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LATTICE GAUGE THEORIES AND MONTE CARLO ALGORITHMS* 

Michael Creutz, Physics Department, Brookhaven National Laboratory, 
Upton, NY 11973 

Lattice gauge theory has become the primary tool for non-perturbative calculations 
in quantum field_ theory. These lectures review some of the foundations of this 
subject. The first lecture reviews the basic definition of the theory in terms of 
invariant integrals over group elements on lattice bonds. The lattice represents 
an ultravioieg cutoff, and renormaliza~on group arguments show how the bare 
coupling must be varied to obtain the continuum limit. Expansions in the inverse of 
*~he coupling constant demonstrate quark confinement in the strong coupling limit. 
The second lecture turns to numerical simulation, which has become an important 
approach to calculating hadronic properties. Here I discuss the basic algorithms 
for obtaining appropriately weighted gauge field configurations. The third lecture 
turns to algorithms for treating fermionic fields, which still require considerably 
more computer time than needed for purely bosonic simulations. Some particularly 
promising recent approaches are based on global accept-reject steps and should 
display a rather favorable dependence of computer time on the system volume. 

L E C T U R E  I: I N T R O D U C T I O N  

Several speakers at this meeting are presenting recent numerical results from lattice 

gauge theory. Indeed, this technique ~ '~ become the dominant tool for the study of non- 

perturbative phenomena in fi~ld theory. In the p~st, strong interaction physics dominated 

lattice simulations, wi~h numerous calculations of the confining string tension, hadronic 

masses, and properties of the quark/gluon plasma. Recently weak interactions have begun 

to play an important role, with studies of corrections to weak matrix elements and studies 

of symmetry breaking and properties of the Higg's particle. Y~u will hear much about a;l 

these topics at this meeting. 

The goal of my lectures is to provide a pedogogical introduction to the subject, leaving 

the recent results to the other speakers. In this first lecture ~ give an over~iew of the genera~ 

formv~ation and discuss how confinement arises in the strong coupling expansion° In my 

second lecture I discuss some of the algorithms used for numerical simulations of these 

systems, concentrating on the pure gauge theory. In my third lecture I will turn to the 

difficulties with simuiating fermionic fields and discuss some promising recent approaches 

involving global trial changes to the dynamical fields. For a general reference on lattice 

gauge theory see ref. [1]. For a more specific review of Monte Carlo algorithms, see [2], 

and for a detailed discussion of the global algorithms for fermions, see [3 i. 
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so, for U.S. Government purposes. 
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I begin by defining Wilson's [4] lattice gauge theory. For simplicity I start with a 

four dimensional hypercubic lattice. For definiteness, assume that  the lattice has N 4 sites 

and has periodic boundary conditions. For every ordered nearest neighbor pair of sites 

(i, j )  on this lattice, I have a bond variable Uij which is an element of the gauge group 

G. t will assume that  G is a compact unitary group. To study the theory of the strong 

interactions, where the gauge fields are the g|uons which bind quarks into hadrons, the 

gauge group is SU (3). Thus I consider a configuration space which consists of 4 × N 4 

group elements. When a bond is traversed in the reverse order, then the group element 

on the link is inverted 

Associated with every configuration of this, system is an action 

S = ~ (1 - 1 / , , R e ~ V ~ ) .  (2) 
p 

Here the trace is in some representation~ usually the fundamental, of the group, and n 

is the dimension of the matrices in that representation. The sum is over all elewentary 

squares: or ~plaquettes;" p, and Up denotes an ordered product of the fundament~d link 

variables around the given plaquette. Because of the trace it does not matter on which 

corner of the squ~e the ploduct starts. Because of the real part being taken in Eq. (2) 

and because the group is vnitary, the direction taken around th~ square is unimportant. 

The next step is to exuonentiate the action and study the path integral over all gauge 

fields. This reveals a mathematical equivalence of the path integral with the statistical 

mechanics of this system of group elements. In this analogy, the exponentiated action 

plays the role of the Boltzmann weight. Correlation functions in this statistical system 

correspond to the field theoretical Green's functions continued to imaginary time. Thus I 
am led to eGnsider the partition function 

= f (dU) ~-ps. (3) g 

The parameter fl is proportional to the in gerse square of the bare gauge couplhig go used 

in cor..vent:.onal perturbative studies. For the gauge group SU (n) the relation is 

= (4)  

The expectation value for some function F of the gauge variables is 

(F) : Z-" / (dU) F (U) e -Os. (5) 

In these equations the integration is to be taken over all link variables using the group 

invariant measure. For compact groups this me~sure is unique and satisfies 
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where )" (U) is an arbitrary function over the group and U ° is an arbitrary fixed group 

element. The measure is normalized such that  

/ dU 1 = 1. (7) 

Eq. (6) can be s~hematica]ly written dU = d U U  I = dUIU = dU -1.  

addition to the gauge fields on the Sinks, one can readily add matter  fields to the 

theory. These conventionally reside ov the lattice sites. The interaction with the gauge 

fields is constructed to display the gauge symmetries to be discussed below. For simplicity, 

however, I will ignore such fields until my last lecture. 

This completes the formal definition of a lattice gauge theory. The motiv~tio~ for 

looking at this system can be found in the many reviews of the topic, for example reference 

[1]. Briefly, the classical continuum limit of the above action reproduces the Yang Mills 

[5] theory and the integration over the links gives a regularized Feynman path integral for 

the quantization of the system. The connection between the link variables and the vector 

potentials A~ is 

Uij = ezp (igoA.a) (8) 

where ¢ is the lattice spacing and the vector index/~ lies along the direction of the bonds 

If I assume tha t  A~ is smooth, then as a goes to zero the Wilson action reduces to the 

standard Yang-Mills action /1 
s - (9 )  

The Wilson theory is formulated directly in Euclidian space° Thu~ all four dimensions 

are equivalent. In particular this means that  the time evolution operator is • -/~t rather 

than the more usual e -~Ht. As it is the same Hamiltonian in each case, no physical 

information is lost by this Wick rotation to imaginary time. The advantage of working 

in Euclidian space is that  the Boltzmann weight is real and the analogy with a statistical 

mechanics problem is explicit. 

For the quantum theory, I will take the point of view that  the continuum limit of lattice 

gauge theory, if it exists, can be regarded as a definition of quantized gauge fields. The 

phenomenon of asymptotic freedom gives some useful information on how to take this limit. 

As the lattice spacing is reduced one will encounter the well known divergences of quantum 

field theory. In particular, this means that  the bare coupling must be renormalized. The 

variation of the bare coupling with cutoff defines the renormalization group function, which 

can be calculated perturbatively 

a ago (lo) 
= (go )  = + + . . .  

For a ~on-Abelian gauge theory the famous phenomenon of asymptotic freedom [6] is 

manifested in the positive sign of the number ~/0. 
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For our purposes it is useful to rewrite the renormalization group equation in integrated 

form and express the lattice spac'~ng as a function of the bare coupling 

1 a = -~ (g2o~o) -'Y'/2"Y~ e -I/2~°~°2 × (1 + O (go2)) • (11) 

Here A is an integration constant and sets the overall scale of the theory. 

Note that  to take the lattice spacing to zero requires :aking t:~v bare coupling to zero. 

As the bare coupling can be regarded as an effective coupling at ~he scale of the cutoff, 

this is equivalent to the usual statemer~ of asymptotic freedom th~,t the effective coupling 

becomes small at short distances~ 

When working on the lattice it is quite natural  to measure masses in units of the lattice 

spacing. A mass is extracted from the Yukawa law behavior of the correlation between 

two widely separated operators, If a particular particle has a finite physical mass m in the 

continuum limit~ then Eq. (U} implies that  the dimensionless combination ma will show 

an exponential decrease with increasing inverse coupling squared. The coefficient of this 

"scaling" behavior gives the particle mass in units of A, It is such a scaling that  is looked 

for in essentially all numerical lattice gauge calculations at tempting to extract physical 

observables. 

Note that  the factor of A will drop out of any mass ratios. Indeed, in the continuum 

limit ~he pure gauge theory should make parameter free predictions for all dimensionless 

observablen~ When quarks are added to the theory the only parameters are the quark 
masses (in ~ i t s  of A). 

The action in Eq. [2) has an enormous symmetry. Suppose I associate an arbitrary 

group element gi with every site i on our lattice. Using these, I can construct a new link 
element on each bond 

U~i = g~U~igT'. (12) 

Since the dynamics involve,~: the trace of link variables multipl ied around closed loops, the 

factom of g will cancel in the calculation of the action for the n e w  l inks.  This exact local 
symmetry is the gauge symmetry of the model. On our N 4 site lattcc, the symmetry g~oup 
is the gauge group raised to the N 4 power. 

The gauge symmetry implies that expectation values of gauge non-invariant quantities 

vanish. For example, consider the expectation of a single link variabie 

r 

(u~+) = z -~ I (du) u~i • -ps 

= z -1 f {du) g~U~gT~ e-P s 

= 9~(u~i)97 ~. 

(13) 

Since gi and gj are arbitrary, (Uij) must vanish (ezcept for the trivial case where the ~auge 

gro~lp has but one e]ement~. This result that  gauge variant quantities hav~ vanishing 

expectation values is known as Elitzur's theorem [7]. Because the symmetry is a local one, 
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only a finite number of degrees of freedom are involved in the above change of variables, 

and there is no possiblity of a spontaneous breaking of this symmetry in the infinite volume 

limit. 

Xn continuum formulations of gauge theory, one usually adds a gauge fixing term to 

the actioi~. This can be done on the lattice as well. Consider the expectation of some 

observable F 

1 f (de) o- S (F) = F (U). (14) 

Assume that  F is gauge invariant 

r (Uij) -- F (giUiigfl). (15) 

Now I introduce the gauge fixing function h (U) which is an arbitrary function of the link 

variables. Then it is readily verified that  the expectation of F can be written 

h(U) (16) (F) - ~1 (dU) e -ps F (U) f (dg) h (gUg -1) 

Note that  the denominator inserted into this integral is just the integral of h over all 

gauges. If the gauge fixing involves a gaussian function, then this integral gives rise to 

the standard Faddeev-Popov [8] determinant. One important feature of the lattice for- 

mulation, however, is that  the volume of the gauge orbits is finite and therefore this gauge 

fixing, while possible, is no longer necessary. 

For observables one should look for gauge invariant quantities. One such is the trace 

of the product of link variables around a closed loop. The expectation of this is the famou~ 

Wilson loop. Confinement in the pure gauge theory is signaled by an exponential decrease 

with the minir~lal area enclosed by the loop. The coefficieP~t of this area law, or "strirg 

tension," is a non-local order parameter which is useful for distinguishing certain phases 

of lattice gauge mo~lels. It is a physical observable with the dimensions of mass squared, 

and is the coefllcien~ of a linear force between widely separated quarks. 

The area law behavior of Wilson loops arises quite naturally in the strong coupling 

limit of the theory. Indeed, this was one of the major points of Wilson's original paper 

14]. When the bare coupling becomes large, the parameter j3 is small and one can consider 

a power series expansion of the Boltzmann weight e -ps.  Any term in this expansion will 

involve various powers of the link variables, which must be integrated over. For SU (n) 
the resulting integrals can be done using a set of graphical rules which I ~vil] not g~ into 

here [9]. Three simple integrals which are particularly useful are 

/ dgg ~p = 0 

/ dggaPgt "y8 = _15~ 5P~ (17) 
n 

/ dggal~l ga,~,~ 1 • " = -~o1,...~. e~l,...~." 
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where the SU (n) ~strix indices have been denoted by Creek superscripts. Here e repre- 

sents the totally antisymmetric tensor with el,...~ = 1. 

Consider a large Wilson loop. If I ignore the Boltzmann weight in calculating its 

expectation, then the integrals over the links on the loop will give zero by the first part 

of Eq. (17). To get ~ ncn~va~lishing result, one can extract piaquette factors from the 

e.xponentiated action to match these links with reversed links, enabling the use of the 

second relation in Eq. (17). This must be repeated until there are no unmatched links in 

the integral. This requires that enough powers of fl be taken so that a minimal surface 

with the loop as boundary can be ti|ed with plaquettes taken from the Boltzmann factor. 

Evaluating all the integrals then gives the leading behavior for expectation value of the 

loop. For the gauge group ~qU (n) with n > 2 this gives 

{ w ) =  + . . .  

where A is the area, in number of plaquettes, of the minimal surface tiling the loop, and the 

corrections are of higher order in/~. For SU (2), where the conjugate of the fundamental 

representation is not a different representation, ~ is replaced by ~. 

This factor of beta raised to the area of the loop is precisely the exponential suppression 

signaling confinement. Extracting the string tension from (W) N e - K A  gives the strong 

(2). 
Although confinement is natural in the strong coupling limit, the relevance of this 

result to the continuum is unclear. Indeed, the earlier discussion of asymptotic freedom 

showed that the continuum limit requires taking the bare coupling to zero. As an infinite 

statistical system can undergo phase transitions, so might lattice gauge theory, with the 

string tension vanishing below some finite value of the coupling. While there is no rigorous 

proof~ Monte Carlo studies have indicated a r~ther smooth behavior of the string tension as 

a function of coupling for the 8U (2) and ~qU (3) theories. The situation is rather different 

for U (1)~ the gauge group of electrodynamics, which does appear to have a weak coupling 
phase with free photons. 

Lattice gauge theory can also be formulated as an ordinary quantum mechanics prob- 

lem in continuous time with the canonical coordinates being group elements on the links 

of a spatial lattice. This Hamiltonian formulation [10] can be related to the above La- 

grangian formalism by fixing the temporal gauge (A0 = 0) and then taking a continuous 

time limit [11]. In this approach, the link variables are operators ~rij in a Hilbert space. 

Conjugate to ~hem are conjugate ~electric field" operators l~.. The commutation relations 
amongst these objects are 

[lij ' lij] -ta;~l~ 
(19) 

!-~ere the group generators are denoted by ,~a the group structure constants by f~P~, and 

the Greek superscripts run up to the number of generators. In an explicit parameterization 
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ot  of the group, the lia. are represented by differential operators. In terms of tF, ese quantities 

the Hamiltonian takes the form 

g2 2 
H = + (20) 

(~/} p 

Here g is the bare gauge coupling, a is the lattice spacing, the first sum is over all links and 

the second sum is over all spacelike plaquettes. Note that  12 is just the quadratic Casiwir 

operator on the respective link. The two terms in this equation can be regarded as the 

electric and magnetic contributions to the energy. 

Note that  the I operators do not commute among each other, unlike the case of the usual 

electric field operators in the continuum formulation of Yang Mills fiel:ls. This is because 

for convenience the I operators operate on group elements from the left side. Indeed there 

are other definitions for these operators; in particular the second part of Eq. (19) could be 

redefined to I ~ the factor of A on the right. The conventional commuting electric ~elds 

are neither of these but rather directly shift the vector potential which is exponentiated to 

give the link operators. In the continuum limit all these operators become the same, but 

on the lattice it is more convenient to work with the above construction. 

In the strong coupling limit of large g the electric field term dominates the Hamiltonian 

and one can do standard perturbation theory in the second term. The natural basis for 

this expansion is in terms of definite representations of the gauge group on each link. The 

kinetic or electric term is minimized by placing all links into singlet states with 12 i = 0. 

The potential or magnetic term then can excite links into intermediate states involving 

higher representations. For a review of this approach see ref. [12]. 

L E C T U R E  XI: N U M E R I C A L  S I M U L A T I O N  O F  B O S O N I C  F ~ L D S  

For the p ~  several years research in lattice gauge theory has been dominated by 

Monte Carlo simulations. The basic idea is to approximate the integral in Eq. (5) by a 

sum over a finite number of configurations of the system with a weighting proportional 

to the Boltzmann factor e-p$. Using the formal analogy with statistical mechanics, one 

should fin0 a set of configurations typical of thermal equilibrium. 

For simplicity in the following discussion, let me begin by considering jt,~_t a single 

group element U. Consider the problem of stochastically picking group elements with a 

probability distribution 

Peq (U) o~ e -ps(U) (21) 

where S (U) is the action. The differential measure to be used here is the same invariant 

measure used for integration above. 

For groups such as SU (2) where the measure is rather simple it is not difficult to 

generate elements directly with a particular distribution. However, at first it might seem 

that  for other groups with more complicated invariant measures it might be quite difficult 
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to generate elements with an arbitrary distribution. It turns out,  however, that  by doing 

~. random walk over the group manifold this can be quite easy. 

If one has an ensemble of group elements uniformly distributed over the group, the 

invariance of the measure insures that  if all elements in this set are multiplied by some 

fixed group element, then the new ensemble will also be uniform. This fact provides a way 

to obtain such a uniform distribution. Suppose I have a set of factors which upon repeated 

multiplication can cover the group. Then construct a Markov chain of group elements by 

starting with an arbitrary element and repeatedly multiplying the current element U by 

factors chosen independent of U. This sequence will asymptotically uniformly cover the 

group, in a practical simulation the factors could be stored in a finite table. 

Actually, rather than a uniform covering, Eq. (21) asks f~,r a weighted distribution. At 

the simplest level this could be obtained by merely generating first a uniform distribution, 

and then accepting elements from this set with a probability proportional to the Boltzmann 

weight. This scheme will, however, have difficulties when the weight factor is highly peaked, 

in which case only a small number of elements will be accepted. 

More ei~cient schemes follow by modifying the above M~rkov chain. This is usually 

done by incorporating an accept-reject procedure into the random walk, as originally 

suggested by Metropolis e ta / .  [13]. To be explicit, construct U w as a tentative next 

element in our Markov chain by multiplying the current element U by a factor as indicated 

above. Thus this element is selected with some trial distribution PT, u (UW) • I place the 

subscript U on this distribution as a reminder that  the distribution depends on the old 

element U. After U e is constructed, it is accepted only conditionally as the next member 

of the Markov chain. The acceptance criterion is not unique, but  is conventionally taken 

to be 

[ "T'~-' (~J) e - ' ( s ' - s )  ] (22) F~cc - rain 1, PT, u (U') 

Here S and S l denote the old and trial actions, respectively. Note that  this requires 

knowledge of the reverse probability for choosing U as the trial had the old element been 

U e. If the new element is not accepted, the next term in the Markov chain is j~st a repeat 

the old element. It is readily verified that  this process leads to a sequence of states where 

the asymptotic probability for finding a particular state is proportional to the Boltzmann 

weight. For a detailed discussion of this, see Ref. 2. 

There are many variations on this approach depending on the choice of PT, u (UI). 

Indeed, if the group measure is simple, one may be able to directly pick U ~ with the 

appropriate Boltzmann weight, in which case the factors in Eq. (22) cancel and Pace is 

identically one. This is referred to as the ~heat bath z algorithm because it effectively 

touches a thermal bath to the |ink variable being updated. While this approach works well 

for ~U (2), it appears not to be practical when the group manifold is more complicated. 

The most common application of the Metropolis et al. [13] procedure is simply to form 

the trial element by multiplying the old link by a factor from a table. In this case it is 
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convenient to havethis table contain the inverse of each of its elements. Then the forward 

and backward trial probabilities are equal and Eq. (22) reduces to 

Pace = rain [I, e-PCS'-'S)]. C23) 

This is the fozm conventionally used for lattice gauge simulations. Note that no know|c~ge 

of the detailed measure is needed; it is generated completely automatically. 

Another potentially useful scheme for picking the trial elements was discussed in refs. 

[14-15]. This approach is a generalization of the overrelaxatlon ideas discussed in ref. 

[16]. Suppose there is some straightforward way to find a group element U0 which approx- 

imately minimizes the action S CU0). Suppose further that U0 is obtained with no explicit 

dependence on the current element U. Then a useful trial change for U is 

u '  - uou-  uo. (24) 

In some sense, this element lies on the "opposite side" of U0 from U. Note that this 

construction is symmetric under interchange of U ~ and U; consequently, the ratio of ~'ial 

probabilities drops out of the acceptance condition, just as with the standard procedure. 

I will give three motivations for this choice of trial update. First, it produces a rather 

large change in U while, assuming the action is reasonably symmetric around U0, resulting 

in only a small change in the action. Thus one simultaneously obtains a high acceptance 

rate and a rapid flow through configuration space. Second, when considering a coupled 

system of many variables, the value of U0 depends on neighbors which in previous steps 

have adjusted their values to accomodate U. If U is allowed to float, then these n~:,ghbors 

will tend to relax away and the optimum value for an updated element should lie beyond 

U0. Third, recent analyses by Adler [17] and Neuberger [18] indicate that overr~laxation 

can help reduce the increase of correlation times as a critical point is approached. Tests 

with this algorithm [19] indicate a possible savings on the order of a factor of three in 

computer time over the conventional Metropolis eta/. [14,15,13] algorithm for pure SU (3) 

gauge theory. 
In the standard Metropolis et al. [13] approach mentioned earlier, the trial changes 

are made in an unbiased way. In ti~e heat bath method one incre~es the acceptance 

by making trial changes with a carefully derived distribution. One might try something 

intermediate by combining a random change with a biased driving force. For example, 

consider updating some real degree of freedom A. For a trial change take 

A' = A + ~ P + 6~F (A). (25) 

Here p is an unbiased noise which, for the purposes of discussion, I take to be Gaussian 

e (p) e -pp /2. (26) 

The driving force F (A) is for the momevt arbitr~zy, and 62 is a bookkeeping parame- 

ter which I will consider to be small. Solving Eq. (25) for p gives the trial probability 
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distribution 
~,A (A') o~ .-#~'/~, 

I p = ~ (A' - A -  : F  (A)) .  

This can be inserted into the Metropolis et al. acceptance criterion, Eq. (22), to give 

(27) 

(2s) 

where I have defined 

(p,A} = S (A) + p~/~ (29) 

and H ~ = H (p~, A~). Here p~ is the noise which would be required to move bacI~ from A I 

to A 
1 (A - A I 

p' = ~ - : F  (~'))  (30) 
= - (p + ~ (F (A) + F (~'))) 

Expanding in powers of ~, I find 

l (psa_~_}.2F(A))~2) (aS(A) (A))-I- H ' -  H ; (pe + ~ \ ~ + ~F 0 ( : ) .  (31) 

This implies that the choice 

would give 

i aS 
F ( A ) =  2aA (32) 

Po~0 = i + 0 (:). (33) 

Thus for small changes one can indeed obtain a high acceptance. 

If the changes are small enough, one might consider introducing a small error by 

ignoring the acceptance criterion altogether and simultaneously updating all fields with 

Eq. (25) using the driving force in Eq. (32). At this point it is instructive to change 

notation and write 
A ! - A d A  

52 -- d'--~" (34) 
1 
~ P =  7. 

Then the updating procedure reads 

d A  I c9S 
- I-,~ (3s) 

d~ 2 cgA 

which is the standard Langevin equation. 

Note that the combination Eq. (25) and Eq. (30) with the driving force in E,V (33) 

and followed by an inversion of p to - p  represents a discretization of a microcanonical 

evolution under a dynamics generated by the Hamiltonian in Eq. (29). Iterating this 

procedure equations gives the microcanonical algorithm proposed for lattice gauge theory 

by Callaway and Rahman [20]. Adding an occasional refreshing of the momenta into new 
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gaussian r~_.ndnm mln~h~r.~ gives the b_ybr~d algorithm of Duane and Kogut [21]. I will 

return in the next lecture to this analysis of biased trial changes in the context of updating 

fermionic fields. 

L E C T U R E  I I I :  F E R M I O N  A L G O R I T H M S  

Ferm~onic fields provide several challenging problems for lattice gauge theory. One 

appears already at the level of formulating an appropriate action. Here one encounters 

the notorious doubling of species appear~ug in the simplest schemes incorporating chiral 

symmetry. In these lectures I ignore this issue and assume that one has an acceptable 

lattice transcription of the Dirac equation. 

The problem I address here concerns the difficulties in simulating a coupled fermion- 

boson system. For this purpose I introduce the generic partion function 

? 
Z = f (dA) (d~) (d~b*) exp (-SG (A) - ~ ' M  (A) ~) .  (36) 

As I will be concentrating on fermionic details, I will ignore the technicality that the gauge 

fields are group elements and write them as A. To further simplify the notation, I have 

absorbed the coupling parameter ~ into the action. The matrix M (A) contains both the 

kinetic terms for the fermionic fields as well as the couplings to the gauge field. 

The essence of the problem lies in the fact that the fermionic fields are not ordinary 

numbers, and therefore the exponentiated action cannot be regarded as a probability. 

Instead, the fields ~ and ~* are anticommuting variables, integration over which I now 

briefly review. 

I begin by considering a set (~i)  of anticommu~ing Grassmann variables 

[~i,~j]+ = ~i~bj -I- ~j~bi = O. (37) 

Generalizing complex conjugation, I adopt the convention that corresponding to each ~i I 

have another independent Grassmann variable ~*. Furthermore~ I postulate 

. . .  = (38) 

Considering just a single variable ~, a general function f (~) can be expanded with just 

two terms 

f (~) ~: fo-I- ~f l .  (39) 

To define integration over an anticommuting variable, I demand the properties of 

linearity and invariance under translation. These are summarized in the axioms 

f d~(f (~b)a+g(~b)fl) = ( /  d~f (~)) ~+ ( /  d~bg(~b)) fl (40) 
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This is sumc]ent to imply that  for the function in Eq. (39) 

f d~bf (~b) = Kfl (42) 

where th~ normalization K is undetermined. I adopt the convention K = i so that  

f d~=i 
/ d~, x = o (43) 

/ d¢*d~, ¢*¢ = 1. 

Note that  under multiplicative rescaling a Grassmann integral behaves as 

This can be written in the heuristic form d (~,a) = (d~,)/a. 

For integration over several anticommuting variables, I have 

f d~l.., d~n~l.-- ~ n  -- ~n (_1)n(n-1) /2 .  (45) 

The analog of Eq. (44) in this case is 

/ (de,) ,f C~¢') = IM I /  dqJ f (~) (46) 

where M is an arbitrary invertable matrix, [M I is its determinant,  and (d~) denotes 

d~b~ . . .d~n .  Note tha t  Eq. (46) immediately implies the Matthews-Salam [17] formula for 

a fermionic Gaussian integral 

f (a,/,a¢*) ~ - ¢ ~  = (47) IMI 

whore  (d~dO*) "-- a O l a O E . . . d O n d ~ b  a. 
gq. (47) provides an easy way out of the difficulty that  our partit ion function is not an 

ordinary integral  Indeed, I can explicifly integrate out the fermions to convert Eq. (36) 

to 

= J (,t~) la~l Z e-BG. (~s) 

This is now an integral over numbers and therefore in principle amenable to Monte Carlo 

attack. For the remainder of these lectures I will assume tha t  the fermions have been 

formulated such that  M is a positive matrix and thus the integrand in Eq. (48) can be 

regarded as proportional to a probability measure. If this is not so, one can always double 
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the number of fermionic species, using M t for the extra ones, thus replacing JM[ by 
I llMtl. 

Direct Monte Carlo attack of the partition function in Eq. (48) is still not practical 

because of the large size of the matrix ~f. In our compact notation, this is a square matrix 

of dimension equal to the number of lattice sites times the number of Dirac components 

times the number of internal symmetry degrees of freedom. Thus, it is typically a tens 

of thousands by tens of thousands matrix, precluding any direct attempt to calculate its 

determinant. The matrix is, however, generally extremely sparse because popular fermion 

actions do not directly couple distant sites. All the Monte Carlo algorithms used in practice 

for simulation of this problem make essential use of this fact. 

A simple but time consuming algorithm with the usual statistical but no systematic 

errors was presented Ly Weingarten and Petcher [22]. For simplicity in the following 

discussion let me assume that the matrix M is real. Weingarten and Percher observe that 

by intrcducing a new set of real scalar fields ~ one can rewrite Eq. (48) in the form 

Thus, a successful fermionic simu]ation would be possible if one could ol-,tain configurations 

of fields ~ and A with probability distribution 

cA, ) c o) P 

Ref. 22 notes that while M -1 is the inverse of an enormous matrix, to calculate the effective 

action one really only needs M -1 applied to the single vector ~b. Indeed, there exist 

reasonably efficient iterative schemes for finding the inverse of a |,~rge matrix applied to a 

vector. This amounts to solving a large system of linear equations. Thus Ref. 22 proposed 

to directly simulate the partition function in Eq. (49) using a Gauss-Seidel algorithm to 

calculate M-l~b. It now appears that the conjugate gradient algorithm may be somewhat 

preferable for this inversion. 

In practice, at least when the correlation length is not large, the conjugate gradient 

inversion adequately converges in a number of iterations which does not grow with the 

lattice size. As each step involves a sum over the vector, which has length proportional 

to the lattice volume, this means that the conjugate gradient step takes a time which 

grows proportional to the volume of the system. Unfortunately this inversion must be 

repeated for the updating of each of the system variables. Thus the algorithm of Ref. 22 is 

expected to require computer time which grows as the square of the volume of the lattice. 

Such a severe growth has precluded use of this algorithm on any but the smallest lattices. 

Nevertheless, it does show the existence of an exact algorithm with less computational 

complexity than would be required for a repeated direct evaluation of the determinant of 

the fermionic matrix. 
Actually it is only the A fields which are dimcult to update in such simulation. Ref. 

[23] presented an efficient scheme for updating the field ~ while holding A fixed. First, 
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generate a random real vector X with a G~u~sim~. probability distribution 

P (x) oc e-x212. (51) 

Then construct 

= M×. (s2) 

This ch~ge  of variables gives ~b with the desired probability. The Jacobian of the trans- 

formation is irrelevant because A is temporarily being held fixed. Despite this trick for ~b, 

updating the A field involves repeatedly changing the matrix M,  thus requiring repeated 

inversions. 

To circumvent the severe computer requirements of the Weingarten-Petcher algorithm, 

most of the fermionic algorithms used in practice make an additional extrapolation in a step 

size parameter. Here I include the original pseudofermionic [24] technique as well as the 

microcar~onical [25], Langevin [26] and hybrid [27] approaches, which involve discretization 

of ~ differential evolution. All of the above approaches except the pseudofermion method 

utilize a linearizatlon of the effective action in the exponent of Eq. (50). In particular, 

from this action 

s = So + (s3) 

I obtain its derivative with respect to A 

Os _ Oso ~ M _ I ~  

As the Metropolis et aL [23,13] acceptance condRion only needs changes in the action, to 

lowest order in the step size these can be obtained from this derivative. Note that this 

requires knowledge of (MMt)  -1 ~ in addition to M - I ~ .  This is not a major complication; 

indeed, when M is not Hermitian the standard inversion algorithms calculate this quantity 

anyway. The approximate ferm]on algorithms use this iinearization to calculate the action 

changes, and perform the required conjugate gradient inversions to update the derivative 

only once per sweep of all gauge variables. Thus they make an error of higher order in the 

size of the variable changes. A complete ~alculation would then require an extrapolation 
of physical results to zero step size. 

The pseudofermion algorithm [24] differs from the others in that it uses an ensemble 

of auxiliary fields ~. The corresponding finite step errors are different, but still there. Ref. 

[28] presents a technique which interpolates between the Langevin and pseudofermion 
methods. 

Although the systematic effects associated with this extrapolation are occasionally 

studied, the severe computational demands constrain the abilities to make as many checks 

as might be desired. While these difficulties will lessen with improved computational 

facilities, an efficient scheme for fermionic updating without this additional approximation 

would be welcome. I discuss one particularly promising scheme for the remainder of this 
lecture. 
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The difficulty with calculating the qu~,ntity M -1 (A)~b appearing in the exac~ action 

strongly encourages algorithms which perform this computation as rarely as possible, h~o. 

deed, one of the prime motivations for t'.le ~pproximate algorithms is to do this inversion 

only once per sweep of the lattice variv.bles. There are, however, exact algorithms wb~.:h 

also perform this inversion only once p~r sweep. In particular, one can perform a M e t r o ~  

lis e ta / .  type accept/reject step to r,~store exact detailed balance only after making ~rial 

changes over the whole system. This forms the basis for the algorithms discussed in re~er- 

ences [29-341 and [3]. 

The concept of applying an ax ceptance condition to a global change has the danger 

tha t  one vrill have large increase~ in the action if many variables are changed and titus 

final acceptances may be unfeas~.bly small. Indeed, an arbitrary change in all variables 

will increase the action by an a nount proportional to the system volume, !eading to a~'l 

exponential suppression of the e cceptance with increasing system size. To counteiact th~s, 

one must reduce the step size r~ the volume increases. By appropriately biasing the trial 

changes, one may be able to ~ ~ep the accepance at a reasonable level for step sizes vr~ich 

still allow a practical rate of ~xploration of new configurations. I now discuss this in more 

detail. 

To begin, recall from th,: last lecture a possible trial change of a single variable ~ to 

A' = A + p~ + F CA) ~2. I~5) 

Here 6 is an adjustable s~ep size parameter introduced for bookkeeping purposes. The 

"momentum" variable p r~present,J a random noise, which for convenience I take as before 

to be Gaussianly distributed 
p (p) e-p 2/2. (56) 

The function F (A) represents a driving force or bias in the trial selection procedure and 

is for the moment arbitrary. 

The Metropolis e ta! .  [13] scheme ~cep t s  trial changes with a conditi~,nal probability 

chosen to maintain detailed balance when applied to an equilibrium ens~.mble. With an 

unbiased trial change this acceptance is determined entirely by the exponentiated action 

change. Here, however, the force term in the selection procedure must be corrected for 

in the acceptance condition. As discussed in the last lecture, I can fully restore detailed 

balance by ..ccepting the new value A ~ with probability 

Here H is a classical "Ham-;ltonian" 

H (p,A) = p /2 ÷ s (58) 

In Eq. (57) I introduce f as the reverse noise, i.e. the noise which would be required for 

the selection of A as the trial had A ~ been the initial value 

p' = -p-(F(A)+ F (A'))6. (59) 
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After the accept/reject step, the momenta should be refreshed; thus, they should be modi- 

fied in a Monte Carlo or other fashion that the preserves the distribution in Eq. (56). Note 

that K is precisely the Hamiltonian used in the microcanonical algorithm [25] to describe 

evolutiGn in %imulation time." Because of this analogy, I refer to H as the classical energy. 

Had I set F ~ as then Eq. (55) and Eq. (59) considered together with the inversion = - ~ ~-~, 

f _, _pW would represent a discretization of a microcanonical step of A and p under the 

Hamiltonian in Eq. (58). The microcanonical time step is 6. While a true microcanonical 

evolution conserves energy, th~ above discretization violates this slightly and gives less 

than unit acceptance in Eq. (57). I will shortly return to this choice for the driving force. 

Note that with the second order terms in 6, the mapping defined by Eq. (55) and 

Eq. (59) exactly preserves areas in phase space 

dA dp = dp'. (60) 

Were this not so, the acceptance criterion would also need to depend on a ratio of measures. 

The overall algorithm drives p and A towards equilibrium with the coupled probability 

~D (A,p) OC e -S(A)-p2/2. (61) 

Some rather useful identities fallow from expectation values over this distribution. Consider 

the partition function 

Z - f dA' dp' e-tt' = / dA dp e-H e H-It' (62) 

where H and H w denote H (p,A) and H (pq, A~), respectively. Dividing by Z, I find 

{e H-/~) = 1 (63) 

where the expectation value is over initial p and A distributed as in Lq. (61). By Jensen's 

inequality this immediately implies 

( H ' -  H) ~_ O. (64) 

with equality only possible if the algorithm exactly conserves energy. Below I will be 

considering small changes in the energy, in which case the expansion of Eq. (63) to secon~ 
order 

~ H ' - H ) = I { ( H ' - H ) ' ) - t - O ( ( H ' - H )  3) (65) 

will prove to be very useful. 

Note that the above results are valid for any driving force whatsoever. In particular, 

there does not exist an area preser,'ing mapping of phase space which will decrease the 

average value of the energy. 

To proceed I use the parameter 5 for an expansion of the energy change. In the last 

lecture I argued that 

H ' - H =  pS+-~ p - ~ + 2 F ( A )  62 ~ ~ -i-2F(A) + 0 ( 6 3 ) .  (66) 
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This implies that the choice 

leads to an energy change 

1 aS 
FL (A) = 2OA (67) 

H ' -  H = 0 (6S) 

Indeed, making this choice and ignoring the possiblity of rejecting the tria!, change gives 

the usual Langevin algorithm [23,26], where the parameter 6 is the square ~oot of the step 

size used for discretization. 

Let me first consider not making the Langevin choice for the driving force. Inserting 

Eq. (66)into Eq. (65) gives 

(as_R) )' <m- H)A,,, = ¥ ( \  aA + 2F(A) ) + 0 (6~). (69) 

Note that terms with odd powers of 6 in the energy change expansion all involve odd 

powers of p and thus vanish on the average. If I now consider updating some large number 

V of variables together, the positive 0 (62) quantities will coherently add and I expect to 

find a total energy change increasing linearly with V. By the central limit theorem, the 

fluctuations about this growth will become gaussian. Thus for large volumes I expect to 

find 
H'- H ~- 062V + Bp6V ~/2 (70) 

where C and B are constants and p is a gaussian random variable which I normalize such 

that its probability distribution is 

p (p) ~ e-p2/2. (71) 

If Eq. (70) were exact, then Eq. (63) would relate C and B 

c = B'/2. (~2) 

With this explicit form for the energy change, I can obtain the expected acceptance in the 

large V limit 

E 1 ( ( ' ) )  2 e, -c't '62/4x 1 + 0  ~ • (Pacc)= (min l,e H-H' ) = %/~rCV62 

The calculations required to derive Eq. (72) and Eq. (73), however, depend strongly on the 

tails of the distribution of the energy change and thus cannot be regarded as o:~mpletely 

rigorous. For the following I will only assume that the expected acceptance is exponentially 

suppressed when V62 is large. 

To avoid this exponential suppression and have a reasonable acceptance requires 6 ~ 

V-I~ 2. However a small value for the step size raises the issue that the lattice will evolve 

only slowly from its original configuration. More precisely, consider taking N sweeps over 
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the lattice. As the motion of A is has both random and driven terms, the overall change 

in any given wriable should go as 

=0(, ) + 0 .  
The find result is that the number of sweeps required to obtain a substantially new con- 

figuration should grow as V. If V is proportional to the system volume, then the overall 

algorithm requires time growing as volume squared, one factor of volume from the number 

of sweeps, and the other from the fact that each =~eep takes time proportional to the 

vol-me. 

For a bQsonic simulations this growth would be a disaster. The standard algorithms 

only grow as the system volume, and theq should be preferred over updating many variables 

simultaneously. However, for exact fermionic algorithms one already is starting with a 

volume squared behavior, and thus there is no obvious penalty in going to global updates. 

Indeed, it might be possible to gain sor~ething by a judicious choice of F which will reduce 

the coefficient of this growth [2]. 

] now return to the Langevin choice of Eq. (67) for the driving force. To begin, consider 

again updatLng only a single variable. At first glance one might think that since the exact 

action is so difncult to calculate, the requisite derivative for this force would be intractable. 

Note, however, that this derivative is just what was needed in Eq. (54) to linearize the 

action for the approximate a|gorithms. Considering the action in Eq. (53), the Langevin 
force takes the form 

10So I ( ( M M , )  -1 O M  _1 \ 

As discussed below Eq. (54), calculation of this force is not significantly more dit~cult than 
finding the action. 

To proceed I slightly generalize this force and take 

1 0 S  62 . 
F (A) = - ~  0--A + g (A) (76) 

The g62 piece is included for the purpose of discussing possible higher order improvements. 
Using this, I calculate the next term in the expansion for th~ energy change 

68 ($3 p3 _ 3S1 S2 p -  24g p) + 0 (64). (77) H ~ - H = - 1 - 2  

Here I use the notation 
8~S 

= (78 )  

Note that if Ss is non-vanishing, i.e. if the theory is not harmonic, then no choice of 

g (A) can make the 0 (63) te r~  in this equation Vanish for all p. Thus for any driving 

force whatsoever, a Metropolis et af. [13] correction to the Langevin evolution will always 
reject some changes if the step size is finite. 
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I wish to consider applying this procedure to a group of variables simultaneously. 

In particular, as in the earlier discussion of unbiased changes, I am interested in any 

coherent addition of action changes which could give an exponential suppression of the 

final acceptance. Because the 0 (63) term in Eq. (77) contains only odd powers of p, it 

wili vanish on the average. The expectation for the energy change can again be most easily 

~'ound using Eq. (65). With a little algebra and explicitly doing the average over p, I find 

~6/2B, 2 (H # -  H) -~ ~\ 3 -t- 3 (8g-  ~'3 + S1 $2) 2) -t- 0 (68). (79) 

This can be written in many forms; this expression ms the sum of two squares emphasizes 

positivity. 

For non-harmonic interactions the quantity in Eq. (79) is positive for any g. Thus 

one cannot use the freedom in redefining the force to push the expected energy change to 

higher order. This result does, however, suggest that an improved driving force is 

1 #S F(A) = -~o-~ + (83- Sl $2) f / s .  (so) 

Note thai ~ttis choice also eliminates the harmonic pieces in Eq. (77). Difficulties with 

calculating the higher derivatives of the action may preclude the utility of this form. 

I now return to updating a large number V of independent variables simultaneously. 

The positive contributions indicated in Eq. (79) will add coherently. Similar arguments to 

those leading to Eq. (73) now give an expected acceptance falling as 

e=o ~ ~-cv~ (81)  

To have a reasonable acceptance requires only 6 ~ V -1/6. This changes Eq. (71) to 

= o + o ( , , N )  = o + o 

Thus, the number of sweeps for an independent lattice grows as V I13 and the overall 

computer time for decorrelation increases as 

r ~ v 413, (83) 

This behavior is only slightly worse than the linear growth of the pure bosonic theory. 

This algorithm was proposed in Ref. 29 and tested further with somewhat discouraging 

results in Ref. 30. Ref. 31 presents a quite promising variation, which I now discuss. 

Recapitulating on the above treatment of biased updatings, I constructed both the trial 

new A and the noise needed to return 

A ~=A+p6+F(A)5 2 

p' = -p- (F(A)+ r (.)) ~. 

(84@ 

(84b) 
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This is v.n ares preserving map of the (A, p) plane onto itself. The scheme proposed in 

Ref. 31 is to iterate the combination of ~his mapping with an inversion pf ~ _pt several 

times before making the accept- reject decision. This iterated map remains reversible and 

area preserving. The second order terms in this equation make it equivalent to the leap 

frog procedure with an initial half step as used in Ref. 31. 

The important point is that  after each step the momentum remains exactly the negative 

of that which would be required to reverse the entire tr~ectory and return to the initial 

variables. Thus a final acceptance with the probability of Eq. (57) still makes the overall 

proceedure exact. In this way the hybrid algorithm of Ref. 27 is made exact, just as the 

procedure with x single step removes the systematic errors of Langevin evolution. After 

each accept-reject step, the momenta p are refreshed, their values being replaced by new 

Gaussixn random numbers. The fields ~b could also be refreshed at this time, or less often, 

as turns out to be appropriate. The goal of the procedure is to use the microcanonical 

evolution as a way to restrict changes in the action so that the final acceptance will remain 

high for reasonable step sizes. 

This procedure contains ~veral parameters which can be adjusted for optimization. 

First is N,~ic, the number of microcanonical iterations taken before the global accept/reject 

step and refreshing of the momenta p. Then there is the step size 6, which presumably 

should be set to give a reasonable acceptance. Finally, one can also vary the frequency 

with which the auxiliary scalar fields ~b are updated. 

The arguments for following a microcanonical trajectory for some distance before re- 

fresh, rig the momenta have been stressed in Ref. [27]. Refs. [33] and [3] show that this 

approach gives an algorithnl where the computer time grows as V s/4. I now review that 

arguement. 

The goal of the approach is to speed flow through phase space by replacing a random 

walk of the A field with a continued motion in the direction of p. As long as the total 

microcanonical time for a trajectory is smaller than some characteristic time for the system, 

the net change in A will grow linearly with both Nmic and 6; thus Eq. (82) is replaced by 

AA ~ N = . 6 .  (as) 

which should be valid as long as 

< o (I). (86) 

With large Nmie, the change in the classical energy will also grow. In any given micro- 

canonical step the energy changes by an amount of order 63. For Nmic of order 6 - I ,  the 

total energy change will then be of order 62 . Because the evolution preserves areas in phase 

space, Eq. (65) still applies to the overall evolution and I have for the expected energy 
change 

H > -  + 0 ( ( B ' -  H) - 0 C 7) (U'-  
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If I update V independent variables together, these positive contributions can coherently 

add and earlier arguments now give an overall acceptance falling as 

~ • - c v 6 '  (88) 

This means that 6 should be taken to decrease with volume as Y- l /4 .  Correspondingly, 

Nmic should grow as VII 4, the maximum allowed by ~:q. (86). The final resnJt is tb~t the 
total time required to obtain a substantially changed lattice grows as 

T ~ v s/4 (so) 

This may be only an asymptotic statement, valid for systems much larger than the cor- 
relation length. The main uncertainty lies in the unknown characteristic time scales that 

determine the 0 (1) right hand side of Eq. (86). Nevertheless, the above growth is suffi- 
ciently slow that it compels further testing. 

To snmmarize, I hope that these lectures along with those of the other speakers at this 

meeting will convince you that the lattice approach is a useful and interesting technique 

to investigate non-perturbative phenomena in field theory. As regards algorithrr~ for 
numerical simulations, although conventional approaches work quite well for purely bosonic 

systems, overrelaxation methods may improve things by a factor of a few. With fermionic 
fields, algorithm development is very much an active field, with globally corrected hybrid 

algorithms appearing quite promising. 

A difficult remaining question which I have not discussed is the simulation of fermionic 
systems when the corresponding determinant is not always positive. This situation is of 

considerable interest because it arises in the study of quark-gluon thermodynamics when 

a chemical potential is present. All known approaches to this problem are extremely de- 
manding on computer resources. This is a particularly promising area for future algorithm 

development. 
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