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PROGRAM SUMMARY

Title of program: ISING
Catalogue number. ACCP

Program available from: CPC Program Library, Queen’s Uni-
versity of Belfast, N. Ireland (see application form in this issue)

Computer: CDC CYBER 170-730 (dual processor); Installa-
tion: Dalhousie University Computer Center

Operating system: CDC Nos 2.1

Programming language used: FORTRAN-77 and CDC COM-
PASS

High speed storage required: 25 Kwords
Number of bits in a word: 60
Peripherals used: terminal, line printer

Number of lines in combined program and test deck: 550

Permanent addresses: Institute for Computational Studies,
Department of Mathematics, Statistics and Computing Sci-
ence, Dalhousie University, Halifax, Nova Scotia B3H 4HS,
Canada, and Department of Mathematics, Royal Holloway
College, Englefield Green, Surrey TW20 0EX, UK.

Keywords: Ising model, phase transitions, critical exponents,
correlation functions, magnetization, microcanonical methods

Nature of the physical problem
We wish to study the critical temperature and critical expo-
nents of the three-dimensional Ising model.

Method of solution

A microcanonical method with demons [1] is used for the
simulation of the three-dimensional Ising model. The updating
procedure is essentially deterministic and uses only integer
arithmetic. Correlations can be measured.

Restriction on the complexity of the program
The only restriction on the use of the program is the time
needed to acquire reasonable statistics.

Typical running time

The execution time increases with the number of spin updates
required. The program will carry out 860000 spin updates per
second on the CDC CYBER 170-730 or 24000000 spin up-
dates per second, including measuring the demon energy and
lattice magnetization, on the CDC 7600. The test run output
with a reduced lattice size took 4.8 s on the CDC CYBER
170-730.
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LONG WRITE-UP
1. Introduction

Numerical simulation of statistical systems has
usually been carried out by stochastic methods,
especially the “Metropolis” Monte Carlo method
[1]. Of late, however, it has been realized that
deterministic methods can be used instead [2,3].
The essential idea is the one underlying ergodic
theory: the complexity inherent in a large system
is expected to generate, in effect, random numbers
without explicit use of pseudorandom number
generators. However, instead of obtaining a se-
quence of states by integrating the equations of
motion along a phase space trajectory, we use a
modified microcanonical method [3]. An array of
“demons” is let loose on the system. They interact
sequentially with the microscopic units of the sys-
tem and try to change their states. In general, a
random choice of the final state is involved, but in
cases like the Ising model where each spin has only
two possible states, there is no randomness. The
attempted changes are permitted if and only if
energy conservation can be obeyed. The demons
carry energy, and it is the sum of the energies of
the interacting demon and the system that has to
be conserved.

An algorithm for the treatment of the two-di-
mensional Ising model along these lines has been
presented earlier {4]. Here we take up the three-di-
mensional Ising model.

2. Outline of the theory

The system consists of a set of spins located at
the sites of a three-dimensional lattice. Each spin s,
can take the values + 1. The energy of a configura-
tion is given by

E= ) (l_sisj)’ (1)

bonds(if)

s, and s, denoting the spins on the two sides of the
bond(ij). Physical quantities of interest are the
bond average (s;s,) (=1 — energy per bond) and
more general correlation functions (s,;s,;,), where
K (i) denotes a site a specified distance away from

the site /. Connected correlation functions are
defined by subtracting the factorizing part:
(8:Skiyy — 8:)% (s;) measures the alignment of
spins, i.e. the magnetization.

Since each spin has six nearest neighbors, the
possible changes in the energy of the system conse-
quent upon the flipping of a spin are 0, +4, +38,
+12. We allow each demon four energy states,
with the values 0, 4, 8 or 12. For convenience, we
remove a factor of 4 from the demon energy and
consider E; =0, 1, 2 or 3. After a number of
passages through the lattice, the demons become
thermalized and their energy distribution becomes
Boltzmannian. If the statistical temperature is 87",
the average energy of the demon should be

4(E,) = [4 exp(—4B) + 8 exp(—8B)
+12 exp( —128)]
x [exp(—B) + exp(—4B)
+exp(—88) +exp(-128)] . (2)

where the factor 4 was mentioned above. By mea-
suring the demon energy and inverting eq. (2), one
can determine the temperature.

In practice one has to work on a finite lattice,
so that boundary conditions have to be specified
for the definition of “nearest neighbours” at the
boundaries. We use periodic boundary conditions
in two directions and a shifted periodic condition
in the third:

s(x+1,y,z)=s(x,y+1,z),
s(x,y+1,,z)=s(x,y,2), (3)
s(x,y,z+ L) =s(x,y,2).

Here the sites have been identified by Cartesian
coordinates. I,, I, and I, are the periodicities
(sizes) in the three directions.

3. Code description
Since each spin can take only two values, effi-

cient coding is achieved by using only one bit of a
computer word to store its value. On a computer
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with 60-bit words, 60 spins can be stored in a
single word. Our program envisages a lattice with
I,=120. The spins at odd and even sites on a
single z-row are stored in separate words, which
form two consecutive members of the list of words.
The ordering of these words is as follows. The pair
of words from one z-row are followed by the pair
of words coming from the' z-row obtained by
moving one unit in the x-direction. The procedure
is continued until the z—x plane is covered, then
one moves one unit in the y-direction and starts
from the lowest value of x. Because of the shifted
boundary conditions, eq. (3), the determination of
nearest neighbours is quite simple. It should be
noted that the 60 spins in any single word do not
interact among themselves. This is essential if the
updating procedure is to work on the 60 bits at the
same time. Each of the 60 spins is made to interact
with a demon. One has therefore 60 demons. The
variable E;, which denotes one-fourth of the en-
ergy of a demon, takes the binary values 00, 01, 10
or 11. One word stores the first bit for the 60
demons, another the second.

The updating procedure, as explained above, is
deterministic and uses only integer arithmetic. It is
implemented in the subroutine MONTE written in
COMPASS, the CDC assembler language. The
demons hop along the list of spin-words, trying to
flip the spins. The neighbours of each spin have to
be located, and the proposed change in energy
calculated. The demon energy then determines
whether the change is to be permitted. As stated
above, interactions of 60 spins with the 60 demons
are handled simultaneously, and the 60 yes—no
decisions are stored in one word. The appropriate
spins are then flipped. For improving the equi-
libration, the bits in the words storing the demon
energies are permuted. A fixed cyclic permutation
is carried out after every iteration. In addition to
this, a semi-random permutation is carried out in
the main program between iterations. Because of
this feature our simulation is not completely de-
terministic.

The energy of the system, as given by eq. (1), is
measured by the subprogram ENERGY. It is ap-
proximately fixed by the parameter E used in
initializing the lattice and the demons. The
MONTE subroutine, which implements the simu-
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Fig. 1. Flow chart for the Ising model program.
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lation, also measures the demon energy and the
magnetization. A subprogram BETA is used to
compute the temperature from the demon energy.
Correlation functions for spins separated in x and
y directions are measured by a COMPASS sub-
routine CORX. Another subroutine, CORZ, can
be used for the z-direction.

The flow chart of the program is shown in fig.
1.

4. Conclusions

As indicated above, our program assumes [, =
120. I, and 1, are arbitrary but not divisible by 11
for technical reasons in subroutine MONTE. A
128 X 128 X 120 lattice is the intended size, though
for trial runs we used an 8 X 8 X 120 version. The
algorithm described in this paper was imple-
mented for this size and sample results are shown
in our test run output. If correlation functions are
not measured our program handles about 8.6 x 10°
spins per second on the CDC CYBER 170-730. If
the CORX subroutine is called once for every 10
sweeps, the effective rate goes down to 8.3 X 10°
spins per second. These rates are a factor of 30-40
lower than those achieved in machines specially
built for the Ising model [5]. Considering the flexi-
bility of our program as contrasted with the mac-
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3-DIMENSIONAL ISING MODEL
0.2 128x128x(20 LATTICE .
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0.2215 0.2220

B
Fig. 2. The magnetization in the three-dimensional Ising model
(128 x 128 X 120 lattice) near the critical inverse temperature.
The open circles represent the results of the Santa Barbara
Ising model machine [5] using a 64° lattice.
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Fig. 3. The ratio of correlation functions for separations L /2
and L /4 for an L X L X120 lattice.

hine-dependence of those approaches, we tend to
regard this as satisfactory. In fact, on a faster
machine, e.g. the CDC 7600, speeds comparable to
the Santa Barbara Ising model machine (25 Mspin
updates per second with no measurements) are
achieved using the program described in the text.

We are now in the process of migrating this
code to a vector processor, the 2 Mword 2 pipe
CDC CYBER 205 at Colorado State University. A
recent attempt [6] at implementing the Metropolis
algorithm for the 3-dimensional Ising model on
the University of Bochum CDC CYBER 205 re-
sulted in a code capable of 10.2 Mspin updates per
second. By the use of the microcanonical method
[3,4] described in this paper, we expect to achieve
absolute speeds of hundreds of million spin up-
dates per second. This work [7] will be reported
shortly. A recent calculation [8] using the ICL
DAP parallel processor achieved a speed of 6Mspin
updates per second.

For the interest of the reader, we include, in fig.
2, some preliminary data on the magnetization of
the three-dimensional Ising model on a 128 X 128
% 120 lattice. These results were obtained on a
CDC 7600. Also shown in fig. 2 are some results
of the Santa Barbara Ising model machine [5] on a
64° lattice. By speeding up our program consider-
ably by working on the CDC CYBER 205, we
hope to reduce our error bars, in fig. 2, to the size
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of a data point. In fact, we wish to concentrate
most of our efforts on improving the preliminary
data shown in fig. 3 on the ratios of correlations of
spins C, near the critical inverse temperature. The
separations considered are L/2 and L/4 for an
L X L % 120 lattice. The data shown in figs. 2 and
3 are the result of 10000 iterations per data point
with the first 1000 iterations thrown away and the
averages taken over the remaining 9000 iterations.
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TEST RUN OUTPUT

LATTICE SIXE 8 X 8 X 120

ELATT= 6472222222222 EDEM= .0076385888388889
ETOT= .5548611111111

AVERAGE OVER 10 ITERATIONS,EACH WITH 10 SWEEPS
RUNNING AT .8838888888889 MFLIPS

BETA= .2210931883207 SISJ= .3512187771267
MAGNETIZATION= -.023046875

AVERAGE OVER 10 ITERATIONS,EACH WITH 10 SWEEPS
RUNNING AT .8347826086957 MFLIPS

BETA= .2227851128925 SISJ= 3511692843967
MAGNETIZATION= .0007682291666669

CORR(IX/4)= .1964583333333

COOR(IX/2)= .1359375

CORR(IX/2,1Y/2)= .1196875

AVERAGE OVER 10 ITERATIONS,EACH WITH 10 SWEEPS
RUNNING AT .8411829134721 MFLIPS

BETA= ,222426084622] SISJ= .3511797553168
MAGNETIZATION= -.05866406249999

CORR(1X/4)= .1933854166667

CORR{IX/2)= .1321354166667

CORR(1IX/2,1¥/2)= .1185416666667

AVERAGE OVER 10 ITERATIONS,EACH WITH 10 SWEEPS
RUNNING AT 8448844884489 MFLIPS

BETA= .2211537065034 SISJ= .3512170003255
MAGNETIZATION= .1541848958333

CORR{IX/4)= .1904166666667

CORR{1X/2)= .1365104166667

CORR(IX/2,1Y/2)= .13046875

AVERAGE OVER 10 ITERATIONS,EACH WITH 10 SWEEPS
RUNNING AT .8258064516128 MFLIPS

BETA= .221008213459 SISJ= ,3512212727865
MAGNETIZATION= .2303828125

CORR(IX/4)= .1938020833333

CORR(IX/2)= .143125

CORR(IX/2,1Y/2)= .1150520833333

*** AVERAGES AFTER DISCARDING FIRST BATCH ***

AV. BETA= .2218432793693 +/- .0004471724275268

AV. MAG.= .08166796875 +/- .06684101555469

AV. CORR{IX/4)= .193515625 +/- .001237002010018

AV. CORR(IX/2)= .1369270833333 +/- .002282672533389

AV. CORR(IX/2,1Y/2)= .1209375 +/- .003326476780617
CORR(IX/4)/CORR(IX/2)= 1.414428370159 +/- .02480551229889
CORR(IX/2)/CORR(IX/2,1Y/2)= 1.135188574795 +/- .04098916185012



