for all the
plaquettes with a common link.

. There is a strong correspondence between lattice
gauge theory and statistical mechanics. This is
reflected in the path integral

zZ= fe—SdU (4)
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which can be regarded as a partition function. In
(4) dU is the invariant group measure or Haar
measure. This is the great advantage of using the
Metropolis algorithm, as it avoids needing detailed
knowledge of the Haar measure.

Motivated by the two parts of the action, we
consider the average over the lattice of the quanti-
ties appearing in square brackets in (2). These are
the generalization of the quantities of egs. (9) and
(10) of ref. [25]:

P=(1—%ReTr Us), (5)

1

PA=<1—(—1\;i_l——)—TrAUD>' (6)
These are called, respectively, fundamental pla-
quette and adjoint plaquette in the test run output
of the program. For an action with only one
parameter, e.g., S of (2) with either B¢ or 8, zero,
the corresponding quantity of egs. (5) and (6) is
just the average energy ( E') per plaquette.

The Metropolis algorithm [21] can be easily
adapted to evaluate these expectations. Following

[21] and adapting to the present case, the average
of a variable F is

(F) = [fFe_SdU] /Z. (7)

Here F can be identified with either of the square
brackets of (2) and (F) with P or P,, as ap-
propriate. Suppose we take a new configuration of
the system obtained by changing one link matrix
(by multiplying it by one of the matrices of the
table of matrices). If the change in S, AS <0, i.e.,
new configuration lowers S, then this new config-
uration is accepted (i.e., lattice matrix ALAT is
altered to this configuration). If AS > 0 we accept
the new configuration with probability e45; this
means taking a random number x between 0 and
1, and accepting the configuration if x <e™45,
otherwise remaining at the old configuration. We
then sum up all the values of F for all plaquettes
involving the given link whether we have gone to a
new configuration or stayed in the old one. We
divide by the total effective number of plaquettes
counted to get (F) of (7).

We also include in the test run output the sweep

by sweep value of (S) per plaquette, i.e., action
per plaquette.

6. Adaptations

The program can be readily adapted to evaluate
Wilson loops (and hence the string tension) and
plaquette—plaquette interactions (and hence mass
gaps).
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