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Abstract. A previous Monte-Carlo study of pure SU(6) gauge theory in four space-time 
dimensions is extended to measure all Wilson loops up to size 3 x 3 on a 64 lattice. The string 
tension is extracted from the Wilson loops and a lower bound is placed on the asymptotic- 
freedom scale parameter &. 

In a recent paper (Creutz and Moriarty 1982), pure SU(6) gauge theory with the Wilson 
action was studied on a hypercubical lattice in four space-time dimensions. This study 
established that SU(6) gauge theory has a first-order phase transition. The strong-coupling 
expansion (Drouffe and Moriarty 1982) was shown to fit the Monte-Carlo data over the 
whole strong-coupling region. We would now like to study the approach of pure SU(6) 
gauge theory to asymptotic-freedom scaling. With this in view, we calculated all Wilson 
loops up to size 3 x 3 on a 64 lattice and determined the coefficient of the area term in these 
loops. Unfortunately, because of the first-order phase transition, asymptotic-freedom 
scaling can only set in for Wilson loops larger than 3 x 3. Hence we are only able to put a 
lower bound on the asymptotic-freedom scaling parameter I\o . 

We use a hypercubical lattice in four Euclidean space-time dimensions in our 
calculations. Denoting the nearest-neighbour lattice sites by i and j ,  a link {i, j )  is formed 
on which sits an N x N unitary-unimodular matrix Ulj E SU(N)  with 

9, =(U,)-'.  

Our partition function is written as 

where p= 2N/gi, with go the bare coupling constant and the measure in the above integral 
is the SU(N) normalised invariant Haar measure. Our action S is defined as the sum over 
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all unoriented plaquettes 0 with 

where U, is the product of link variables around a plaquette. Periodic boundary conditions 
were used throughout our calculations and our lattice was equilibriated by the method of 
Metropolis et a1 (1953). Because of the amount of statistics required and the large lattice 
on which we are working, we resorted to a pipelined vector processor, the CDC CYBER 
205, for our calculations. Our calculational methods on this computer have recently been 
described in great detail (Barkai and Moriarty 1982, Barkai et a1 1983a). From now on we 
specialise to SU(6). 

We define our rectangular Wilson loops (Wilson 1974) by 

W(I, J )=d(Re  Tr U,) 

where C denotes a rectangle of length I and width J and U, is the product of link variables 
around C. The Wilson loops have the leading-order strong-coupling (Drouffe and Moriarty 
1982) and weak-coupling expansions 

W(I, J )=(hPYJ(1  +Oca2)> (1) 

and 

35 
W(I, J )  = - + O@- 2)  

4P 

respectively. We extract the string tension by forming the logarithmic ratios AI, J) defined 
by 

1, ( W(Z, J -  l)W(Z- 1, J )  
W(I, J)W(I-  1, J -  1) AI, J) = -In 

The coefficient of the area term in the Wilson loops, K ,  is related to the logarithmic ratios 
x(I, J) by 

2n2p (- 102/12 1) 

AI, J ) = -  K (z) exp( -T) @ 2n2p (3) 

where A,, is the asymptotic-freedom scale parameter. The leading-order strong-coupling 
expansion for the string tension is given by 

x(1, l)=-In(hP)+ O(P2). (4) 

All the Wilson loops up to size 3 x 3 are shown in figure 1. To perform our calculations 
we first carried out 300 iterations through the 64 lattice with 36 Monte-Carlo updates per 
link. These iterations were thrown away and were used merely to equilibriate our lattice. 
The Wilson loop averages were then obtained from the next 100 iterations through the 
lattice. In order to cut down correlations between sweeps, we ignored every second lattice 
configuration and so only 50 lattice configurations were used in our averages. One update 
per link took 1.91 ms on the CDC CYBER 205. By observing the standard deviation 
on the Wilson loops, we measured the transition point for pure SU(6) gauge theory to be 
P, = 23.8 f 0.02. Therefore, ordered starting lattices were used for /3 > P, and disordered 
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Figure 1. The Wilson loops W(I,  J )  for 
pure SU(6) gauge theory on a 64 lattice as 
a function of the inverse coupling constant 
squared /3. A, ( I ,  J)=(l, 1): 0, ( I ,  J ) =  
(2, 1): x 3 ( I ,  J ) = ( 3 ,  1); 0, (I ,  J ) = ( 2 , 2 ) ;  
0, ( I ,  J ) = ( 3 , 2 ) :  W, ( I ,  J ) = ( 3 ,  3). The 
curves A and B represent the leading-order 
strong- and weak-coupling expansions of .~~ 

P equations (1) and (2), respectively. 

starting lattices were used for p < p,, The leading-order strong- and weak-coupling 
expansions of equations (1) and (2), respectively, are also presented in figure 1. 

In figure 2 we present the logarithmic ratios x(Z, J )  for ( I ,  J )  = ( l ,  l), (2, 2), (3, 2) and 
(3, 3) as a function of the inverse coupling constant squared p. Also shown in figure 2 are 
curves corresponding to the behaviour of equation (3) with I\o = 4 ,6  and 8 x @. We 
can see that even for loops up to size 3 x 3, asymptotic-freedom scaling is not observed 
because of the first-order phase transition. This only allows us to place a lower bound on 
the asymptotic-freedom scale parameter of 

& 2(5 x 

A similar result was recently found for SU(5) gauge theory (Barkai et a1 1983b). Also 
shown in figure 2 is the leading-order strong-coupling expansion of equation (4). 
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Figure 2. The string tension dI, J )  for 
pure SU(6) gauge theory on a 64 lattice 
as a function of the inverse coupling 
constant squared I(. A, ( I ,  J ) = ( l ,  1); 

( I ,  J ) = ( 3 ,  3). Also shown in the 
diagram (curve A) is the leading-order 
strong-coupling expansion of equation 
(4). 

0, ( I ,  J )=(2 ,2) ;  x ,  { I ,  J )=(3 ,2) ;  0, 
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