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ABSTRACT

I review the lattice formulation of gauge theories and the use of numer-

ical methods to investigate nonperturbative phenomena. These methods

' are directly applicable to studying hadronic matter at high temperatures.
Considerable recent progress has been made in numerical algoritizms for
including dynamical fermions in such calculations. Dealing with = non-

vanishing baryon density adds new unsolved challenges.
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L. INTRODUCTION - D

The theme of this conference concerns large scale effects of strong interaction physics.
The dynamics underlying the nuclear equation of state is generally believed to be of quarks
interacting via the exchange of gauge gluons. In this picture the effective couplings are
large, particularly at high temperatures or densities. Among particle theorists, the lattice
approach has become the primary tool for the study of the nonperturbative aspects of
this theory. In principle, this technique can provide information on the structure of hot
dense hadronic matter. Indeed, in he case where the average baryon density vanishes,
lattice gauge simulations have provided the most accurate information available on the
temperature of the transition to a quark gluon plasma.

Historically quantum field theory has had its greatest successes with the perturbative
calculations of electrodynamics. The renormalization program successfully removed the
divergences encountered on the way. For strong interaction phenomena, however, we do not
have the benefit of a small parameter in which to expand. Thus we need a formalism which
controls divergences but does not rely on the standard Feynman diagrammatic expansion.
This is the underlying purpose of the lattice formulation of gauge field theories. The lattice
spacing represents an ultraviolet cutoff, which must be removed by a limiting procedure
before physical results are inferred.

Once the lattice cutoff is in place, a gauge field theory is a well defined mathematical
system quite sutted for numerical study. The theory has a precise mathematical analogy
with classical statistical mechanics, for which Monte Carlo simulation methods have be-
come an important tool. The last decade has seen many productive applications of these
techniques to gauge theories.

The most successful results of lattice gauge theory have concerned phenomena in-
volving gluons alone or at most a small number of quarks. For the nuclear equation of
state, however, one is interested in a large background baryonic density. This raises some
interesting new challenges, although lattice methods should still provide a powerful tool.

The problems with dynamical quarks occur at several levels. The first is to find a
simple lattice transcription of the Dirac equation which behaves properly in the continuum

limit. Subtleties with chiral symmetry and anomalies male this not totally trivial, and



several schemes have been formulated. Next is the problem of numerical simulation with
variables which anticommute. Considerable progress has been made in the last few years
on algorithms to treat the situation with zero net baryon density. Finally there .is the
full problem of hadronic matter at high density. In this case numerical methods can in
principle be applied to small systems, but the computer demands are high and appear
to grow exponentially with the system size. To improve this situation is an area where

algorithm development is badly needed and will hopefully come with time.

In these lectures I will first review the general lattice gauge formalism and the primary
results for pure gauge fields. I will then turn to the difficulties with fermions and summarize
the recent advances. Finally I will comment on why the problem with a finite baryon
density is so hard. I hope that some of you will find clues to circumventing these difﬁculties.

For a general reference on lattice gauge theory see ref. [1]. For a more specific review
of Monte Carlo algorithms, see [2], and for a detailed discussion of the global algorithms

for fermions, see [3].
II. THE LATTICE FORMULATION

I begin with a mathematical description of Wilson’s [4] theory, and defer the physical
motivation until later. The theory is usually formulated on a four dimensional hypercubic
lattice. For definiteness, assume that the lattice has N* sites and has periodic boundary
conditions. The basic gauge variables are group elements located on the sites of the lattice.
Thus, for any ordered nearest neighbor pair of sites (¢, 7), I consider a bond variable U;;
which is an element of the gauge group G. Here ¢ and j denote the sites labelling the
ends of the link, while the group matrix indices are understood. I will assume that G
is a compact unitary group. To study the theory of the strong interactions, where the
gauge fields are the gluons which bind quarks into hadrons, the gauge group is SU (3},
i.e. the group of three by three unitary matrices with unit determinant. Thus I consider
a configuration space which consists of 4 x N* group elements. When a bond is traversed

in the reverse order, then the group element on the link is inverted

Ui = U (1)



To obtain a dynamics for these variables, I use the Wilson [4] action
S=>"(1-1/nReTrl,). (2)
P

Here the trace is in some representation, usually the fundamental, of the group, and n is the
dimension of the matrices in that representation. The sum is over all elementary squares,
or “plaquettes,” p, and U, denotes a group element obtained as an ordered product of the
fundamental link variables around the given plaquette. Because of the trace it does not
matter on which corner of the square the product starts. Because of the real part being
taken in Eq. (2) and because the group is unitary, the direction taken around the square
1s unimportant.

To quantize the theory, I exponentiate this action and study the path integral over all
gauge fields. This reveals a mathematical equivalence with the statistical mechanics of this
system of group elements. In this analogy, the exponentiated action plays the role of a
Boltzmann weight. Correlation functions in this statistical system correspond to the field
theoretical Green'’s functions continued to imaginary time. Thus I am led to consider the

partition function
Z= f (dU) e=55. 3)
The parameter /J is proportional to the inverse square of the bare gauge coupling ¢;. For

the gauge group SU (3) the relation is
B =6/g;. (4)
The expectation value for some function F' of the gauge variables is
(F) = 21 / (dU) F(U) e85, (5)

In these relations, the integration over group elements is to be taken using the group

invariant measure. For compact groups this measure is unique and satisfies

/de(U) = /de (UU") = def (U'U) = def (v (6)

where f(U) is an arbitrary function over the group and U' is an arbitrary fixed group

element. The measure 1s normalized such that

del:l. (7)



Eq. (6) can be schematically written dU = d(UU") = d(U'U) = dU .

In addition to the gauge fields on the links, one can readily add matter fields to the
theory. These conventionally reside on the lattice sites. Their interaction with the gauge
felds is constructed to display the gauge symmetries to be discussed below. For simplicity,
however, [ will ignore such fields until later.

This completes the formal definition of lattice gauge theory. The motivations for
looking at this system can be found in the many reviews of the topic, for example reference
[1]. Briefly, the classical continuum limit of the above action reproduces the Yang Mills
(5] theory and the integration over the links gives a regularized Feynman path integral for
the quantization of the system. The connection between the link variables and the vector

potentials A, 1s

Usj = exp (igoAua) (8)

where a is the lattice spacing and the vector index y lies along the direction of the bond. If

A, is smooth, then as a goes to zero the Wilson action reduces to the standard Yang-Mills

action
1
S = :L'F“”F“”' (9)
The Wilson theory is formulated directly in Euclidian space. Thus all four dimensions
are equivalent. In particular this means that the time evolution operator is e Ht rather

than the more usual e *#%  As it is the same Hamiltonian in each case, no physical
information is lost by this Wick rotation to imaginary time. The advantage of working
in Euclidian space is that the integrand becomes real and the analogy with a statistical
mechanics problem is explicit. Indeed, this is the motivation for the notation 8 for the
coefficient of the action in Eq. (3). Note that § is not directly related to any physical
temperature in the field theory. I will shortly discuss how the real temperature can be

adjusted by making the lattice finite in the temporal direction.

For continuum physics, we must take the lattice spacing to zero. The renormalization
group gives important information on this limit. As the lattice spacing is reduced, one
encounters the well known divergences of quantum field theory. In particular, this means

that the bare coupling must be renormalized. The variation of the bare coupling with



cutoff defines the renormalization group function, which can be calculated perturbatively

Bg0
a= = =7(g0) = 7095 + 195 + .. (10)
For a non-Abelian gauge theory the famous phenomenon of asymptotic freedom [6] is
manifested in the positive sign of the number 4.

For our purposes it is useful to rewrite the renormalization group equation in integrated

form and express the lattice spacing as a function of the bare coupling

1 (@0) ™ (14 0()). (11)

2

Here A is an integration constant and sets the overall scale of the theory.

Note that to take the lattice spacing to zero requires taking the bare coupling to zero.
As the bare coupling can be regarded as an effective coupling at the scale of the cutoff,
this is equivalent to the usual statement of asymptotic freedom that the effective coupling
becomes small at short distances.

When working on the lattice it is quite natural to measure masses in units of the lattice
spacing. A mass is extracted from the Yukawa law behavior of the correlation between
two widely separated operators. If a particular particle has a finite physical mass m in
the continuum limit, then Eq. (11) implies that the dimensionless combination ma will
show dominantly an exponential decrease with increasing inverse coupling squared. The
coefficient of this “scaling” behavior gives the particle mass in units of A. It is such a
scaling that is looked for in essentially all numerical lattice gauge calculations attempting
to extract physical observables.

Note that the factor of A will drop out of any mass ratios. Indeed, in the continuum
limit the pure gauge theory should make parameter free predictions for all dimensionless
observables. When quarks are added to the theory the only parameters are the quark
masses (in units of A).

The lattice gauge action has an enormous symmetry. Suppose I associate an arbitrary
group element g; with every site ¢ on our lattice. Using these, I can construct a new link

element on each bond

Ui; = gilijg; (12)



Since the dynamics involves the trace of link variables multiplied around closed loops, the
factors of ¢ cancel in the calculation of the action for the new links. This exact local

symmetry is the gauge symmetry of the model.

For observables one should look for gauge invariant quantities. One such is the trace of
the product of link variables around a closed loop. The expectation of this is the famous
Wilson loop. Confinement in the pure gauge theory is signaled by an exponential decrease
of this expectation with the minimal area enclosed by the loop. The coeflicient of this area
law, or “string tension,” is a non-local order parameter which is useful for distinguishing
certain phases of lattice gauge models. It is a physical observable with the dimensions of

mass squared, and 1s the coefficient of a linear force between widely separated quarks.

The area law behavior of Wilson loops arises quite naturally in the strong coupling
limit of the theory. Indeed, this was one of the major points of Wilson’s original paper [4].
When the bare coupling becomes large, one can consider a power series expansion in the
small parameter 3. The first nonvanishing term in such an expansion for a Wilson loop of
area A occurs at order 84. This factor of beta raised to the area of the loop is precisely

the exponential suppression signaling confinement.

Although confinement is natural in the strong coupling limit, the relevance of this
result to the continuum is unclear. Indeed, the earlier discussion of asymptotic freedom
showed that the continuum limit requires taking the bare coupling to zero. As an infinite
statistical system can undergo phase transitions, so might lattice gauge theory, with the
string tension vanishing below some finite value of the coupling. While there is no rigorous
proof, Monte Carlo studies have indicated a rather smooth behavior of the string tension as
a function of coupling for the SU (2) and SU (3) theories. The situation is rather different
for U (1), the gauge group of electrodynamics, which does appear to have a distinct weak

coupling phase with free photons.

Lattice gauge theory can also be formulated as an ordinary quantum mechanics prob-
lem in continuous time with the canonical coordinates being group elements on the links
of a spatial lattice. This Hamiltonian formulation [7] can be obtained from the above
Lagrangian formalism by first fixing the temporal gauge (49 = 0) and then taking a con-

tinuous time limit [8]. If we order the path integral into successive integrals over time



slices, the integration over any given time slice can be regarded as a sum over intermedi-
ate states in the quantum Hilbert space. This is the space of square integrable functions
of the space-like links. In this approach, the spatial link variables are operators (}}j in
%, which

generate group rotations of the corresponding links. The commutation relations amongst

the qua.nturn space. Conjugate to them are conjugate “electric field” operators [

these objects are

18, 6] =iy,

VR
. : (13)

18, 05] = -x°Tyy.

Here the group generators are denoted by A%, the group structure constants by f*#7, and

the Greek superscripts run up to the number of generators. In an explicit parameteriza-

tion of the group, the I¥% can be represented by differential operators. In terms of these

quantities the Hamiltonian takes the form

QaZz t ZReTrU (14)
{i5} p

Here g is the bare gauge coupling, a is the lattice spacing, the first sum is over all links and
the second sum is over all space-like plaquettes. Note that i* is just the quadratic Casimir
operator on the respective link. The two terms in this eruation represent the electric and
magnetic contributions to the energy.

In the strong coupling limit of large g the electric field term dominates the Hamiltonian
and one can do standard perturbation theory in the plaquette term in Eq. (14). The natural
basis for this expansion is in terms of definite representations of the gauge group on each
link. The kinetic or electric term is minimized by placing all links into singlet states with
2. = 0. The potential or magnetic term then can excite links into intermediate states
involving higher representations. For a review of this approach see ref. [9].

In the transfer matrix formalism with periodic boundary conditions in the time direc-

tion, the path integral of Eq. (3) becomes
Z = Tre TH (15)

where T is the total temporal size of the lattice. For conventional hadronic physics, one

wishes to take the infinite volume limit where T goes to infinity. In this case the leading



behavior is dominated by the lowest energy state, i.e. the vacuum. However, this equation
makes it clear that if we do not take this limit, then we are merely studying the system at
a finite physical temperature.

With the spatial extent of the lattice considered as finite, one can consider the special
Wilson loops consisting of straight lines of links in the temporal direction closing due to
the periodicity. These are referred to as “Wilson lines” or “Polyakov loops” [10]. As the
temporal extent is increased, the expectation of such a line should decrease exponentially
with the free energy of an isolated quark. With the pure gauge theory exhibiting confine-
ment, this expectation will vanish. At higher physical temperatures, however, Ref. 10 has
argued for the appearance of a phase transition to plasma phase with liberated quarks.
This transition has been observed in numerous simulations. In the high temperature phase,
the Wilson line acquires a non-vanishing expectation value. This observable forms a par-

ticularly clear order parameter for observing this transition.
III. NUMERICAL RESULTS

In the path integral formulation, lattice gauge theory is equivalent to a classical sta-
tistical mechanics problem. As such, it is directly amenable to numerical simulation using
standard techniques. The general procedure begins by storing in a computer memory some
initial values for the gauge variables on a finite lattice. These are updated by successive
pseudo-random changes on the link variables. The changes are made in a biased manner
such that the ultimate probability of obtaining any configuration C' is proportional to the
Boltzmann weight

P(C)~ e BS, (16)

As this Markov chain of configurations becomes longer, expectation values for the true
theory are increasingly accurately approximated by averages within the chain.

The details of the Monte Carlo procedure are highly non-unique and many variations
have been applied to lattice gauge simulations. For a review, see Ref. 2. The most mn-
tuitive approach is to loop over the variables and replace each in turn with a new value
chosen randomly with a weighting proportional to the Boltzmann factor calculated with
all neighboring elements temporarily held fixed. A procedure which is generally simpler to

implement was devised some time ago by Metropolis et al. [11]. This scheme begins with
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a random trial change to the system and then conditionally accepting this change with a
probability constructed to ensure that the proper Boltzmann weighting is stable under the
algorithm. For lattice gauge theory the usual implementation of the Metropolis et al. [11]

algorithm considers the trial change for an element U to
U'=U$ (17)

where 6 is a group element taken randomly from a table of elements biased near the identity
and containing the inverse of each of its elements. This trial change is then accepted with
probability

Pice = min [1, e"ﬂ(s’_s)] (18)

where S’ is the action calculated using the trial variable. Variations on this scheme abound;
indeed, later I will discuss some in the context of fermionic simulations.

Once the system is in an approximate thermal equilibrium, then one can measure any
desired function of the fields. The first physical result to come from such numerical lattice
gauge calculations was the relation between the scales of confinement and asymptotic
freedom. For large separations R a quark and an antiquark will display a linear confining

potential

V(R)~ KR (19)

where K is a numerical constant of dimension mass squared. On the other hand, at small

separations the effective gauge coupling shows the logarithmic decrease characteristic of

asymptotic freedom
1
2

log (zx)

where A 1s numerical scale of dimension mass. Monte Carlo simulation allows us to in-

(20)

terpolate between the long and short distance regimes and relate the scales K and A. A

recent compendium of the results [12] gives
Asrs = (0.32 £0.06) VK (21)

Here Ag7z denotes a particular convention for normalizing the asymptotic freedom scale.
From hadronic phenomenology of either heavy quark bound states or Regge trajectories, K

is believed to be approximately (400 MeV)z. This gives A7z of order 130 Mev, a number
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not inconsistent with phenomenological values. Indeed, the error in this calculation is less
than the current experimental uncertainty in A.

The second physical number to come from these simulations was the temperature of the
transition to the quark gluon pla.sma. As mentioned above, when the physical temperature
exceeds a critical value T;, the vacuum undergoes a phase transition to aplasma in which
a single quark has only finite energy. This temperature is obtained by monitoring the
Wilson or Polyakov line, defined in the previous section. Ref. 12 has compiled these
results to obtain

T./Ays ~ 1.6 — 1.7 (22)
With the above value for A, this give a transition temperature of order 200 Mev, a rather
reasonable number which may be attainable in relativistic heavy ion collisions.

Recently there has been some controversy about the order of this transition. While
it is clear that there is a very rapid change in behaviour at the above temperature, some
simulations {13] suggest that there is no actual discontinuity in expectation values, while
others [14] indicate that the transition is first order. This issue has only limited experi-
mental consequences because (1) these simulations are of the gluonic sector of the theory
and do not include dynamical quark loops, and (2) it will be rather difficult in foreseeable
experiments to distinguish the difference between a second order transition and one with
a small nonvanishing latent heat.

Considerable effort has gone into extracting hadronic spectra from lattice simulations.
In the valence approximation of neglecting dynamical quark loops, the technique begins
by solving the Dirac equation on equilibrated lattices. The propagation of various quark
and antiquark combinations is then studied, and masses for the bound states extracted.
As the underlying dynamics is based on a quark model, and the naive quark model works
well in many cases, it is expected that these calculations must do reasonably well. The
most interesting result here is that a light pion comes out. Indeed, the chiral symmetry
prediction of a pion mass going to zero with the square of its constituent quark masses
appears to be born out, even in this approximation neglecting dynamical quark feedback
on the gauge fields.

Some artifacts of the valence approximation do appear in these spectrum calculations.

In particular, even after an extrapolation to the physical pion mass, the ratio of the rho
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mass to the proton mass appears to be coming out somewhat too low [15]. It is hoped
that this problem is only an effect of the valence approximation, but it may also be due to
the lattice spacing still being too large.

In these spectrum calculations, one difficult point has been the masses of states contain-
ing no quarks, the so called “glueballs.” What complicates the calculation of these states
is the subtraction of large connected pieces to obtaln the required correlation functions,
and after these subtractions statistical errors remain quite large. Nevertheless, the results
are consistent with glueball states of order 1.4 GeV, consistent with several experimental
candidates [16]. |

One of the more promising areas for the near future is the study of hadronic matrix
elements of operators relevant to weak decays. In particular, there now exists considerable
evidence that strong interaction effects can indeed give rise to the substantial enhancement
of AT = 1/2 transitions observed in kaon decays [17]. The relevant matrix elements involve
strong interaction corrections in an essential way, and the lattice approach is perhaps the
most promising way to evaluate the required quantities. Furthermore, these numbers are
sufficiently unknown and important that even relatively large statistical errors can be

tolerated.
IV. DYNAMICAL FERMIONS

The results mentiloned in the last section all involve the valence approximation of
neglecting the effects of dynamical quark loops. While many results are now appearing with
the quark effects included, they should still be regarded as preliminary. The deconfinement
transition is the most studied quantity, and appears to persist in the presence of dynamical
quarks. Most studies suggest that the transition is first order, but one should remember
the subtleties of this transition in the pure gauge case.

There is reason to believe that progress with dynamical fermions will increase greatly
in the near future. This is because of considerable recent algorithmic progress. It is these
improvements that I will concentrate on in this section.

The problems with fermions begin at the level of the lattice formulation. If we simply
put a Dirac fleld ¢ on the sites there is a tendency to have extra flavors of fermion in the

continuum limit. In the path integral ¢ and ¢ are independent anticommuting quantities.
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In fermionic generalization of the transfer matrix formalism, these each correspond to a
fermionic space, and we tend to have twice as many particles as intended. This doubling is
assoclated with the temporal motion of the particles, and additional doublings come from
the spatial motion. The extra species can be projected out by only allowing some compo-
nents to propagate. One scheme for doing this was proposed by Wilson some time ago [18].
Whenever a fermion moves along a link in direction with unit vector e,, the corresponding
wave function picks up a factor of the projection matrix (1 £ e;v,) /2. The doubling prob-
lem is deeply entwined with chiral symmetry [19]. Indeed, the Wilson prescription breaks
chiral symmetry even when the bare fermion mass is zero.

Assuming that one has chosen a reasonable fermionic action, I now turn to the problems
encountered for numerical simulations. For this discussion I will be quite generic and

consider the partition function
7= [ (44) (@) (4) exp (=50 ()~ SM (4)). (23)

where Sy is the pure gauge part of the action.

As T will be concentrating on fermionic details, [ wili ignore the teéhnica,lityl that the
gauge fields are group elements and write them as A. To further simplify the notation, I
have absorbed the coupling parameter 3 into the action. The matrix M (A) contains both
the kinetic terms for the fermionic fields as well as the couplings to the gauge field.

The essential difficulty is that the fermionic fields are not ordinary numbers, and there-
fore the exponentiated action cannot be regarded as a probability. They can, however,
be formally eliminated from the problem using the Matthews-Salam [20] formula for a

fermionic Gaussian integral

/ (dpd) e MY = M), (24)

Eq. (24) provides a way around of the difficulty that our partition function is not an
ordinary integral. Indeed, I can explicitly integrate out the fermions to convert Eq. (23)

to

sz(dA) M| e, (25)

This is now an integral over numbers and therefore in principle amenable to Monte Carlo

attack.
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To proceed it would be simplest if the determinant of M were a positive quantity, in
which case the integrand in Eq. (25) could be used as a statistical weighting. For the
Wilson action with no chemical potential [M| is real. This can be seen conjugating the
action and restoring the projection operators by a =5 rotation of . The determinant is,
however, not necessarily positive. It can be made so by an extra doubling of the number
of species, using M for the extra ones and replacing |M| by |M||M?]. As will be discussed
later, this trick does not work when a net baryon density is present. For now, however,
assume that |M| 1s indeed positive.

Direct Monte Carlo attack of the partition function in Eq. (25) is still not practical
because of the large size of the matrix M. In our compact notation, this is a square matrix
of dimension equal to the number of lattice sites times the number of Dirac components
times the number of internal symmetry degrees of freedom. Thus, it is typically a tens
of thousands by tens of thousands matrix, precluding any direct attempt to calculate its
determinant. The matrix is, however, generally extremely sparse because popular fermion
actions do not directly couple distant sites. Allthe Monte Carlo algorithms used in practice
make essential use of this fact.

To proceed I now replace the determinant «{ M by an integral over a set of auxiliary
commuting fields, as suggested by Weingartcn and Petcher [21]. For simplicity in the
following discussion let me assume that the matrix M is real. Weingarten and Petcher

observe that by introducing a new set of real scalar fields ¢ one can rewrite Eq. (25) in

the form
Z x / (dA)(dé)exp (—50 — (M‘1¢)2 /2) ) (26)

Thus, a successful fermionic simulation would be possible if one could obtain configurations

of fields ¢ and A with probability distribution

P(A,¢) xexp (—So - (M_lgé)z /2) : (27)

Ref. 21 notes that while M ~! is the inverse of an enormous matrix, to calculate the
effective action one really only needs M~! applied to the single vector ¢. Indeed, there
exist reasonably efficient iterative schemes, such as the conjugate gradient algorithm, for

finding the inverse of a large matrix applied to a vector.
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In practice, at least when the correlation length is not large, the conjugate gradient
method adequately converges in a number of iterations which does not grow with the
lattice size. As each step involves a sum over the vector, which has length proportional to
the lattice volume, this means that the conjugate gradient step takes a time which grows
proportionally to the system volume. Unfortunately this inversion must be repeated for
each trial change of the system variables. A sequential updating of all variables would thus
be expected to require computer time growing as the square of the volume of the lattice.
Most recent algorithm developments have concerned methods for eliminating this severe
growth.

Actually it is only the A fields which are difficult to update in such a simulation. Ref.
[22] presented an efficient scheme for updating the field ¢ while holding A fixed. First,

generate a random real vector X with a Gaussian probability distribution
2
P(X) e X /2, (28)

Then construct

¢ = MX. (29)

This change of variables gives ¢ with*the desired probability. The Jacobian of the trans-
formation is irrelevant because A is temporarily being held fixed. Despite this trick for ¢,
updating the A field involves repeatedly changing the matrix M, thus requiring repeated
1nversions.

The difficulty with calculating the quantity M ~!(A4) ¢ appearing in the exact action
strongly encourages algorithms which perform this computation as rarely as possible. In-
deed, several approximate algorithms gain substantially in speed by doing this inversion
only once per sweep of the lattice variables. There are, however, exact algorithms which
also perform this inversion only once per sweep. In particular, one can perform a Metropo-
lis et al. type accept/reject step to restore exact detailed balance after making a global
trial change of the whole system. This forms the basis for the algorithms discussed in
references [23-28] and [3].

Applying an acceptance condition to a global change has the danger that large increases
in the action may give unfeasibly small final acceptances. Indeed, an arbitrary change in

all variables will increase the action by an amount proportional to the system volume,
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leading to an exponential suppression of the acceptance with increasing system size. To
counteract this, one must reduce the step size as the volume increases. I will now discuss
how, by appropriately biasing the trial changes, one can minimize this reduction. To

further simplify notation, I define the full action
S(4) = Sy (4) + 3 (M1 (4)¢)* (30)
To begin, consider a possible trial change of a single variable A to
A= A4+ ps+ F(A)8S. (31)

Here é is an adjustable step size parameter introduced for bookkeeping purposes. The
“momentum” variable p represents a random noise, which for convenience I take to be
Gaussianly distributed

P(p) e ? /2. (32)

The function F'(A) represents a driving force or bias in the trial selection procedure and
1s for the moment arbitrary.

The Metropolis et al. [11] scheme accepts trial changes with a conditional probability
chosen to maintain detailed balance when applied to an equilibrium ensemble. With an
unbiased trial change this acceptance is determined entirely by the exponentiated actiorn
change. Here, however, the force term in the selection procedure must be corrected for in
the acceptance condition. I can fully restore detailed balance by accepting the new value
A’ with probability

Pycc = min [1, H(pA)-H (P"A’)}] . (33)

Here H is a classical “Hamiltonian”
H(p, Ay =p*/2+ 5(4). (34)

In Eq. (33) I introduce p’ as the reverse noise, ¢.e. the noise which would be required for

the selection of A as the trial had A’ been the initial value
P'=-p—(F(AH+F4))e (35)

After the accept/reject step, the momenta should be refreshed; thus, they should be mod-
ified in a Monte Carlo or other fashion that the preserves the distribution in Eq. (32).
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Note that H is precisely the Hamiltonian used in the microcanonical algorithm [29]
to describe evolution in “simulation time.” Because of this analogy, I refer to H as the
classical energy. Up to the sign of p/, the change of variables indicated in Eq. (31) and
Eq. (35) is an approximation to a Newtonian evolution by time ¢ under this Hamiltonian.

Note that with the second order terms in §, the mapping defined by Eq. (31} and

Eq. (35) exactly preserves areas in phase space
dA dp=dA' dp'. (36)

Were this not so, the acceptance criterion would also need to depend on a ratio of measures.
This preservation of phase space volumes gives rise to a useful identity on the corre-

sponding energy change. Consider the partition function
Z = / da' dp' e~H (), Y
Changing variables to A and p and adding and subtracting H (4, p) in the exponent gives
Z = /dA dp e~ ¥ e~ (H'-H) (38)
where H and H' denote H (A,p) and H (A',p'), respectively. Dividing by Z, we find
CAERRUES: (39)

where the expectation is over all A and p with the equilibrium distribution P {A4,p) «

e~ H(4r) Because the exponential function is convex, Eq. (39) immediately implies

(H' - H) 20 (40)

with equality only possible if the dynamics is exactly energy conserving. If we consider
small changes in energy, a useful consequence of Eq. {39) follows by expanding the expo-

nential
1 .
(H' - HY = 5((H’—H)2)+O((H'—H)3). (41)
To proceed, I use the parameter § for an expansion of the energy change. It is readily
verified that

H -H= (p5 + % (ﬁ% + 2F(A)) 52) (%&f) + 2F(A)> +0(8%).  (42)
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This implies that the choice

198
== 4
P(4)= 55 (43)
leads to an energy change
H —H=0(§) (44)
and, by Eq. (41), that
(H' —Hy=0(&%. (45)

Indeed, making this choice and ignoring the possibility of rejecting the trial change gives
the usual Langevin algorithm [30], where the parameter § is the square root of the step
size used for discretization.

At first one might think that since the exact action is so difficult to calculate, the
requisite derivative for this force would be intractable. Considering the action in Eq. (30),

the Langevin force takes the form

aS -1 oM
F(4)= —%a—; +% ((MM*) é, %—AM-lgzs) (46)

Note that this requires knowledge of (MM T)_I $ in addition to M ~1¢. This is not a
major complication; indeed, when M is not Hermitian the standard inversion algorithms
calculate this quantity anyway.

Let me now consider making the Langevin approach exact by adding a final Metropolis
et al. {22,11] acceptance step. If I now consider updating some large number V of variables
together, the positive O (66) quantities will coherently add and I expect to find a total
energy change increasing linearly with V. This leads me to expect the acceptance to be
exponentially suppressed when V6% is large.

To avoid this exponential suppression and have a reasonable acceptance requires § ~
V~1/8 However a small value for the step size raises the issue that the lattice will evolve
only slowly from its original configuration. More precisely, consider taking N sweeps over
the lattice. As the motion of A is has both random and driven terms, the overall change

in any given variable should go as

AA=0O (wﬁ) +O(82N) =0 (1/N/V1/3) +0 (N/vi). (47)
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Thus, the number of sweeps for an independent lattice grows as V1/3 and the overall

computer time for decorrelation increases as
T ~ V43, (48)

This behavior is only slightly worse than the linear growth of the pure bosomic theory.
This algorithm was proposed in Ref. 23 and tested further with somewhat discouraging

results in Ref. 24. Ref. 25 presents a quite promising variation, which I now discuss.

Recapitulating on the above treatment of biased updatings, I constructed both the trial

new A and the noise needed to return
A=A+ ps+ F(A)8° (49a)
p=-p-(F(A)+F(4))é. (495)

This is an area preserving map of the (A, p) plane onto itself. The scheme proposed in
Ref. 25 is to iterate the combination of this mapping with an inversion p’ — —p’ several
times before making the accept/reject decision. This iterated map remains reversible and
area preserving. The second order terms in this eguation make it equivalent to the leap
frog procedure with an initial half step as used in Ref. 25.

The important point is that after each step the momentum remains exactly the negative
of that which would be required to reverse the entire trajectory and return to the initial
variables. Thus a final acceptance with the probability of Eq. (33) still makes the overall
procedure exact. In this way the hybrid algorithm of ref. [31] becomes exact, just as the
procedure with a single step removes the systematic errors of Langevin evolution. After
each accept/reject step, the momenta p are refreshed, their values being replaced by new
Gaussian random numbers. The fields ¢ could also be refreshed at this time, or less often,
as turns out to be appropriate.

This procedure contains several parameters which can be adjusted for optimization.
First is N4, the number of microcanonical iterations taken before the global accept /reject
step and refreshing of the momenta p. Then there is the step size ¢, which presumably
should be set to give a reasonable acceptance. Finally, one can also vary the frequency
with which the auxiliary scalar fields ¢ are updated.

The arguments for following a microcanonical trajectory for some distance before re-

freshing the momenta have been stressed in Ref. [31]. Refs. {27} and [3] show that this
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approach gives an algorithm where the computer time grows as V3/%. I now review that
argument.

The goal of the approach is to speed flow through phase space by replacing a random
walk of the A field with a continued motion in the direction of p. As long as the total
microcanonical time for a trajectory is smaller than some characteristic time for the system,

the net change in A will grow linearly with both Npi. and §; thus Eq. (47) is replaced by
AA ~ Npich. (50)

which should be valid as long as
Nmicd < O(1). (51)

With large Npnic, the change in the classical energy will also grow. In any given micro-
canonical step the energy changes by an amount of order §3. For Ny, of order 671, the
total energy change will then be of order §2. Because the evolution preserves areas in phase
space, Eq. (41) still applies to the overall evolution and I have for the expected energy

change
(H'-5)=0/(6%. (52)
Now if I update V independent variables together, these positive contributions can coher-

ently add and earlier arguments give an overall acceptance falling as

_ 4
e CcVé

Pa.cc ~

(53)

This means that § should be taken to decrease with volume as V4. Correspondingly,
Npnic should grow as V1/4, the maximum allowed by Eq. (51). The final result is that the

total time required to obtain a substantially changed lattice grows as
T ~ V3/4 (54)

It has recently been realized that by using higher order discretization schemes it is

possible to yet further reduce the asymptotic growth of this algorithm [32], although it

is not clear that present systems are large enough to make such higher order approaches -

effective. One simple way to formulate the higher order schemes is in a recursive manner,

starting with the above leapfrog.
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Consider a discretization Ty, (§) : (4,p) — (A',p') of Hamilton’s equations which is
accurate to order n. By this I mean that A’ and p' differ from the values obtained by
evolving A and p for a time § under the exact Hamiltonian by an amount of order ¢”.

Furthermore, assume that this mapping is reversible in the sense

T (6) = Tu(-9). (55)-

This reversibility is sufficient for detailed balance to be satisfied after a trajectory is ac-
cepted or rejected with the Metropolis criterion and the momenta are refreshed. For
example, the discretization in Eq. (49) followed by an inversion of the momentum satisfies
these conditions with n = 3.

It is now easy to combine these transformations to give a new transformation which is
accurate to a higher order. First note that we don’t need to worry about the case where n
is even. Indeed, with n even the energy change in going a step § would be, to this order,
the same as the energy change going a step —8. Then the combination Ty (§) T (—90)
would change the energy by twice this amount. This, however, is inconsistent with the
reversibility condition Eq. (55), which requires this combination to change nothing.

Thus, without loss of generality, assume n is odd. As we know of a scheme which gives
n = 3, assume also that n > 1. We can then use the nonlinearity of the error to cancel
the energy changes to order n + 2. This construction is not unique, one combination that

works is to sandwich a backward step between several forward ones

Totz (2 = $)8) = (Tu (8))' Ta(—36) (Ta(9)'. (36)
Here ¢ is an arbitrary integer and s = (2z')1/ " is a magnification factor for the central
backward step. The size of s is determined by the requirement that the order n errors
cancel.

Repeating the above arguments on volume dependence, the penalty paid for fermions
is reduced to less than any power of the volume. The higher order algorithms do, however,
pay a price in complexity, and the optimum order grows as the square root of the logarithm
of the volume [32]. The overall theoretical computer time grows with volume as T ~.
174 eC' log V_

One possible problem with the above hybrid microcanonical Monte Carlo schemes

comes from the approximate microcanonical nature of the trajectories. If phase space is



22

separated into sectors by regions with a high potential energy, then it will be difficult to
travel across the barriers between these sectors. One way such a division could occur is
if the determinant of the fermionic matrix has zeros when considered as a function of the
gauge field. Very little is known about the nature of these zeros. In principle this problem
can be circumvented by including some Monte Carlo steps involving large trial changes of
the gauge flelds. For this purpose it would be convenient to have more intuition on the
nature of the zeros of the fermionic determinant.

So far I have assumed that the fermion determinant is a positive quantity so that the
integrand in Eq. (42) can be used as a probability weighting. Unfortunately, for the nuclear
equation of state we do not want to be bound by this assumption. In particular, when the
chemical potential is non-vanishing, that is whenever we have a net baryon density, then
this is simply not true. Without a chemical potential we can always enforce positivity by
artificially by adding an extra species of fermions interacting with the gauge potential with
M7 rather than M. Then the full determinant will be a square. However with a baryonic
potential added to M, these extra species are antibaryons, and the net baryon nuimber will
vanish.

If the determinant is not positive, one can in principle move its phase into ¢oservables
and simulate with the absolute value of the determinant. This will techricully give the
correct answer if we divide the results by the average of the phase of the determinant. The
problem 1s that for large systems this average phase is expected to be small numerically,
and will have substantial statistical error. The average phase is expected to be strongly
volume dependent. As it obtains contributions from the entire lattice volume, the average
1s naively expected to go exponentially to zero as the volume increases. This suggests that
the net computer time to obtain a statistically significant result for a typical observable will
grow exponentially with the system volume. Simulations of the Hubbard model indicate
that this these problems can be overcome on small systems {33], but little has yet been
done on the full theory of the strong interactions. The importance of this problem makes

it particularly open for new algorithmic developments.
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