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A new algorithm for the simulation of statistical systems is presented. The procedure
produces a random walk through configurations of a constant total energy. It is compu-
tationally simple and applicable to systems of both discrete and continuous variables.
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As computers have improved in capability, the
simulation of large statistical systems governed
by known Hamiltonians has become an important
tool of the theoretical physicist. Applications
range from studies of phase transitions in con-
densed matter to calculation of hadronic proper-
ties via lattice gauge theory. Most of these simu-
lations rely on adaptations of the algorithm of
Metropolis efal.! This generates a sequence of
configurations via a Markovian process such that
ultimately the probability of encountering any
given configuration C in the sequence is propor-
tional to the Boltzmann weight

P(C) x expl-BS(C)], (1)

where S(C) is the energy for a statistical mechan-
ics problem or the action for a quantum field the-
ory simulation. Thus one obtains a sample of
configurations which dominate the partition func-
tion sum or path integral

Z=)3c exp[—BS(C)]. (2)

An alternative simulation technique is the mo-
lecular-dynamics or microcanonical method.
This begins with a set of equations for a dynami-
cal evolution which conserves the total energy.
Upon numerical integration the system will flow
through phase space in a hopefully ergodic man-
ner. (Indeed, nonergodic behavior would repre-
sent a fascinating exception to the generic case.)
Such a program does not explicitly depend on an
inverse temperature 8, which is determined dy-
namically by measuring, say, the average kinetic
energy, which by equipartition should be 32T per
degree of freedom. A microcanonical procedure
effectively replaces the sum in Eq. (2) with

Z=3c2p00S(C) +K(P) -E], ®)

where E is an initially determined total energy,
and K(P) is the kinetic energy associated with the
momenta P conjugate to the coordinates C. Stan-
dard arguments relate the microcanonical and
canonical approaches, with 8 appearing as the po-
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sition of a saddle point in an integral representa-
tion of the 6 function in Eq. (3). Note that the
conventional microcanonical simulations make no
use of random numbers, which are effectively
generated by the complexity of the system. This
technique has recently been applied to lattice
gauge theory.? Dropping the K(P) term in Eq. (3)
gives another microcanonical formulation which
was discussed in the context of continuum field
theory by Strominger.®

In this paper I present a new simulation tech-
nique which interpolates between the Metropolis
et al, algorithm and a microcanonical formulation.
I set up a random walk through configuration
space while maintaining a constraint on the total
energy. An extra degree of freedom, a “demon,”
travels around the system, transferring energy
as it changes the dynamical variables. This new
variable is analogous to the kinetic energy car-
ried by the conjugate momenta in the microcanon-
ical formulation, although the demon is not asso-
ciated with any single degree of freedom in the
original system. Calling the energy carried by
the demon £, the algorithm simulates the micro-
canonical sum

Z=00255,0l8(C) +E - E. (4)

To keep the demon from running off with all the
energy, its energy must be restricted. The sim-
plest constraint is that E, be a positive number,
but further limitations could be useful in certain
cases.

For a specific example to illustrate the method,
consider the Ising model in any number of dimen-
sions. Thus, on any site ¢ of a d-dimensional lat-
tice is a spin variable s; which takes values from
the set {1 y— 1}, and the interaction of these spins
is given by the Hamiltonian

S= 23 8;8;, (5)

{i,i

where {i, j} denotes the set of all nearest-neigh-
bor pairs of sites. The initial configuration of the
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system can be selected by randomizing a portion
of the lattice so as to obtain the desired total en-
ergy for the simulation. The program then re-
leases the demon, which starts with, say, zero
energy. As in conventional Monte Carlo simula-
tion, its path through the lattice is arbitrary. As
two possible options, it could sequentially sweep
the sites, or it could randomly jump about. Upon
reaching a site, the demon attempts to flip the
corresponding spin. If this lowers the spin ener-
gy, it puts the energy thus obtained into its sack,
that is it makes the flip and changes

Ep~Ep =Ep+S=58', (6)

where S’ is the new value of the spin Hamiltonian
and S the old. If, on the other hand, the spin en-
ergy is increased, the demon can only make the
flip if it has the energy. That is, if £,’ from Eq.
(6) is positive, then the change is made, other-
wise the demon moves on to the next spin leaving
the lattice in its previous state.

This procedure amounts to an evolution through
an ensemble of states of constant total energy for
the combined system of the Ising lattice and the
demon. To approach a uniform distribution of
microstates, this algorithm satisfies a restricted
form of detailed balance; if a step makes the
change {E,, s} ~{E,’,s’}, then at the same stage
the algorithm could take {E,’,s’} to {Ep,s} with
equal probability.

Standard statistical mechanics arguments show
that the demon’s energy will become exponentially
distributed,

P(Ep) < exp(-BEp), (M

for energies small compared with the total system
energy. This enables the determination of the in-
verse temperature from the average value of the
demon energy:

B=%1n(1+4/Ep)). (8)

For a continuous system where the energy can
take any positive value, this simplifies to

B =1/Ep). 9)

On a large system the demon’s energy represents
only a small fraction of the total energy, and thus
one effectively works with a fixed energy per spin.
Allowing the demon to visit a heat bath between
steps converts this algorithm into the convention-
al Metropolis ef al. procedure. That is, before
visiting any site, the demon energy would be re-
placed by a new value randomly selected with the
Boltzmann weight exp(-BE,). Note that this
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means that a randomly hopping demon on a large
lattice will locally reduce to the Metropolis et al.
procedure because in its wanderings on distant
parts of the lattice before visiting any given site,
it will establish a Boltzmann distribution for its
energy.

If instead of a single demon one releases a
whole battalion, then they collectively can carry
an appreciable amount of energy. When the num-
ber of demons becomes large compared with the
number of lattice degrees of freedom, the algo-
rithm again reduces to that of Metropolis et al.
With a comparable number of demons and spins,
the technique can smoothly continue between the
microcanonical and canonical ensembles.

The generalization to a more general statistical
system is immediate. For a lattice gauge theory
with a continuous group, the demon would try to
change a link variable by multiplying it by a ma-
trix randomly selected from the same type of ta-
ble one might use with the Metropolis et al. pro-
cedure. The tentative change would then be ac-
cepted or rejected depending on whether the de-
mon has enough energy to make it. Just as with
the conventional approach, it may be advanta-
geous to invoke several trial changes before mov-
ing to the next variable.

Figure 1 shows the results of several simula-
tions with SU(2) lattice gauge theory on a 6 site
lattice. For normalization conventions, see Ref.
4. In Fig. 1(a), I show the evolution of the in-
verse temperature as calculated from Eq. (9),
averaging over sequential sweeps of the demon
over the lattice sites, each point representing
one sweep. The initial condition was all sites or-
dered and the demon possessing a huge sack of
energy. The amount in the sack gives a final
average plaquette P=(1 - 4 TrUp)=0.4166. On
the first sweep the demon essentially randomizes
those links met until its sack is nearly depleted.
This sets up an initial state much like the mixed-
phase starts of Ref. 5. The linear drift in the
first ten iterations represents the dissolution of
this energy over the entire lattice. In Fig. 1(b)
the same evolution is shown for a demon hopping
randomly around the lattice. In this case the
initial energy is randomly distributed and thus
the early drift seen in Fig. 1(a) is considerably
reduced. For comparison, Fig. 1(c) shows the
evolution of the average plaquette or internal en-
ergy under a conventional Metropolis et al. pro-
cedure at 3 =2.25, the value corresponding to the
above runs. This was the same program used by
Bhanot and Creutz.’ All the runs in this figure
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FIG. 1. Three simulations on SU(2) lattice gauge the-
ory on a 6% lattice, In (a) the microcanonical demon
moves sequentially through the lattice. In (b) it hops
randomly from site to site, For comparison, (c) shows
a conventional Monte Carlo simulation at 8 =2.25.

used the same algorithm for trial changes and
made ten hits on any link before proceeding. Fig-
ure 2 shows the distribution of demon energies
over the last ten sweeps of Fig. 1(a). The straight
line in this figure is the expected Boltzmann dis-
tribution for 8 =2.25. Figure 3 shows the conver-
gence of a simple correlation function, the 2x2
Wilson loop, for the three runs of Fig. 1.

This new algorithm performs comparably with
the conventional Monte Carlo schemes. There
may, however, be some advantages. First, the
demon has no need for transcendental functions;
its energy becomes automatically exponentially
distributed. Unfortunately this is not much of a
gain in practice because for discrete groups such
functions can be put in tables, while for gauge
theories so much time is spent multiplying neigh-
bors that a few exponentials are inessential. A
second advantage of the demon is that it is ex-
tremely lenient in its demands on the random
number generator. A random walk in phase space
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FIG, 2. The distribution of demon energies over the
last 10 of the 50 iterations in Fig. 1(a). The ordinate
counts the number of times out of 51 840 steps that the
demon is in the corresponding energy bin of width 0.1.
The straight line on this logarithmic plot is the Boltz-
mann distribution for g=2.25,

will soon forget its beginning, even if it is not
quite random. For the Ising example with a se-
quentially moving demon, no random numbers
are needed at all; the lattice uses its complexity
to generate its own. With a discrete group, a
third advantage of this technique is that all arith-
metic can be done with small integers. No float-
ing point operations are required, and, with an
upper limit on their energy, a platoon of demons
could ride in one computer word via a multispin
coding technique.®’” A final, but perhaps esoteric,
advantage of the method is that it does not treat
the Boltzmann weight as a probability; indeed,
the demon does not even know what 8 is. As one
of the problems with simulating fermionic sys-
tems is the lack of a probability interpretation
for Grassman integrals, perhaps there is a hint
here.

As with conventional Monte Carlo simulation,
this algorithm has the advantage over convention-

~al molecular-dynamics techniques of not requir-

ing numerical integration of differential equations.
Thus, at any step the change of a single variable
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FIG. 3. The evolution of the 2 x2 Wilson loop in the
three runs from Fig. 1.

need not be infinitesimal. This advantage also
applies over stochastic differential evolution.®
The approach may have a few disadvantages.
First, finite-size effects differ from those in the
canonical approach; on small systems trapping in
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metastable states is potentially more serious.
Second, and related, one cannot directly use the
fluctuations in the lattice energy to measure the
specific heat. This problem can be circumvented
by using the fluctuations in the Fourier transform
of the energy density and extrapolating to zero
Fourier component.

An interesting extension of the technique arises
on considering more than one coupling parameter.
For example, consider adding a magnetic field
to the Ising model. Although the additional inter-
action could be added directly to the Hamiltonian,
an amusing alternative would be to do a simula-
tion at constant magnetization. In this case the
demon would carry two sacks, one of energy and
one of magnetization. A spin could be flipped
only if the demon has enough of each. Such a pro-
gram would have neither B8 nor the magnetic field
as input parameters, but would determine them
from the average contents of these sacks.
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