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The transfer-matrix formalism for relating Hamiltonian quantum mechanics and Euclidean path
integrals is discussed in the context of fermionic fields. Particular emphasis is placed on the extra
fermionic species encountered with the naive discretization of time. When both particles and an-
tiparticles are present, the Wilson projection-operator formalism arises naturally for the temporal
coordinate. We discuss in detail how the Hilbert space must be enlarged to remove these projec-

tions.

I. INTRODUCTION

Nonperturbative phenomena in field theory have been
most extensively investigated via formulations in discrete
space-time. Indeed, Monte Carlo simulations of Euclide-
an lattice gauge theory have given remarkable information
on ?uark confinement and other aspects of hadronic phys-
ics.

The inclusion of fermionic fields in lattice calculations
has raised several interesting issues. One is how to treat
anticommuting fields in numerical simulations. Existing
algorithms are rather demanding on computer facilities;
consequently, there is extensive ongoing exploration for
better techniques. Another unresolved issue concerns the
infamous doublings of fermionic species on a lattice.
Some simple transcriptions of Dirac fields onto a lattice
give rise to more fermionic species than naively anticipat-
ed, while schemes which eliminate these extra particles

" tend to complicate chiral symmetry. In particular, Wilson
has proposed a simple formulation which avoids extra
species by inserting projection operators into the naive lat-
tice action.? These operators, however, mutilate chiral
symmetry. They do, nonetheless, serve to generate the ap-
propriate chiral anomaly in the continuum limit of the
theory.’

Lattice gauge theories have been studied in both the
original Euclidean formulation of Wilson* and the Hamil-
tonian formulation proposed by Kogut and Susskind.’
The connection between these approaches appears via the
transfer-matrix formalism, as discussed in some detail in
Refs. 6 and 7. One purpose of the present paper is to ex-

~pand on the fermionic part of those treatments. Refer-
ence 6 was nonrigorous in making smoothness assump-
tions on the anticommuting fields, while Ref. 7 showed
the positivity of the transfer matrix only for fermions
treated with the Wilson projection-operator technique.
The extension of the treatment of Ref. 7 to the staggered
fermions of Ref. 5 is discussed in Ref. 8.

Because of the doubling mentioned above, the simplest
transcription of the Hamiltonian for Dirac fields to a
(d —1)-dimensional space lattice and continuous time
gives rise to 29~ 1) species. A transfer-matrix treatment
relating a d-dimensional Euclidean theory to this Hamil-
tonian theory must, therefore, begin with less doubling
than the “naive” transcription of Dirac fields to a Eu-
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clidean lattice, which would give 29 species. We will see
that the Wilson projection-operator formalism in the time
direction arises quite naturally when one attempts to for-
mulate such a transfer matrix. Indeed, with the projection
operators in place one has a rather special case. Other
formulations give rise to a transfer matrix operating in a
larger Hilbert space containing the extra factor of 2 in the
number of fermionic species.

To keep this paper reasonably self-contained, it has
considerable repetition of material which already exists in
the literature. References 9 and 10 are standard refer-
ences on the formulation of fermions and path integrals.
It is assumed that the reader has some familiarity with
transfer matrices for bosonic fields, as discussed in Ref. 6.

Section II of this paper reviews the basic formulas for
fermionic integrals as will be needed for the remainder of
the paper. Section III discusses the Hilbert space of func-
tions of anticommuting Grassmann variables. Section IV
discusses the relation between operators in this space and
functions of two arguments. For the transfer matrix these
arguments represent the fields at two successive times. In
Sec. V we consider a simple Hamiltonian and discuss the
connection with path integrals. In Sec. VI we show how
the Wilson action arises naturally for the time discretiza-
tion when both particles and antiparticles are present.
Section VII turns to the doubling problem and discusses
the appearance of extra species when other actions are
taken. Concluding remarks appear in Sec. VIII.

II. REVIEW OF FERMIONIC INTEGRATION

In this section we briefly review fermionic integration
and establish conventions for later use. We begin by con-
sidering a set {¢;] of anticommuting Grassmann vari-
ables

[¢i,¢j]+ E'f’i'/’j+ll/j¢i=0 .

Generalizing complex conjugation to include these vari-
ables, we adopt the convention that corresponding to each
¥;, we have another independent Grassmann variable 9},
Furthermére, we have

2.1

W=,
(- ) = Y7
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If we consider just a single variable 1, a general function
f () can be expanded with just two terms:

FW=rfo+¢f1 .

To define integration over an anticommuting variable,
we wish to have the properties of linearity and invariance
under a translation of variables. These are summarized in
the axioms

[ avsarewpr=[ dusw |
+ [ avew s

[avr@= [ auf+¢).
This is enough to imply that, for the function in Eq. (2.2),

[ dof)=Kfy, 2.5)

where the normalization K is undetermined. We adopt
the convention K =i so that

[ avy=i, o
[ dyi1=0,
[ av*dpyry=1. o

Note that for a multiplicative rescaling we have the rela-
tion

(2.3)

(2.4a)

@4b).

[ dyfiya)= [ [avfw ]a @)

For integration over several antlcommutlng varlables,
we have

f d¢1 .o dlpn"/’l . .‘pn =in(__1)n(n-—1)/2 . (28)
The analog of Eq. (2.7) in this case is -
[lapyrap=|m| [ dpf@), 2.9)

where M is an arbitrary invertible matrix, | M | is its

determinant, and (d3) denotes di;* - - di,. Note that
Eq. (2.9) immediately implies the Mathews-Salam formu-
la for a fermionic Gaussian integral:

[(dy*dpre? M= M| ,
where —
(dp*d)=dyidy, - - - dyndy, .
In addition to integration, it is sometimes useful to con-
sider differentiation with respect to a Grassmann variable.
This can be defined by the action on a constant function
and an anticommutation relation B

4o,

dy dy

Note the peculiar relation between integration and dif-
ferentiation

(2.10)

,¢ =1-. (2.11)

L fgy=—i f dyfy (2.12)

dy

- 1461

III. THE FERMIONIC HILBERT SPACE

The space of all functions of a set of Grassmann vari-
ables forms the Hilbert space on which our transfer ma-
trices will act. We begin by considering just a single vari-
able, in which case our space will be only two dimension-
al; i.e., there will be one fermionic state which is either oc-
cupied or not. Wishing to use a Dirac bra and ket nota-
tion, for any function there is a one-to-one correspondence
with a ket state

fW—|f). (3.1)

. We are pursuing an analogy with ordinary quantum

mechanics with a commuting coordinate x, where one

““considers the correspondence between square integrable

functions ¢(x) and quantum states |¢).

We need a definition of an inner product for this space.
This is somewhat more complicated than in the bosonic
case where one has

($1¢")= [ dx $*x) (3.2)

If we just replace x and ¢(x) with ¢ and £ (¢) in this rela-
tion, we would not obtain a positive norm. To proceed, it
is useful to introduce the independent variable ¢* and to
relate each function f (1) to a second function

Fan= [ raprragre™ =i(f5y—rt)

Then an appropriate inner product between states corre-
sponding to functions f(¢) and g (¢) is

(g1f)=[gwpdvsre)
= [lewrdy*e?™Vay f @)

(3.3)

=gofo+81f1 - (3.4)
For n variables this generalizeg’ to
(g1r)y=[ gy ay; -y}
Xexp | Uy Ay A () . (3.5)

We now introduce some s1mple operators in this space.
In particular, we define an operator ¢ corresponding to
the variable 9 via the relation '

BB | f) .

This is the analog to deflmng the bosonic operator X by

(3.6)

% |¢) being a state with wave function x¢(x). In terms
of matrix elemerits, :
(gld1r=[ g(rp)*dzp*e;»b*'ﬁdwf(zm : (3.7

While in the bosonic case X is a Hermitian operator (at
least if we consider wave functions that fall fast enough at
infinity), this is not the case with the operator 1/1 because

. of the distinction between f and f. Instead, we have

(DT r=KF|d|en*
= g(¢>*¢*d¢*e¢*¢d¢f(¢)

= [ 2wy L) . (3.8)

dy
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Indeed, it is easily verified that 1,/; and $ t satisfy canonical
fermion anticommutation relations

%91, =1. (3.9)

The operators {b\ and z’/; Tarea complete set in the sense
that any operator in the two-dimensional Hilbert space
can be expressed in terms of them.

It is sometimes useful to have an explicit basis in mind
for studying this space. A convenient one is to relate the
function f(¢)=1 to a “vacuum” state |0) and the func-
" tion f(¥)=1 to the “occupied” state |1). With these
states we have

gl1y=10), #Fl0d=11),

3.10
$10y=0, $T|1)=0. (.10

Note some important differences between the above dis-
cussion and what occurs with commuting fields. In the
latter r case, to obtain an inner product the conjugate func-
tion ¢(x) is simply the complex conjugate of ¢(x). In par-
ticular, this implies that the operator £ correspondmg to
the real variable x is self-adjoint. To obtain a complete

set of operators, one is forced to introduce something else,
" usually taken to be the conjugate momentum p satisfying
[p,X]=—i. In contrast, for fermions the conjugate
momentum is simply the adjoint of the fundamental field.

IV. MORE OPERATORS

Given any function of two Grassmann ﬁelds Ay

we can define a corresponding operator A4 in the
quantum-mechanical Hilbert space. The action of the
operator 4 on the state | f) corresponding to the func-
tion f () gives a state | g) corresponding to the function

=[awyrdvran . @

Although we will continue to write our equations in terms
of a single degree of freedom, this and most of the follow-
ing equations are immediately generalized to more vari-
ables.

The product of two operators is simple in this formal-
ism; indeed, the function

C(¢,z/z')=,f A" )dy"B (P, 4') 4.2)

corresponds to the operator
C=4B. (4.3)
In our notation, the trace of an operator takes the form

Trd= [ dyp A, —p)= [ A(—4,)dy . (4.4)

The minus signs in this equation are one manifestation of -

the preference for antiperiodic boundary conditions with
fermionic fields.

It is perhaps useful to consider some explicit operators
for the case of a single degree of freedom, where only four
functions form a complete set. We express the corre-
sponding operators in terms of 1/) and 1,“ of the last sec-
tion to obtain the relationships

A«»ﬁ: 14—»1'12/\1.,?#91’1//'\12)“
Vor—i P, Pe—if.

Note the peculiar cross mapping of functions with an odd
(even) number of Grassmann variables onto operators
with an even (odd) number of fermionic fields. This is be-
cause of the Grassmann nature of dy' in Eq. (4.1).

An interesting specific case is the Grassmann generali-
zation of the Dirac 8 function. This is defined by the re-
lation

(4.5)

f S, "Y' f (Y )=f(¢) . (4.6)
For one degree of freedom, this function is
Sy ) =—i(yp—1') . 4.7

Introducing an auxiliary Grassmann variable ¢*, we have
the integral representation

8,y )= [ dy*e?" ¥ V= [ e~ Vay*ed™  (48)
which looks somewhat reminiscent of the scalar formula
8(x —x')=f ePx=xp f2rr .

By our definitions, the operator corresponding to this
function is simply the identity

8,y )T 4.9)

As a preliminary example of a transfer matrix, consider
the operator

AR (4.10)

This is the quantum-mechanical operator generating a Eu-

chdean time translation with a step € under Hamiltonian
H 1/1 ¢v The function which corresponds to this is

T )=—i(p—e™ %) (4.11)

To put this in a more manageable form, we introduce the
auxiliary Grassmann variable y'* as in Eq. (4.8) and write

T(hy)= [ V™™V —Pgy> (4.12)

This may look more transparent if we rename ¥'=1,,
P* =15, and =1/, ., while rewntmg (4.12) in the form

¢t+l!¢t)=f e_Ld¢t , (4.13)

T=e _‘$T$=l +(e~¢—

where

L=3{@esr—t) +(1—e Wi, .

This is a discretization of the continuum Lagrangian den-
sity

Lo ={*dp+ep* .

Note that even though T is Hermitian, the lattice
derivative in Eq. (4.14) is defined in an asymmetric way
under time reversal. In partlcular, while L contains a
term ¥}, 1, it does not contain ¢,+11//t Indeed, because
of the difference between f*(1) and fI( ¥), to obtain the
function corresponding to the adjoint of an operator re-
quires more than just taking the complex conjugate of the

(4.14)

(4.15)



transpose. More precisely, if we adopt the standard defi-
nition of adjoint

(glAT|fY=r1d|eN*
then the function corresponding to Atis
AT @)= [ e~ ¥ Vay (A, p)dy*e?™ . 4.17)

One way to determine if a function 4 (1,9’) corresponds
to a Hermitian operator is to look at the transform

410

. (4.18)

LG 9*)= [ AW ydpe V.
Then A=4 Tif S =
o (P, )= (P*,9))* 4.19)

using the conventions of Eq. (2.2). We note in passing
that the treatment in Ref. 7 works directly w1th the func-
tions o (4,*), inserting the factor of ¢ ~¥*¥ from Eq.
(4.18) into the forrnulas for products of operators.

Given an arbitrary function A(¢,z/}) it is useful to
have a general formula for the operator 4 in terms of our
fundamental operator fields 1// and ¢ The analogous
formula for the bosonic case using the operators p and X
is

Ap.2)= [ dAeP4(2+A%2) . (420)
For fermions the formula is quite similar except 1]3 T re-
places p as the generator of translations in field space

g A 2%

e PG — PtV
We give both normai-ordered and antl-normal-ordered
forms o

A= [ ape=¥Yay—0,—D), (4.222)

~ A A~ >t

A =f d¢A(_¢:'_¢_¢)e vy, ‘
The Appendix contains an explicit derivation of these
equatlons We note in passing that the operator e ¥
appearing in these equations creates the fermionic

coherent states used in Refs. 6 and 10. Several useful
consequences of Eq. (4.22) are

AW Y)=B@))=>A=BH", (4.23a)
AW Y)=B)=A=i}"B(—J), (4.23b)
A =9B )= A=9 B , _ (4.230)
AW Y) =By =A=—B7 . (4230

It is also useful to have formulas for the inverse prob-
lem: given an operator expressed in terms of ¥ and l/)T,
find the corresponding function. If the operator is in the
form of a normal-ordered product 4 a(¢v )/3(30) then
the corresponding function is

A )= [ alg* B e I~ Pay* .

If the operator is anti-normal-ordered, A =/3({b\)a({p\ )
then we have )

A )= [ Bpaly®)e?" V—Vay* . (4.25)
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(4.22b)

(4.24)
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V. HAMILTONIANS AND :TRANSFER MATRICES

With all this machinery in hand, we can now discuss
simple Hamiltonians and the Euclidian actions which cor-
respond to them. The transfer matrix as an operator
translates a quantum-mechanical system a small step for-
ward in Euclidian time. Thus if temporal dynamics is
determined by a Hamiltonian operator H, we deﬁne the
transfer matrix to be

~

T=e—H, (5.1)

+ where € is the step size. Convérsely, given a lattice theory

with a positive transfer matrix, this relation defines the
corresponding Hamiltonian. .

Given some transfer matrix T, our general strategy is to
find the function of fields at successive times which corre-
sponds to this operator

Ty, )T

‘We can then obtain the trace of the transfer matrix to a
power N as a multiple 1ntegra1 over the anticommuting

(52)

- fields:

THE M= [ Ty i)
Xdyy 1+ T(W,¥0)d 0| yy=—y, -

If the integrand can be written in the form of a path in-
tegral over an exponentiated action, then we have obtained

(5.3)

.the action which corresponds to the original Hamiltonian.

Already in the previous section we considered the sim-
ple case of one degree of freedom with H = 1/)T¢ There
we introduced the auxiliary field ¢* in Eq. (4.12) in order
to express the function T as an exponential of an action.
Inserting that relation into Eq. (5.3) gives

To(T M) = [(dy*dple =S|y -y, 54
where
S =W Wy 1 — )+ (1 —e =W Yy ] (5.5
t

is the discretized action corresponding to this trivial
Hamiltonian. '

Actually, rather than path integrals themselves, the
physically interesting quantities are Green’s functions or
correlation functions. In particular, consider creating a
partlcle with ¢ 41 at some time] having it propagate n steps
of size € forward in time, and then destroying it with the
operator ¢ This motivates looking at the following ob-

Jject:

(5.6)

To express this in terms of a path integral, we note the
correspondences

DT pT(hy) = [ ¥ ™ V—Dgy

TG TPt TN-my .

(5.7)

vand

¢*T«»7T(¢,¢)~f AT

This means that to obtain the propagator in Eq. (5.6), we

(5.8)



1464 ‘ MICHAEL CREUTZ 35

insert factors of 1, and 1% _, _; into the path integral in
Eq. (5.4), with the result

TG T P V"= [(dyp* dp)ondly _n1e 5| gy ay, -
(5.9)

This is valid for all n >0. In general, the substitutions
A (5.10)

give the path-integral representation for correlation func-
tions.

One might worry about how to resolve the relations in
(5.10) with the fact that ¢ and ¢* anticommute while 1/)
and 1/1 satisfy the canonical anticommutation relations of
Eq. (3.9), The consistency lies in the fact that while
relating :{1 to ¢ follows from Eq (4.23¢c) and is quite gen-
eral, Eq. (5.8), used to relate 1/1 to 1*, depends sensitively
on the detailed form of T. Thus the substitutions of Eq.
(5.10) are to be made only after the operators have been
ordered such that all creation operators ¢l lie directly to
the left of factors of T.

VL. ANTIPARTICLES AND WILSON PROJECTION
OPERATORS

As noted above, the discretization of the continuum
derivative connecting Egs. (4.14) and (4.15) is asymmetric.
Clearly it is somewhat a convention whether we use a for-
ward or a backward definition of the lattice derivative.
An interesting case occurs when we have both particles
and antiparticles. Here it is quite natural to use different
conventions for each.

To follow this idea in more detail, consider the Hilbert
space generated by acting on a vacuum state with creation
operators a’and b' for particles and antiparticles, respec-
tively. In parallel with our earlier discussion, we relate
this to the space of functions of two independent variables
¥ and X*. As before we related the variable ¥ to the
operator ¥, here we relate

Yo, X*eb . (6.1)
The inner product between states takes the form
(g 11)=[ g, x*y*dy*dx eV *—*"Xax*dy f(y,x*)
6.2)

’

Considering the Hamiltonian H =ala +bfb, we want
to find the function corresponding to the transfer matrix:

T=exp[ —elata +b10)]. (6.3)
The generalization of Eq. (4.11) is
TWX* ' X ™) =(X* —e ™ X"* ) p—e~Y') . (6.4)

As in Eq. (4.12), we introduce the auxiliary variables ¥'*
and X' to rewrite Eq. (6.4) as

T(X 59, X )= [ e Ldy™*dx’, 6.5)
where .

L=y™*(p—e Y )—(X*—e~X"*)X'. (6.6)

This can be written more compactly if we introduce two
component vector Grassmann variables:

[¢
= lx

In this two-component space we define the projection
operators

T=(y*, —X*) . 6.7)

10 00
Our lattice action now takes the form
L=—e *fy+7'P n+TP_7". (6.9

We can introduce two-dimensional Dirac matrices to put
this in a more familiar form. One possible convention is
to take

1 0 01
Yo=1lo —10" Y1= |1 o
(6.10)
i 0
Ys=Yo¥V1= |g _1
in which case 7 =7*y, and Eq. (6.9) becomes
L=—e *mn+7'5(1+yvon+T5(1—yo)n' . (6.11)

Thus we see that the Wilson projection-operator formal-
ism arises quite naturally for the treatment of the lattice
time derivative.

Alternatively, we could use a representation of the
Dirac matrices, where

fot] o 1o
Yo 1 ol i —11!>
(6.12)
o -1
Ys=1i1 o |-
This gives 7=71" ¥¢¥s and
Py =3(1£7¥s) . (6.13)

Such a form was suggested in Ref. 11.
With an even number of degrees of freedom, this dis-

cussion is easily generalized to a Hamiltonian of the form

H=9M{}, (6.14)
where M is a Hermitian matrix. For example, the indices
on M might include the particle momentum in a higher-
dimensional spatial lattice. Keeping only terms to first
order in € and using Wilson projections operators while
symmetrizing between normal ordering and anti-normal-
ordering, we consider the transfer operator

P=1+e@I(P M) B3 P_M)B),  (6.15)
where we adopt the convention P =+(1+v,). From this
we can directly use Egs. (4.24) and (4.25) to find the corre-
sponding function



T4 = [ dX XV =P[14e(XP, MY/ +XP_MY)] .
(6.16)

We now rename ' =1, _;, =1, and
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X= 1P —PP_ (6.17)

Continuing to work to lowest 'order in €, we make these
substitutions and write .

T (b 1)

If we now construct the path integral

TrTV= [(dydype s

(6.19)

terms involving successive times combine and we obtain

the action

S=2($z—1p+¢t +1Z,P_¢,_1—1Z,1/1,——61/_1,1/0M1]J',”)”T'

(6.20)

As one final comment in this section, consider the ana-
log of Egs. (5.10), which provide the machinery to con-
struct correlation functions. The peculiar renaming in

g. (6.17) introduces a temporal splitting when creation
operators are considered. In particular, using the relat1on
Y & T T'—(d /d)T we obtain the correspondence

I x(1—eP_M)+0(&)
= 1Py — U P_

Operators such as conserved charges in the Hamiltonian
formalism thus acquire a somewhat complicated form
when considered in a Euclidian pathAintegral. For exam-
ple, consider some current 7 ={;7T1“¢ at time ¢t. Here I'
represents some combination of dirac matrices. This
operator corresponds to inserting into the path mtegral a
factor of

¢t 1P+r¢t"‘¢t

(1— 6M)+0(62)

(1—eM)TY; + TIT+0(e)
(6.22)

The TrT" term arises from reordering fto put @T to the
right. This splitting of currents in the path integral can
also be observed directly from symmetry considerations in
the path integral.® The point here is that this complex re-

lation may obscure the symmetries of the original Hamil-

tonian.

VII. SPECIES DOUBLING

We now return to the example of a single fermion as
discussed in Egs. (4.10)—(4.15).. In particular, we wish to
discuss how the necessity of introducing the auxiliary ex-
tra variable ¥* is indicative of the doubling problem.
Indeed, having both ¥ and ¢* as variables at any given
time suggests that we should consider the Hilbert space of
functions of both. This, however, has twice as many
states per degree of freedom than considered previously.
For the special case of the action in Eq (4.14) it is un-

6.21)

=fdxeXp[—$1—1P+¢t_Jtp—ll}t—lr"'j-T;—lP—}-lpt—l+1ZtP—-¢t+€(1-/7t—lp+1uj-'¢t—l_1ZtP—M¢t)] .

(6.18)

necessary to look at this larger space, but for an arbitrary
action one would be forced into such a doubling. To
study this further, it is instructive to generalize the action
density of Eq. (4.14) to ‘

L =(1-a)[¢;( l1’t+1"“¢t +(1—e Wi, ]
—al(f 1 —Yf )¢,+(1-—e‘ Wi, ] . (7.1)
Exponentiating this action, we ponsider the function
TW* 9™ 9 ) =exp[(1 )™ Pp—ay™y’
—(1=2a)e~*y']. (7.2)

When the parameter o goes to zero we obtain the action
used in Eq. (4.14), while when ¢ goes to unity we have the
action used for the antiparticle in Eq. (6.6), with X re-

- placed by 9. In the former case ¥ was an auxiliary vari-

able and we worked in the Hilbert space of functions of ¥,
while in the latter ¢ was the auxiliary variable and our

- states corresponded to functions of ¥/*. We now consider

this interpolating action in the larger Hilbert space of

- functions of both ¥ and y*.

Going to a Hilbert space. as in Sec. II, we relate a state
| f) with any function f (1,(1,¢ ). The overlap of such
states is

(g1£)=[ gphy* ) dytdpe? ¥ —¥*y
thpl*d‘lplf(lél’lpl*) .

This equation is the same as Eq. (6.2) after some minor

(7.3)

- renaming of variables. In analogy with Eq. (3.6), we now

define operators @ and b corresponding to ¥ and P,
respectively. In the Appendlx we der1ve the analog of Eq.
(4.22):

a={ dtﬁ*d¢e“T¢"¢*bTA(¢+a,¢*+b;a,b).

Using this we obtain the operator corresponding to the
function in Eq. (7.2):

(7.4)

P=a'bt+a(l—a)ba —(1—a)b be—c'e

+aa'ae —ebTp . | (7.5)

Observe that T is not Hermitian. We can, however, re-
late it to a Hermitian operator by a simple similarity
transformation which rescales the various states. This
transformation is not unique; to preserve the a<>(1—a)
symmetry, we consider

G =exp[ —+alaln(1—a)~ 155 Ina] . (7.6)
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This has the properties

G'=aG,
G G =(1—a) V%
GG =a""?% , (1.7)
G-ld'G=(1—a)t,
G-'b'G =a'’".
Thus we have
T=G-'TG
=[a(1—a)]"*a'b" 4 ba)
—(1—a)bbe—""{ gatae—" (7.8)

which is indeed a self-adjoint quantity. Of course, since T
and T differ only by a similarity transformation,
Tr(T¥)=Tr(T¥). Note that as the parameter « goes to
either zero or one, T factorizes with either a- or b-type
particles becoming trivially projected onto occupied states.
For other values of a, however, we must consider the full
space containing both a- and b-type particles.

Note that for a between 0 and 1, T is not a positive

operator. This, however, is not a serious problem in de-

fining a Hamiltonian as we can consider the square of T
- as generating a step of size 2¢ forward in time. This is
also done in the treatments of Refs. 8 and 11.

Rather than introducing the above similarity transfor-
mation, we could obtain a self-adjoint transfer matrix by
replacing Eq. (3.4) with a rescaled overlap for our Hilbert
space

(&)= [ gh,y*)*dy*dy
Xexp[(1—a)y* ' —ay*y]
Xdy™*dy f (', 9*)

=(g |G| f).

Using this overlap, we can define a new “adjoint” opera-
tion under which T is indeed invariant:

& T“NH=(f,Te) =T .

As the parameter a goes to zero, the operator G 2, is
singular, annihilating states containing b particles. Such
states will then have zero length under the rescaled norm.
In the constructive formalism of Ref. 11, there is a step
where zero-norm states are divided out to obtain the Hil-
bert space. The number of states thus removed suddenly
increases as a becomes zero and the extra species are elim-
inated.

(7.9)

(7.10)

F1A1g)=J rapravie’™ | [ ape ™ a -+ Jaug )
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VHI. CONCLUDING REMARKS

We have set up a formalism for relating fermionic
Hamiltonians with the corresponding path integrals. We
have ignored couplings to bosonic fields, which could be
easily added as in Refs. 6 and 7. We find that the
transfer-matrix approach naturally gives rise to the Wil-
son projection-operator formalism for time derivatives.
For this to be consistent with the symmetries of the Ham-
iltonian, the corresponding currents in the path integral
receive a point splitting which also involves the projection
operators. Thus a chiral symmetry of the original Hamil-
tonian may become obscure in the path integral.

One remaining question is how should one treat space
derivatives. Clearly, hypercubic symmetry is simplest if
they also carry projection operators. In this case, howev-
er, chiral symmetries will be broken already at the Hamil-
tonian level. Monte Carlo calculations also support the
lack of any hidden continuous chiral symmetry in the
Wilson formalism.

Our discussion shows that asymmetric definitions of
time derivatives do not necessarily lead to non-Hermitian
transfer matrices. Indeed, the discussion suggests that an
asymmetric action may be necessary to treat self-
conjugate particles or to give chiral couplings to fermions.
This latter point deserves further study in view of possible
relevance to treating weak interactions with lattice
methods.
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APPENDIX

In this appendix we derive the formulas in Eqs. (4.22)
and (7.4) for finding the operators which correspond to a
given function. Beginning with the single degree of free-
dom case, we consider a function 4 (¢,¢’). A general ma-
trix element of the corresponding operator is

(£1d18)=[ fpradte* Py (i, b)dvg () .
(A1)

We now use the axiom of invariance of fermionic integra-
tion under shifts, Eq. (2.4a), to replace ¥, with ¥, in
the integrand

(F1A1g)= [ rapprdgte” ¥y,
X Ay + s o)A ng () -

Rearranging, we obtain

(A2)

(A3)

From the definitions of the operators ¢ and ¥ ', o1, we see that 1, in the inner set of small parentheses corresponds to —127

and ¢} corresponds to —% . Thus we read off Eq. (4.22a):
A=[ape"aw—3,—9) .

(4.22a)
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In general, the minus signs in this equatlon will become — 1 to the number of fermionic specws being considered. Equa-
tion (4.22b) directly follows from this equation and (4.21).
The derivation of Eq. (7.4) proceeds essentially identically. We have

(F1418)= [ fanotrdvtdpe™ ™ N aysdy,d (o35, 03)d vl ding Ws93) . (A4)
Shifting the ¥, and ¢; integrals, we find 3
(14 |gy= [ Fbuptrtaptdpe T

x [ [ dusawne ™A 4o U 93000 |3y () (A5)

from which we read off Eq. (7.4).
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