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A deterministic cellular automaton rule is presented which simulates the Ising model. On 
each cell in addition to an lsing spin is a space-time parity bit and a variable playing the role 
of a momentum conjugate to the spin. The procedure permits study of nonequilibrium 
phenomena, heat flow, mixing, and time correlations. The algorithm can make full use of mul- 
tispin coding, thus permitting fast programs involving parallel processing on serial 
machines. (c) 1986 Academic Press, lnc. 

INTRODUCTION 

Numerical :~irnulations aystems have become a major tool in the 
study of phasc t ~ : ' ~  ..~aL phenomena. Monte Carlo and molecular 
dynamics calcula~..J~ represent two complimentary schemes for such simulations. 
In the Monte Carlo approach, one generates a Markov chain of configurations 
using a pseudo-random number generator. The algorithm is constructed, usually 
using a principle of detailed balance, so that the ultimate probability of encounter- 
ing any particular configuration is proportional to the Boltzmann weight. The 
corresponding temperature is a parameter in the program; indeed, the computer is 
serving as a thermal reservoir at that temperature. 

Molecular dynamics calculations, on the other hand, are an attempt to follow the 
deterministic evolution of a system under an appropriate microscopic Hamiltonian. 
This approach makes no use of random numbers, the apparent statistical nature of 
the whole system arising from the complexity of a large phase space. Such 
algorithms also do not utilize the temperature as an input parameter. Indeed, its 
value is found after the by fact using the equipartition of energy among the various 
degrees of freedom. For example, the average kinetic energy of a given molecule 
should be ½ kT per degree of freedom. 

Recently a simulation algorithm interpolating between the Monte Carlo and 
molecular dynamics techniques was presented [1]. This microcanonical Monte 
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Carlo method consists of taking a random walk on a surface of constant energy. To 
simplify the process of maintaining the constraint that the energy be constant, one 
or more additional variables, called demons, serve to transfer energy around the 
system. These variables play a role analogous to the kinetic energy in molecular 
dynamics in that their average value gives a handle on the temperature of the 
system. Two advantages of this approach are that it can be programmed to run an 
order of magnitude faster than conventional Monte Carlo for discrete systems [2], 
and it does not require high quality random numbers. In addition, generalizing the 
scheme to several parameters beyond the "temperature," it provides a method for 
measuring these parameters. This should prove useful in Monte Carlo renor- 
malization group calculations [3]. 

In this paper we investigate a variation on this microcanonical scheme as applied 
to the Ising model. Here, however, the "demon" variables do not move around the 
lattice, but become an integral part of the system. Each site of the lattice is tied to 
one such variable, which then plays the role of a momentum conjugate to the 
corresponding spin. Energy is no longer transferred around the lattice by the 
demons, but can only flow through the bonds via the intrinsic Ising interaction. 

In this way we obtain a deterministic Ising dynamics which exactly conserves the 
total energy. Any localized region can heat or cool only by the transfer of energy 
from other parts of the lattice. In this respect " algorithm differs from the 
stochastic Ising dynamics presented by GI~',' ~,.:presented by conventional 
Metropolis simulation [5]. Indeed, those ,arameter representing 
the temperature. In essence the Glauber system is ,,,.,,pie,, , , .  !eat reservoir with 
which energy can be exchanged. In our case, on the other hand, lhe temperature is 
a statistical concept which is only defined by averages, which may be over space, 
time, or both. Because the temperature of the system is internally determined, heat 
flow and thermal conductivity can be studied numerically. It is not clear that these 
concepts have any meaning in a conventional Monte Carlo simulation. 

A particular advantage of the present scheme is that it is easily implemented by 
simple bit manipulation. All variables are small integers and no real numbers are 
used. From a practical point of view, this means that extremely fast programs using 
multispin coding are possible [2, 6]. This technique uses bit by bit boolean 
operations to permit parallel processing on a serial machine. The algorithm is also 
readily amenable to true parallel processing. 

From a conceptual point of view, the approach is able to simulate a heat 
equation via an algorithm in which all bits used by the computer are of comparable 
importance. This is in sharp contrast to the use of floating point numbers, wherein 
the first bit of a word is more important that the last. As the heat equation is a 
rather generic partial differential equation, the computational advantages of this bit 
manipulation approach may have considerably wider application (a similar point of 
view has been expressed in [7]). 

Our dynamics is set up formally as a collection of cellular automata [8]. Another 
cellular automaton dynamics discussed in [9], gave several exact results for a 
variation on the usual three-dimensional Ising model, The approach presented here 
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differs in being a totally deterministic and reversible dynamics. Unfortunately the 
present dynamics does not appear to be exactly solvable even in the one dimen- 
sional case. 

THE DYNAMICS 

For simplicity we discuss a two-dimensional square lattice. The algorithm is 
readily generalized to any dimension or other lattice structures. Associated with 
each site i of the lattice are four binary bits. Time evolution is by discrete steps, 
with the values for the site variables at time-step t + 1 being uniquely determined 
from their values and those of their nearest neighbors at time t. The updating rule, 
described in detail below, thus defines a system of deterministic cellular automata. 

The first of the four bits on each site is the Ising spin. Considered as a bit taking 
the value 0 or 1, we denote this variable by Bi. When we wish to use the mul- 
tiplicative representation of the Z 2 group, we write this variable as 

Si= 2iBi -  1 ~ { +_ 1}. (1) 

The energy of the Ising model is 

H,= ~ S, Sj, (2) 
{i,j} 

where the sum is over all nearest neighbor pairs of lattice sites. 
The next two bits on each site represent the demon or momentum variable con- 

jugate to the spin. These bits represent a two bit integer taking values from 0 to 3. 
Denoting these bits by Dl.i and D2,i, we associate with them the kinetic energy 

HK = 4 ~" (D,,i + 2D2.,). (3) 
i 

The factor of 4 is inserted because flipping any spin in Eq. (2) only changes the 
Ising energy by a multiple of four, and we wish to keep this property for the kinetic 
term as well. The updating algorithm presented below exactly conserves the total 
energy 

H = H~: + HI. (4) 

Actually the number of bits representing the momentum variable is arbitrary. 
From an analytic point of view, it might be simpler to consider an arbitrary 
positive integer. At the opposite extreme, one could consider only a single bit, 
although in this case the following dynamics in more than one dimension cannot 
change an isolated spin completely surrounded by antiparaUel neighbors. We feel 
that keeping two bits is a reasonable compromise because in equilibrium the kinetic 



D E T E R M I N I S T I C  I S I N G  D Y N A M I C S  65 

term will be excited with a Boltzmann weight. For temperature near the critical 
value in the two or three-dimensional models, a two bit demon will be fully excited 
only a few percent of the time and thus two bits are nearly equivalent to an infinity 
of them. 

The fourth bit associated with each site gives the space-time parity of the site. 
The sole purpose of this bit is to implement a checkerboard style updating. This is a 
trivial way of circumventing the result of [10], stating that any cellular automaton 
rule which updates all spins simultaneously cannot simulate the Ising model. Here 
at each time step we only consider changing spins on that half of the sites that have 
a set parity bit. All these parity bits are then inverted for the next time-step. 
Although we refer to this bit as an extra variable, in practice the computer need not 
actually be storing its value for each site because of its rather trivial nature. 

We now give the dynamical rules for updating the spin and momentum variables. 
When the parity bit for a step is reset ( = 0) the only change is to invert that bit for 
the next time-step. On the other hand, if the parity bit is set ( = 1 ), in addition we 
use the microcanonical rule of [ 1 ]. That is, first, the resulting change in the Ising 
energy of Eq. (2) upon a flip of the spin Si is calculated. If this change can be absor- 
bed in the momentum variable associated with the same site in such a manner that 
the total energy of Eq. (4) is exactly conserved, then both the spin is flipped and the 
momentum is appropriately changed. If, however, the kinetic term is unable to 
absorb the energy change, then both the spin and associated momentum remain 
unchanged. 

As discussed in [ 1 ], on a large system the values of the kinetic variable should 
become exponentially distributed with the Boltzmann weight corresponding to the 
temperature T =  1/fl of the system. Thus we expect 

P(E,)  oc exp(-4flE~), (5) 

where we define Ei = DI,i + 2D2,i. Thus the expectation value of Ei gives a means of 
measuring the system temperature 

( E / > =  ~ ne 4~ e-4~. (6) 
n ~ 0 / n = 0  

This relation is easily inverted to find ft. The expectation value in Eq. (6) can be 
taken either over time or some spatial region or both. 

Because of the checkerboard updating implemented with the parity bits, the 
algorithm requires two time-steps to give every spin of the lattice a chance to 
change. Thus in comparison to ordinary Monte Carlo simulations, two steps 
correspond to one full sweep over the system variables. 

We close this section by noting that in addition to being deterministic, this 
dynamics is reversible. A simple inversion of all parity bits between two time-steps 
will reverse the evolution and send the system exactly backwards through the initial 
sequence of configurations. This inversion of parity bits amounts to hitting either 
the red or the black squares of the checkerboard updating procedure twice in a row. 
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SOME EXPERIMENTS 

We now discuss several simple numerical experiments done on the two dimen- 
sional model. We use a fully multispin coded program on a CDC 7600 computer. 
As this uses 60 bit words, we keep our lattice of size 120 in one dimension so that a 
given row of the lattice occupies two words. In the following we make the other 
dimension 120 as well. We always work with periodic boundary conditions. 

A first question is whether the model actually succeeds in reproducing the Ising 
model. Figure 1 shows the results of several runs in the vicinity of the critical point 
of the model. Here we plot the nearest neighbor correlation as a function of the 
inverse temperature. The points are the results of simulations with the deterministic 
dynamics and the curve represents the exact solution on an infinite lattice. The 
simulations represent the average over the last 18,000 of 20,000 time steps. For  
initial conditions we took all spins ordered and all momenta as zero except for the 
second bit of all those lying on sites of even parity. The latter bits were initially set 
to unity randomly with a given probability for each run. If this probability is a frac- 
tion with a denominator which is a power of two, this initial setting of bits can be 
easily accomplished with logical operations on random words. In Fig. 1 the 
statistical errors on the measured points are comparable to the size of the dots. 
Note that the data agree well with the exact solution except near the critical point 
at fl = ½ log(1 + x / 2 ) =  0.44068. Here finite size effects are presumably coming into 
play. 
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FIG.  i .  T h e  nearest  n e i g h b o r  c o r r e l a t i o n  as a f u n c t i o n  o f  inverse t e m p e r a t u r e  fo r  the t w o ~ : l i m e n -  

sional Ising model. The solid line is the exact solution for an infinite lattice and the points are from 
simulations using the deterministic dynamcis on a 120 x 120 site lattice. The cross indicates the critical 
temperature and coupling. 
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We now turn to some experiments which conventional Monte  Carlo could not 
do. In Fig. 2 we show the relaxation of a system where the initial energy dis- 
tribution was not uniform. Here we initialized the lattice as above except on rows 
31 to 90 the probability of setting second momenta  bits on even sites was 3 and on 
the remaining rows it was ½. Thus the middle half of the lattice contained more 
energy per site, corresponding to a higher initial temperature. In Fig. 2 the profile of 
the temperature is plotted at various times. Each point is obtained from the expec- 
tation of the momentum variables averaged over five rows and 500 time-steps. For  
the average over the first 500 steps we see that the lattice center is substantially hot- 
ter than the edges. (Actually because the lattice is periodic, there is no true edge.) 
As time evolves, this temperature peak diffuses away. By 4000 iterations the initial 
peak is beginning to dissolve into the fluctuations in the local temperature. 

We now consider placing a heat source and a heat sink in the lattice. For  this 
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FIG. 2. The evolution of a thermal bump. The initial condition is described in the text. The top 
points represent the thermal profile averaged over the first 500 time-steps. Descending in the figure, we 
show 500 < t ~< 1000, 1500 < t ~< 2000, and 3500 < t ~< 4000. 



68 MICHAEL CREUTZ 

experiment, after each two time-steps we randomize the first bit of all momentum 
variables on even sites in the first row of the lattice. This effectively couples this row 
to a high temperature heat source. At the same time we remove heat from row 61 
by setting all the momenta on this row to zero. For  our initial lattice we procede as 
before and set all spins and momenta to zero except the second bits of the momenta 
on even sites, which are set to one with probability ½. In Fig. 3 we show the amount  
of heat entering and leaving the lattice as a function of time. The quantity plotted 
here is the change in the energy H per time-step and per spin in the source or the 
sink row. Each point is an average over 1000 time steps and is divided by two to 
correct for the two directions heat can flow around our periodic lattice. Note that 
after 10,000 updates the inflowing and outflowing heats match. Figure 4 shows the 
final steady state temperature profile as obtained by averaging the momenta in each 
row over 1000 updates after an initial 19,000. 

From the slope in Fig. 4 we can determine a thermal conductivity. We define K 
by 

Q = - K A T / x l x .  (7) 

Here x is the distance through the lattice and Q is the heat flow entering row 1 per 
spin and per update. Note from the figure that in the high temperature region fl is 
nearly linear in the distance through the lattice. This slope is approximately 0.0055 
units in beta per lattice row. From Fig. 3 we see that the heat is flowing at a rate of 
about 0.016 units per time-step per site. Thus we obtain 

K ~ 3 f l  2 ( 8 )  

for the thermal conductivity in the high temperature region. The increase in slope in 
Fig. 4 as the temperature drops indicates a rapid decrease in the conductivity as the 
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FIG. 3. For the hear flow experiment described in the text, the solid points represent the heat per 
spin and per t ime-step entering row 1 and the pluses represent the heat leaving row 61, both plotted as a 
function of time. 
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FIG. 4. The s teady s ta te  the rmal  profile of a 120 x 120 lat t ice hea ted  at  row 1 and  cooled at  row 61. 

critical temperature is approached. Indeed, we have found that this conductivity 
becomes quite small and difficult to measure below the critical point. It would be 
interesting to have some theoretical predictions for the behavior of this quantity at 
high and low temperatures. 

Given any dynamical rule for evolution, one can ask for correlations between the 
dynamical variables at different times. In Fig. 5 we show the correlation between a 
spin and itself at a later time as a function of the time difference. Each plotted point 
is an average over the lattice and over 5000 time-steps after an initial 1000 to 
equilibrate. To obtain this average, we used the trick [11] of using two lattices 
where the second is obtained by doing some number of iterations on the first. The 
two lattices are then each updated independently and repeatedly compared. This 
technique allows one to accumulate high statistics on lattices separated by a large 
number of time steps but without storing a large number of intermediate lattices. 
Note that the falloff of the correlation with time is initially quite rapid, while even- 
tually a simple exponential behavior sets in. In this figure two values of beta are 
shown. As might be naively expected, the run closer to the critical point has the 
longer decorrelation time. 

A good dynamics for studying statistical phenomena should give a path through 
phase-space which is quite sensitive to small disturbances. Indeed, if two trajec- 
tories start near one another, they should rapidly diverge from each other if 
statistical results are to be independent of initial conditions. This mixing 
phenomenon is easily studied with the dynamics considered here. The correlation 
between the spins on two lattices gives a simple definition of a distance between two 
configurations. In Fig. 6 we show the evolution of the correlation between two lat- 
tices which initially differ only by one spin being flipped. After an initial 1000 
time-steps to get a single lattice into equilibrium, all of its spins and moment are 
copied into a second lattice. Exactly one spin in this second lattice is then flipped. 
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FIG. 5. The temporal correlation of a spin with itself as a function of the time 
measurements.  The solid points represent a lattice with fl = 0.3881 and the crosses, fl = 0.4090. 
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FIG. 6. As a function of time squared, the correlation between two lattices initially differing only in 
the value of a single spin. The quanti ty C represents the expectation of a spin on the first lattice times the 
corresponding spin on the second. The lattices are at/~ = 0.4090. 
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Finally, both lattices are subjected to the dynamics of this paper and compared. 
The points represent the correlation between corresponding spins in the two lat- 
tices; the measurements are averaged over 20 time-steps. 

In Fig. 6 we have plotted the data versus t 2. This gives rise to a linear behavior at 
short times. To understand this, note that any disturbance can propagate into the 
lattice by at most one spacing in any unit time interval. Thus there is a "speed of 
light" or maximum velocity with which the effects of any disturbance can 
propagate. This means that the maximum dimension which can possibly be affected 
by-our initial spin flip grows linearly with time. As our lattice is two dimensional, 
the volume included in this dimension grows with t 2. The observed behavior 
indicates that the disturbance we have introduced indeed grows at a constant 
velocity, although this speed appears to be somewhat less than the maximum 
possible of one site per update. This velocity is related to the Lyapunov exponent 
mentioned in [8].  With the model in d dimensions, this argument suggests that the 
initial behavior of this correlation will be linear in t d. 

CONCLUDING REMARK 

We have presented a simple dynamical system which simulates the Ising model. 
An obvious question is whether this dynamics is ergodic. Indeed, it is easy to show 
that it is not. The rules for temporal evolution are symmetric under certain trans- 
lations of the entire lattice and its momentum variables. This includes translations 
in any single coordinate direction by a multiple of two spacings, or a simultaneous 
translation in two directions by an odd number of sites in each. In addition the 
dynamics is symmetric to an inversion of all the lattice spins. Thus, if we start with 
a lattice configuration which is symmetric under any combination of such sym- 
metries, it will remain so. Of course, conventional molecular dynamics calculations 
can have similar symmetries. For a generic continuous system, configurations carry- 
ing a preserved symmetry will represent a set of measure zero in the entire volume 
of phase-space. With a finite volume Ising system such configurations necessarily 
represent a finite part of the discrete phase-space, but this fraction should become 
insignificant as the volume goes to infinity. It would be interesting to know if this 
dynamics possesses further hidden symmetries beyond those mentioned above. 
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