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We introduce a general updating scheme for the simulation of physical systems defined on unitary
groups, which eliminates the systematic errors due to inexact exponentiation of algebra elements.
The essence is to work directly with group elements for the stochastic noise. Particular cases of the
scheme include the algorithm of Metropolis et al., overrelaxation algorithms, and globally correct-
ed Langevin and hybrid algorithms. The latter are studied numerically for the case of SU(3) theory.

I. INTRODUCTION

Monte Carlo—type algorithms have become important
tools for evaluating the multidimensional integrals which
appear in lattice field theory and in statistical physics.
The most demanding problems for this approach are
those involving fermionic systems and systems near criti-
cality. In order to treat such systems with acceptable ac-
curacy within the constraints of presently available com-
puter resources, one needs to devise simulation algo-
rithms which are both fast and exact. Indeed, the fastest
algorithms which are presently available for updating fer-
mionic systems suffer from systematic errors.) %

Several ideas for improved algorithms have been put
forward recently. It has been proposed that an efficient
way to correct for the systematic error in the fermionic
algorithms is to accept or reject trial configurations by
means of a global Metropolis-type step.*”® On the other
hand, overrelaxation algorithms®'” have been shown to
improve the performance of bosonic simulations, even
near criticality.

When the globally corrected algorithms of Refs. 4-8
are applied to systems evolving on SU(N) manifolds,
there is an additional complication for N = 3. This is be-
cause these algorithms use elements of the group algebra
(tangent vectors) to move around phase space. In order
to accomplish the updating, the algebra element must be
exponentiated to yield an element of the group. Exact ex-
ponentiation is straightforward for U(1) and SU(2), but it
is nontrivial for N > 3. If the exponentiation is only done
to a finite order, detailed balance will be violated despite
the final accept/reject step® ' and there will be a residual
systematic error. For SU(3) theory, it has been
checked®® that this residual error is numerically small,
but the main point of the globally corrected scheme is to
remove systematic errors altogether.

We will introduce and discuss a general updating
scheme from which one can derive an algorithm which
remains exact (satisfies detailed balance) even when the

]

[dudv nu,v)= [dUdv h(U,VF(U))

exponentiation is not done exactly. The essence of the
approach is to work directly with group elements for the
stochastic noise. Variations on the general scheme lead
to the classic algorithm of Metropolis et al.!’ or to the
overrelaxation algorithm of Ref. 10.

The updating scheme and some examples of algorithms
which can be derived from it will be introduced in Sec. II.
Section III presents some results obtained while testing
the modified globally corrected hybrid algorithm for
SU(3) theory. Some conclusions will be drawn in Sec. IV.

II. THE UPDATING SCHEME

Consider a set of group elements U,ESU(N),
i=1,...,I and a desired probability distribution
P({U})~exp[ —S({U})], where the function S({U}) is
bounded from below. The distribution is defined with
respect to the invariant group measure. Physically, the
function S could be the action or the classical Hamilton
function of some system defined on the unitary group.
To achieve this distribution, starting from some initial
configuration of U variables, let us propose the trial
changes

U/=UF({U}V;,
VI=F,({U)V,F({U'}).

Here the function F;({U}) takes values in SU(N) and
{V} is an auxiliary set of SU(N) matrices with the follow-
ing distribution: ’

(1)

PUVN=TI B(V), Bvp~e "7, @

where S(V,) is an arbitrary group function, with the
property S(¥;)=8(V; ).

Let us show that this updating scheme is area preserv-
ing (dU/dV;=dU,dV;). Without loss of generality, we
can prove this for only one pair of (U, ¥). Consider an
arbitrary function A (U, V). Then, by the properties of the
group-invariant measure:

= [dU av h(UV,VF(UV))= [ dU dV h(UF(U)V,F(U)VF(UF(U)V))

= [dUuavnu,v)= [dUdvhU,v') . 3)
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Note that the updating scheme of Eqs. (1) is also inver-
tible by taking ¥ to its inverse and iterating Egs. (1). Us-
ing the property P(V;)=P(V¥;"1), as well as Eq. (3), the
following statement is readily verified: if we accept the
set ({U'},{ ¥’ T}) with the probability

P,.=min[l,exp(—H'+H)], 4
where
H=S({U})+35(V), (5)

then the overall process satisfies detailed balance. As a
consequence, the process approaches equilibrium. Note
that, if a trial update is accepted, V is replaced by yrt
and not by V’.

Various updating algorithms follow from this general
scheme depending on the choice for F;({U}) and S(¥;).
Some interesting local choices for F;{({U}) are

F({U)=1 Vi ©)

(the unit matrix), which yields the usual implementation
of the algorithm of Metropolis et al. (Ref. 11) and

F(Uu)=Ulu,Ulu, )

(at each site, the element U, is chosen to minimize the
action locally), which defines the overrelaxation algo-
rithm of Ref. 10.

To obtain versions of the Langevin and hybrid algo-
rithms, consider the choice

Fi({U})=exp[—ieV, ,SUUNT], (®)

where T'* are the generators of the Lie algebra, V; ,
denotes the derivatives with respect to the group parame-
ters, and € determines the size of each updating step.
This form is inconvenient from a practical point of view
for N 23, since it requires exact exponentiation. We
note, however, that achieving detailed balance with the
updating scheme of Egs. (1) only demands that F;({U})
be group elements. Therefore, the scheme remains exact
if we redefine F;({U}) by only keeping the terms up to
O(e) in the expansion of the exponential and by then us-
ing a Gram-Schmidt procedure to enforce unitarity.

To relate this choice of F;({U}) to Langevin*'? and
hybrid®~® updating, we should have

V,=exp(iVen, ,T*)+0(e?) , .
(1,a7),8) =280 85 »

where the 7, , are Gaussian random numbers. Thus, the
algebra elements p; =1, ,T* are distributed as

P(p,)~exp[ — Ltr(pfp)] . (10)

To obtain the corresponding distribution of the ¥ to
lowest order in €, we express p; from Eq. (9) and expand
in powers of €. This gives

P(V;)~explk Re(trV;)], (11)

with

k=e '[14+0(e)] . (12)

We have shown how to relate the general updating
scheme of Egs. (1) to Langevin and hybrid updating. The
essential difference is that our scheme works entirely in
SU(N) group space, without any need for exact exponen-
tiation of algebra elements. This relationship is estab-
lished by choosing the distribution of the ¥V; as in Eq.
(11). Intuitively, one might expect that being close to this
choice of k means being close to the maximal acceptance
[with respect to the global accept/reject step in Eq. (4)]
which is possible for a given step size €.

For the case of an uncoupled harmonic oscillator
S=1x? (one Gaussian random number: {x2)=1), one
can actually show analytically that a suitable
modification of the distribution of p leads to 1009% accep-
tance. Taking

x'=x —-%—g—i—e-l-p\/_e ,
: (13)
P(p)~exp

’

_K 2
2[’

will lead to trial updates which are always accepted, if
k=(1—e/4)"'. (14)

Since this possibility of choosing « to achieve 100% ac-
ceptance for any given step size is destroyed by anhar-
monic perturbations, we cannot hope to tune k in the
case of SU(N) such as to obtain perfect acceptance for
nonzero €. Rather, past experience* ® suggests that the
possible maximum acceptance should decrease with €.
Finding the proper relationship between & and € is in fact
a way to tune the performance of the algorithm. This is
equivalent to the proposal studied in Refs. 4-8, which
sought to maximize acceptance by shifting the couplings
in the action used to generate the trial updates. In the
next section we show a numerical study of the depen-
dence of the acceptance on k for various values of ¢, in
SU(3) theory.

Another numerical experiment we will report in Sec.
III concerns the dependence of the acceptance on the
number of iterations of Egs. (1) between the global
accept/reject steps. The results obtained in Ref. 13 imply
that, for the uncoupled harmonic oscillator, the accep-
tance does not decrease with the number of “molecular-
dynamics” iterations, but oscillates around a value deter-
mined by the step size. For a line of coupled harmonic
oscillators, a numerical study® which used a globally
corrected hybrid algorithm showed oscillations in the ac-
ceptance, superposed onto a slow decrease. Using this al-
gorithm for SU(3), one sees an initial drop in the accep-
tance as one increases the number of steps from 1 (the
Langevin case), followed by a significantly flatter region.
It is interesting to compare the performance of our
present, modified algorithm with these results.

III. RESULTS

We have addressed these questions by simulating pure
SU(3) theory with the standard Wilson action. As dis-
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cussed above, we took F;({U}) to be the reunitarized
first-order expansion of Eq. (8). We used two different
methods of generating the distribution P(¥;). In the first
variant, we start from an initial pair of configurations
({UL{V}]). After iterating Egs. (1) nmol times, we ac-
cept or reject the resulting pair of configurations
({U'},{v' 1)) according to Eq. (4). If the trial update is
accepted, the old pair ({U},{V}) is replaced by the new
one. The V; are arranged in a periodic order, and, after
each trial change, we reset the starting element ¥, at ran-
dom.

In the second variant, which is designed to be analo-
gous to the hybrid algorithms of Refs. 3-8, we first bring
the V'’s into their correct distribution (11) by means of a
standard procedure of Metropolis et al. This is very
efficient because the ¥; are independent random matrices.
Combining the V’s thus obtained with an initial choice
for the U ’s, we generate a trial update by Eqs. (1) and ac-
cept or reject it by Eq. (4). But even if the update is ac-
cepted, we only replace the configuration {U}: the
configuration { ¥’ '} is always discarded. After each glo-
bal accept/reject step, a new configuration {¥V} is gen-
erated from the old equilibrated sample by a multiple-hit
procedure of Metropolis et al. Multiple hits are used to
ensure that the new V; are independent of the old ones
(otherwise, there would be a systematic error in the whole
algorithm).

We have tested both variants on a 4* lattice at f=4.8.
The two methods lead to results which coincide within
our statistical errors. As expected, the first variant is
slightly faster. The results presented in Figs. 1 and 2 are
obtained with the second variant.

Figure 1 shows the dependence of the acceptance rate
on the distribution parameter k, for two values of €. Re-
markably, the acceptance peaks for both these values are
located at k ~e~!+4. Thus, the numerical study has al-
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FIG. 1. Dependence of the acceptance rate on the distribu-
tion of the V; for two values of €. The parameter k is defined by
the first line in Eq. (12). Squares refer to €=0.01 and triangles

refer to e=0.04.

so—llrlllllll_‘
ol ****** |
so|- kX

40 B

ACC (%)

30 1 J
20 - -

10 -

FIG. 2. Dependence of the acceptance rate on nmol, the
number of iterations of Eqs. (1) between accept/reject steps.
The data are obtained for €¢=0.01 and k=104,

lowed us. to determine the magnitude of the e-
independent shift away from k =€~!, which was predict-
ed by Eq. (12). The height of the peak is seen to drop as €
increases, as expected from previous studies of globally
corrected hybrid algorithms.* 8

Figure 2 exhibits the variation of acceptance with the
number of iterations of Egs. (1) between accept/reject
steps. The initial drop in acceptance is seen to be far less
pronounced than was typical of the previous globally
corrected hybrid algorithms.»® There is a hint of slight
oscillations superposed onto a slow decrease [the accep-
tance becomes (5213)% for nmol=15 and (43+3)% for
nmol=30].

1V. CONCLUSIONS

We have shown that various interesting and popular al-
gorithms for Monte Carlo-type simulations of physical
systems defined on unitary group spaces can be con-
veniently summarized in a general updating scheme.
From a computational point of view, this scheme has the
advantage of being formulated in terms of group elements
only. In particular, it is possible to define an algorithm
which can be related to globally corrected Langevin and
hybrid updating,*~® but which does not require the exact
exponentiation of algebra elements. Besides removing
the residual systematic error due to the violation of de-
tailed balance by inexact exponentiation, the new algo-
rithm appears to give a more advantageous dependence
of the acceptance on the number of iterations between
accept/reject steps. In addition, the algorithm is consid-
erably more computationally efficient than if exact ex-
ponentiations had to be performed at each step. The in-
clusion of fermions into this algorithm is straightforward,

since only the form of F, must be appropriately modified.
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