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Pure SU(4) gauge theory is simulated by Monte Carlo methods on an 8? lattice. The method of Metropolis et al. is used to
equilibriate the space—time lattice. All Wilson loops up to size 4 X4 are calculated. Because of memory requirements we work
on the 2 Mword CDC CYBER 205 at Colorado State University and take full advantage of the parallel processing capabilities

of this vector machine.

1. Introduction

It is generally believed that the theory of strong
interactions is Quantum Chromodynamics (QCD)
which is a quantum field theory. However, quan-
tum field theory is plagued by infinities which
require a regularization technique. By expressing
quantum field theory in the Feynman path in-
tegral approach, the equivalence of quantum field
theory and statistical mechanics can be estab-
lished. Thus, formulating quantum field theory on
a discrete space—time lattice [1] which acts as a
regularizer, and taking all the established tech-
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niques of statistical mechanics, allows us to solve
QCD and obtain physically meaningful results [2].
However, in order to eliminate finite size effects
and measure interesting physical observables [3]
we need to work on large lattices which requires
large computer memory for simulations. In order
to obtain reasonable statistics this computer mem-
ory must be fast memory. The best source of large
fast core is the current supercomputer, e.g., the
CDC CYBER 205. The CPU times required for
some recent Monte Carlo lattice gauge theory
calculations are given in table 1.

The Monte Carlo lattice gauge theory technique
for SU(N) gauge theory on a scalar machine (the
CDC 7600) was described in great detail recently
[3). The vectorization of this algorithm for the
average plaquette calculation on the CDC CYBER
205 has been described for an odd lattice [12] and
for an even lattice [13]. However, the recent calcu-
lations of the U(4) and SU(4) string tension on a

0010-4655 /83 /0000-0000,/$03.00 © 1983 North-Holland



14 D. Barkai et al. / Wilson loop calculations in SU(4) gauge theory

Table 1
Some typical recent lattice gauge theory calculations carried
out on the supercomputers CDC CYBER 205 and CRAY-1S

CPU time
time

(h)

U(N),N=2,3,4,5and 6 [4] CRAY-1S 70
SU(N)/Zy, N=2,3,4,5and 6 [5] CRAY-1S 75
U(2) string tension (6] CRAY-1S 80
U(3) string tension [7] CRAY-IS 88
U(4) and SU(4) string tension [8] CDCCYBER 6
205 and
CRAY-1S 153

Calculation Computer

SU(3) string tension on 6*
lattice [9]

SU(3) renormalization study on 8*
lattice [10] CRAY-1S 192
SU(4) renormalization study on 8 CDC CYBER  9.45

lattice [11] 205

CRAY-1S 79

6* lattice [8] and the SU(4) renormalization study
on an 8* lattice [11] require the calculation of
Wilson loops. Thus, in the present paper we wish
to describe the vectorization of the Wilson loop
calculation.

2. Field theory and Monte Carlo methods

In lattice gauge theory, the Feynman path in-
tegral is mathematically equivalent to the partition
function for a discrete set of statistical variables
located on the lattice bonds. The field theoretical
bare coupling constant corresponds directly to the
statistical temperature. A high temperature expan-
sion then provides information on large couplings.
In this way Wilson [1] derived confinement in the
strong coupling domain, where the theory reduces
to a model of quarks on the ends of strings of
gluonic flux. These strings have a finite energy per
unit length and thus the quarks experience a linear
confinement potential.

Although the Monte Carlo approach to simulat-
ing statistical systems [14] is quite old, only re-
cently have particle physicists applied the tech-
nique to gauge theories. One stores the numerical
values for the variables in the computer memory.
Pseudo-random changes, weighted by the Boltz-

mann factor, then mimic thermal evolution and
fluctuation. Thus we do “experiments” on a sys-
tem with a predetermined dynamics. Such studies
have given the strongest evidence that the phe-
nomenon of quark confinement persists in the
continuum limit of a non-Abelian gauge theory.

The Monte Carlo method has a few inherent
limitations. Statistical errors only drop with the
quare root of the computer time. Consequently,
the extraction of some parameters can be severely
statistics limited. Also, for the four-dimensional
systems of interest to the particle physicist, the
linear dimensions of the lattice are necessarily
limited. Finally, although fermionic fields are a
major area of current research, the techniques for
computing with Grassmann variables are as yet
quite awkward and voracious of computer time.

The detailed techniques for simulating statisti-
cal systems are standard and need not be explicitly
discussed here. One difference between gauge
simulations and more traditional Monte Carlo ap-
plications is the large amount of arithmetic that
must be done to calculate the interaction of a
single link. This means that it is quite important to
do as careful a job as possible to calculate the trial
changes on a variable. In particular, it is usually
economical to try several changes on a single link
before going on to the next.

3. Vectorization and performance issues

The programming considerations and tech-
niques, needed for vectorization for part of the
application were described in some detail in previ-
ous publications [12,13]. In this paper the main
issues and conclusions discussed there will be re-
visited, but more attention will be paid to the
vectorization process of an additional routine,
namely, the Wilson loops routine. In addition,
some figures will be given regarding the relative
importance of various computational procedures
in the code, the effect of vectorization and the
dependence of performance upon the parameters
determining the size of the problem.

For the sake of clarity let us establish some
common terms for describing the problem. The
physics is derived by considering a four-dimen-
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sional lattice with L link values along each axis. (L
values treated here will be 8 and 6.) With each link
value a complex matrix of N X N is associated
which corresponds to the SU(N) symmetry group
( N = 4 throughout this section). Thus, the numeri-
cal values of interest are contained in a 4L* X 2N?
size array. It will be referred to as the “links
array”’. Two main routines will be analyzed:
MONTE, which employs the Metropolis et al. [15]
variant of the Monte Carlo technique for evaluat-
ing the average action per plaquette, and RECTS
which computes the Wilson loops. MONTE is the
part of the code described in refs. [12,13].

Before proceeding let us reiterate the method
and tools for overcoming a couple of obstacles in
the way of effectively vectorizing a Monte Carlo
application for lattice gauge theories. The first
obstacle is a conflict between random access to
data and the requirement of the CDC CYBER 205
that vectors are sets made of elements stored in
consecutive locations. The random access of data
originates from the Metropolis [15] selection pro-
cess which assures the convergence of the Monte
Carlo process. For SU(N), N > 2, a look-up table
of unitary-unimodular matrices is generated, using
a random-number generator, for each MONTE
iteration. The selection procedure then retrieves
values at random from this table. For parallel
processing it is required that many such values be
retrieved before the pipe-lined arithmetic can be
performed. If this retrieval stage had to be ex-
ecuted in a scalar (serial) manner then, no matter
how fast the arithmetic dperations are, a consider-
able amount of time would be spent not utilizing
the vector pipelines, and thus degrading the com-
puter’s performance accordingly.

Another reason for the need to “collect” data
stored at irregular intervals into a contiguous area
is that to update any link value, its neighbouring
link values, in every direction, must be available.
So that if a number of links are to be processed in
parallel, their neighbours must constitute vectors
too. The usage of periodic boundary conditions in
a hypercube makes it impossible to pre-order the
“links-array” in a way which assures the presence
of vectors in every direction. This constraint re-
garding the neighbours’ dependence applies both
for MONTE and RECTS.

The conclusion of the above arguments is that
unless one can “gather” (and “scatter” back into
place) data elements at rates comparable to com-
putation rates, an “effective” vectorization cannot
be achieved. The CDC CYBER 205 is a system
where such random (or, indirect) “load” or “store”,
or the ordering of a random collection can be
achieved through a pair of vector instructions,
commonly known as GATHER and SCATTER.
They have two input streams — one is a data array,
the second is an index list. The GATHER instruc-
tion steps through the index list, picks up the data
element pointed to by the current index and puts
it into the next location of the output stream. For
example, consider the following:

data array: 20,19,18,...,2, 1,0,
index-list: 3,1, 10, 10,9, 5, 6, 6, 6.

Then, executing the GATHER instruction will
produce the array:

18,20, 11, 11, 12, 16, 15, 15, 15.

The SCATTER instruction uses the index list to
point to the location in the output array where the
next data element is to go.

The results rate for these two instructions is one
result-element every 1.25 clock periods, that is
every 25 ns since the CDC CYBER 205 has a 20
ns clock. This is to be compared with a result-rate
of one element per clock-period per pipe for a
vector add or multiply, or, one result every 10 ns
for a 2-pipe CDC CYBER 205.

Other aspects of vectorization will be discussed
below; suffice it to say here that the code is fully
vectorized. The significance of the GATHER and
SCATTER instructions may be appreciated by
observing that, for the vectorized code, these in-
structions amount to 12.5% of the time spent in
MONTE and 27% of RECTS processing time. One
can easily appreciate the disastrous effect on the
execution time if these operations performed an
order of magnitude slower, as they would in scalar,
serial mode. Incidentally, as will be demonstrated
below, the larger L (the size of the lattice) is, the
bigger is the time spent in RECTS comparred to
that of MONTE.

Another hurdle in the path of vectorization may
be summed up as follows: The convergence of the
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Monte Carlo iterations depends upon the usage of
updated link values as soon as they are available.
Vectorization means taking a set of consecutive
links and updating them in parallel. However,
since computing each link value requires its
neighbour values, new ones, if available, the con-
vergence of the vectorized code cannot be achieved
as long as the links are processed in the usual
lexicographic order. One needs to identify groups
of links which are independent of each other and,
therefore, may be computed in parallel without
affecting the convergence rate or correctness. The
solution for this is to discard the lexicographic
order of processing and use what is known as
“red-black” or “checker-board” ordering [13]
where each “colour” can be processed in parallel,
resulting in vector lengths of L*/2. Due to the
periodic boundary conditions this two-colour
scheme works for even lattice size (L) only, for
odd lattice size a multi-colour scheme is required
as described in refs. [12,13]. Since we consider L
values of 6 and 8 this will not concern us now.
Here, again, as was alluded to above, the GATHER
instruction plays a crucial role in retrieving the
group of links and the appropriate groups of
“neighbours” (of the other “colour”) for pipe-lined
(parallel) processing.

It may be useful, at this point, to pause and
examine the importance of being able to use “long”
vectors. On a vector processor a vector operation
amounts to issuing a single instruction, such as
add or multiply, which will return a whole array
(vector) of results. The timing formula for com-
pleting such an instruction contains two compo-
nents. One is fixed, i.e. independent of the number
of elements to be computed, and is called “start-
up” time. In fact, it amounts to start-up and
shut-down; it involves fetching the pointers to the
input and output streams, aligning the arrays so as
to eliminate bank conflicts (the vector instructions
on the CDC CYBER 205 operate from memory to
memory without the use of registers), and the time
to get the first pair of operands to the functional
unit (the pipe-line) and the last one back to mem-
ory. Typical time for the “start-up” component is
1 us, or about 50 cycles (clock periods). The other
component of the timing formula is the *“stream-
time” which is proportional to the number of

elements in the vector. As mentioned earlier the
result rate for a 2-pipe CDC CYBER 205 for an
add or multiply is 2 results per cycle. It is apparent
now that in order to offset the “wasted” cycles of
start-up times it is beneficial to work with longer
vectors. The system is better utilised if a single
operation is performed on a long vector, rather
than several operations to compute the same num-
ber of results. Given a vector length, M, one can
evaluate the efficiency of the computation as the
ratio between the number of cycles used to pro-
duce useful results and the total number of cycles
the instruction has taken, ie. (M/2)/(M/2)+
50). The maximum vector length the CDC CYBER
205 hardware allows is 65535 elements. The start-
up time becomes quite negligible long before that.

The discussion above may help the reader, who
is familiar with the application, to guess the vec-
torization strategy which was adopted for the
arithmetic portion of the code. For L =8, 76% of
the time spent in MONTE is used for computing
complex matrix multiplies, the matrices being the
4 X 4 complex SU(4) matrices associated with each
link. In RECTS 72% of the time is dedicated to
complex matrix multiplies and summing up the
results of such products. These figures apply to the
vectorized code on the CDC CYBER 205, but for
any computer it is obviously essential to perform
these computations fast. It is well known how to
vectorize a product of two matrices, but, of course,
in our case we will be dealing with vectors of
length 4 (coming from the 4 in SU(4)). Knowing
the “cost” of vector instruction start-up, one does
not really want to be restricted to vectors that
short. We know, however, that each of the 4L°
(= 16384 for L = 8) link values has such a 4 X 4
complex matrix associated with it. We also know
how to separate the “links-array” into 8 indepen-
dent sets of L* /2 links each, using the “red-black”
ordering. So here is the answer: perform the ma-
trix-product as in a serial processor, only do each
of the operations required for L*/2 such matrices
in parallel. This is the vector length used in
MONTE; 2048 elements for L = 8, 648 for L = 6.

Another method for performing this complex
matrix-product was described in refs. [12,13]. It
was termed the “long outer product”. It is suitable
for small, odd values of L, e.g. L =3, and, at the
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cost of some extra copy operations, vector lengths
of L3N? (N being that of SU(N)) are achieved.
The considerations and solutions described so
far make the explanation for the vectorization of
RECTS fairly straightforward. In this routine Wil-
son loops are evaluated by summing up complex
matrix-product (SU(N) matrices) values of all
subdivisions of the lattice up to the size of L/2
along each axis. Since link values are only summed
up but not updated, all the values in the “links
array” can, in principle, be processed in parallel.
Moreover, it turns out that the sequence of moving
along the boundaries of the Wilson loops needs to
be preserved. Therefore, as with the matrix-prod-
uct in MONTE, the strategy here was to compute
the contribution from as many links as possible to
the appropriate loops. In FORTRAN terminology
this amounts to “loop-inversion”, i.e. take the
external loops and make them the innermost. The
subroutine RECTS requires many temporary
quantities to be computed, which, while vectoriz-
ing, turn into temporary arrays of a size equal to
the vector length. Thus, in order not to indulge in
excessive memory usage, and still have long enough
vectors, L* links are processed in parallel in this
routine (i.e. for L = 8 vector length of 512 is used
in RECTS). After the contribution of L? links is
processed by vector instructions it needs to be
summed up. Summing up values contained in an
array seems to be a serial-recursive process. How-
ever, on the CDC CYBER 205 there is a vector
macro instruction, the SUM instruction, which
performs the summation at the rate at which arith-
metic is done (and, by the way, there is an instruc-
tion which performs dot-product at the same rate).
The GATHER instruction is put to good use in
RECTS in collecting together all the *“neighbour”
values needed for summing up the subdivisions,
since, as was mentioned earlier, even when one
steps through the “links array” in order, the peri-
odic boundary conditions and the hypercube
structure cause irregular intervals between succes-
sive values which are to constitute a vector.
Another performance improvement for the
vectorized code over that of the original CDC
7600 code was achieved through the use of the
large memory of the CDC CYBER 205. Various
indices used for indirect-addressing to the

“neighbours” were computed each iteration, both
for MONTE and RECTS. This is done now only
once, and the “index-lists” computed are saved
(on a disk file in the case of RECTS) and used for
the GATHER instructions on each iteration. The
evaluation of these “index-lists” has to be done
using scalar instructions, but since it is done only
once the processing time needed amounts to well
below 0.5% of the total time even for as little as 10
MONTE or RECTS iterations.

Throughout this section frequent references were
made to “complex” arithmetic. The reader who is
familiar with the FORTRAN storage conventions
may realize by now that this storage by pairs of
real and imaginary parts is not advantageous for
vectorization on the CDC CYBER 205. Indeed,
the first modification to the original code was to
arrange all the complex arrays so that they contain
all the real values followed by all the imaginary
values (or split complex arrays into two arrays).
The FORTRAN complex arithmetic statements
were coded explicitly as real arithmetic involving
the two parts of the original complex array. As an
aside, this change actually benefits most serial
processors from the point of view of improving the
resultant object code produced by the compiler.

At this stage, after having covered the main
issues involved in the vectorization process, we can
address some overall performance and timings de-
tails. Some other minor details will be mentioned
as we go along. First, let us be reminded of the
general flow when executing the application. The
main program calls subroutine MONTE to per-
form a number of iterations so as to achieve
convergence for a given inverse-temperature value.
When this is done the subroutine RECTS is called
to executive another number of iterations. The
calculations performed in RECTS measure Wilson
loops. For each RECTS iteration MONTE is called
to perform two iterations and the loop values are
accumulated and standard deviations calculated.
There is another routine, which has not been men-
tioned so far, for renormalizing the SU(N)
matrices to assure that they stay unitary-unimodu-
lar. This routine is called once every 20 to 50
MONTE iterations and therefore never amounts
to more than 1% of the total run time even when it
executes by scalar instructions, as it does now (it is
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a vectorizable process, though).

The number of iterations required for meaning-
ful results depends on several parameters: the
symmetry group SU(N), the inverse-temperature
and how near it is to a phase transition value, and
the lattice size. Let us consider SU(4); then, for
lattice size L equal to 6 we would typically need
200 MONTE iterations and 25 RECTS iterations
when not near a phase transition (when near a
phase-transition both numbers should be about
doubled). With this in mind it makes sense now to
talk about execution times per iteration for
MONTE and RECTS. For the purpose of com-
parison to other similar codes two more parame-
ters should be highlighted. The first one pertains
to MONTE; for the Metropolis selection process
the random-number look-up table is sampled N2
times for each link value and each iteration for the
SU(N) symmetry group. This selection process,
which speeds up the convergence, amounts, for
L =238, to 66% of the total time in MONTE (this
section of the code contains some GATHER’s and
matrix products). The second parameter which
may change between variants of the code is the
maximum size of a subdivision of the lattice in
RECTS. We sum all subdivisions up to the size of
L/2, where L is the lattice size. With this under-
standing we can now consider table 2, which gives
the execution times per iteration for MONTE and
RECTS, for SU(4) and L =6 and 8. The reader
may notice the effect of increased vector length
when considering the timings for MONTE, where
the amount of work increases like the fourth power
of L. Thus, while the amount of work increased by
a factor of 3.16, by changing from L = 6 to 8, the
execution time increased only by a factor of 2.88.

Table 2
Execution times in seconds per iteration for MONTE and
RECTS for lattice sizes of 6 and 8

Routine Lattice size
4.
6 8 Ratio: S--ame
6°-time
MONTE 1.70 4.9 2.88
RECTS 427 21.2 4.96
Ratio: ECioUme 5 ¢ 433
MONFE-time

One also observes the fast growth of the contribu-
tion to the execution-time arising from RECTS
(where the time quoted does not include the two
MONTE iterations associated with each RECTS
iteration).

For the purpose of comparing these timings to
other computer systems, the following may be
adequate: for L =6 MONTE performs 12 times
faster on the CDC CYBER 205 than it does on the
CDC 7600. For RECTS the ratio between these
two systems is 28 in favour of the CDC CYBER
205. The same ratios for L =8 are bigger, how-
ever, the size of the problem makes it impractica-
ble to attempt such runs on the CDC 7600. The
dependence of the execution time on the symme-
try-group parameter, N, was measured previously,
and was found to be approximately proportional
to N3,

There are two more operations in MONTE
which have not been explicitly mentioned yet. The
Metropolis selection process involves the genera-
tion of many random numbers used for picking-up
values from the look-up table; the selection crite-
rion itself involves computing an exponential.
Being part of the section which takes two thirds of
the time spent in MONTE it is obviously crucial to
perform these operations efficiently. Luckily, the
CDC CYBER 200 FORTRAN provides us with
appropriate tools for achieving just that. A library
subroutine exists which returns a whole array of
random numbers with one call. The FORTRAN
library also contains “ vector functions” for vari-
ous mathematical and trigonometric functions. One
of these is a vector exponential function. As a
result, the random-number generation takes only
3.8% and the exponential computation takes only
2.4% of the time spent in MONTE.

In conclusion, it will be stated that all the
computations referred to in this paper were per-
formed using 64-bit arithmetic. The CDC CYBER
205 hardware provides for working with 32-bit
word size. When this feature is employed scalar
operations are performed at the same speed as in
64-bit mode, as do the GATHER and SCATTER
instructions (due to their dependence on memory
access); but, vector floating point operations have
a result-rate which is twice as fast as 64-bit opera-
tions and the same start-up time. The advantage of
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migrating to the 32-bit mode is not just for achiev-
ing better performance, it also means halving the
memory required for the application, and there-
fore being able to tackle larger size problems quite
easily. Experience has shown that adequate accu-
racy may be maintained in 32-bit mode when the
SU(N ) matrices are renormalized more frequently.
We are planning to migrate our existing code to
the 32-bit mode in the near future.
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