ALGORITHMS FOR SIMULATING FERMIONS

MICHAEL CREUTZ
Physics Department, Brookhaven National Laboratory
Upton, NY 11973,USA

ABSTRACT

I review some of the approaches to including the effects of dynamical quark loops
in Monte Carlo simulations of quantum field theories. The discussion begins with a
brief introduction to anticommuting variables and ends with higher order improve-
ments to the hybrid Monte Carlo scheme. Pseudofermion, Langevin, and various
combinations thereof are compared.

1. Introduction

Fermions provide some of the biggest challenges to the field of lattice gauge
theory. One difficulty appears already at the level of formulating an appropriate
action. Here we have the notorious doubling of species appearing in the simplest
schemes incorporating chiral symmetry. The two popular schemes for handling this
are the Kogut-Susskind formulation where each site carries only a single component
of the Dirac spinors, and the Wilson projection operator approach where chiral sym-
metry is abandoned with the hope that it will be recovered in the continuum limit.
Both of these schemes are mentioned in other chapters of this book. Here I will be
quite generic and assume we have an acceptable lattice transcription of the Dirac
equation.

The purpose of this chapter is to discuss the other primary difficulty with
fermions: the extreme computational difficulties that appear on adding them to Monte
Carlo simulations. While several large scale simulations are ongoing, even the most
meager results strain the most advanced computational resources available. This
chapter discusses the algorithms currently in use, several of which are quite clever.
Nevertheless, there remains a certain awkwardness in known approaches that hints
that new and better techniques will evolve.

For this discussion I will be quite generic and assume we are interested in a
path integral of form

Z= /(dA)(d¢)(d¢*) exp(—Sg(4) — 9" M(A)Y). (1)

Here the gauge fields are formally denoted A and fermionic fields 4 and ¢*. As I will
be concentrating on fermionic details, I will ignore the technicality that the gauge

1

fields are group elements. All details of the fermionic formulation are hidden in the
matrix M(A). While I may call 4 a gauge field, the algorithms are general, and have
potential applications in other field theories and condensed matter physics.

The numerical difficulties with fermionic fields stem from their being anticom-
muting quantities. Thus it is not immediately straightforward to place them on a
computer, which likes to manipulate numbers. Indeed, the Boltzmann factor is for-
mally an operator in a Grassmann space, and cannot be directly interpreted as a
probability for Monte Carlo purposes. All algorithms in current use eliminate the
fermions at the outset by a formal analytic integration. This is possible because most
actions in practice are, or can easily be made, quadratic in the fermionic fields. The
fermion integrals are then over generalized gaussians. Unfortunately, the resulting
expressions involve the determinant of a large, albeit sparse, matrix. This determi-
nant introduces nonlocal couplings between the bosonic degrees of freedom, making
the path integrals over the remaining fields rather time consuming. Nevertheless,
various tricks have been developed to minimize the pain with fermions, and in other
chapters of this book you can find numerous results from such calculations. This
chapter reviews some of these tricks.

2. Anticommuting variables

I begin with a brief review of Grassmann variables [1]. I start with a set {¢;}
of anticommuting variables

[%s, Y]+ = iy + 9 = 0. (2)

To keep the formulae simple I combine spatial dependence, internal symmetry, and
spinor indices into a single index i.

These anticommutation relations can be realized via matrices. Had I just two
variables, I could represent the v; using two sets of independent Pauli matrices {o}
and {r}. In fairly standard notation I could satisfy Eq. (2) by writing ¢; = ot and
¥z = o*7t. Going on to more variables [would need to increase the number of indepen-
dent matrices used in this direct product. As the number of independent Grassmann
variables increases, the overall matrix dimension necessary to represent the algebra
increases exponentially. Because of this growth, using explicit representations for the
Grassmann variables has not, at least so far, been particularly useful for computa-
tional purposes. For this reason I will proceed more formally and just treat the w;
abstractly.

Generalizing complex conjugation to include these variables, I adopt the con-
vention that corresponding to each y; I have another independent Grassmann variable
¢?. Furthermore, I postulate

(¥7)" = s
(Y1---%n)* =951 (3)

2

If T consider just a single variable v, then ¥? must vanish, and a general function
f(¢¥) can be expanded with two terms

f(¥)=fo+9fi. (4)

Similarly, with n variables, a general function can be expanded as a finite polynomial
with 2" terms.

To define integration over an anticommuting variable, I demand the properties
of linearity and invariance under a translation of variables. These are summarized in
the axioms

[aws)a + atw)e) = (/ d¢f(¢)) o+ (/ d¢g(¢)) 8 (5a)
[avsw) = [avsw+). (5)
This is sufficient to imply that for the function in Eq. (4)
[avsw) = k5 (6)
where the normalization K is undetermined. T adopt the convention K = i so that
/ d =i
/ dp 1=0 (7)
Javas wv=1.

Note that under multiplicative rescaling a Grassmann integral behaves as
[avstwa) = ([avsena. (8)
This can be written in the heuristic form d(ya) = (d¥)/a.
For integration over several anticommuting variables, I have
/d¢1 codppy .y = (—1) /2, (9)
The analog of Eq. (8) in this case is
[tansars) =) [avsiw) (10)

where M is an arbitrary matrix, |M| its determinant, and (dy) denotes dy; ...dy,. Note
that eq. (10) immediately implies the Matthews-Salam [2] formula for a fermionic
Gaussian integral

[Jtavagy e = jar (11)

3

where (dydy*) = dy1dy? . . . dyndip.

Eq. (11) provides an easy way out of the difficulty that our partition function
is not an ordinary integral. Indeed, I explicitly integrate out the fermions to convert

Eq. (1) to

Z = /(dA) |M| e=5<. (12)

This is now an integral over ordinary numbers and therefore in principle amenable to
Monte Carlo attack.

For the remainder of this chapter I assume that the fermions have been for-
mulated such that |M| is positive and thus the integrand in Eq. (12) can be regarded
as proportional to a probability measure. If this is not so, one can always double the
number of fermionic species, using M' for the extra ones, thus replacing M by M M.
The case where M is not positive is not yet well understood, and indeed in some such
cases the path integral may not be well defined. These problems are probably closely
connected with the difficulties of placing chiral fermions on the lattice. This issue
is quite important; with a chemical potential present to give a background fermion
density, the determinant is not in general positive. Indeed, it is not yet known how
to simulate this physically important problem.

Direct Monte Carlo study of the partition function in Eq. (12) is still not
practical because of the large size of the matrix M. In our compact notation, this is a
square matrix of dimension equal to the number of lattice sites times the number of
Dirac components times the number of internal symmetry degrees of freedom. Thus,
it is typically a tens of thousands by tens of thousands matrix, precluding any direct
attempt to calculate its determinant. It is, however, generally an extremely sparse
matrix because most popular actions do not directly couple distant sites. All the
Monte Carlo algorithms used in practice for fermions make essential use of this fact.

3. Exact local algorithms

Many current simulations make additional approximations beyond the lattice
cutoff and the statistical errors inherent in Monte Carlo simulations. Such approxi-
mations are in principle not required, but save substantial computer time. Here I first
discuss a few of the approaches that do not make such additional assumptions. These
are in a sense “exact” because with enough Monte Carlo statistics they will give the
correct correlations for the partition function. They are still approximations in the
sense of having a finite lattice spacing and finite lattice size, but these approximations
are already present in the bosonic simulations. Later I consider some approximate
variations which are considerably faster. Finally I will show how to make some of
those approximate approaches “exact” again.

4

Some time ago Weingarten and Petcher [3] presented a simple “exact” algo-
rithm. They observed that by introducing auxiliary set of complex scalar fields ¢ one
can rewrite Eq. (12) in the form

Z= [(@a)ds* ds)exp(-Sa - ' M 19). (13)

Thus a successful fermionic simulation would be possible if one could obtain config-
urations of fields ¢ and A with probability distribution

P(4,4) x exp(~Sg — ¢ M~1¢). (14)

To proceed I will assume that M is a positive matrix so this distribution is well

defined.

Ref. 3 notes that while M~! is the inverse of an enormous matrix, one really
only needs ¢*M~1¢, which is just one matrix element of this inverse. Furthermore,
with a local fermionic action the matrix M is extremely sparse, the nonvanishing
matrix elements only connecting nearby sites. In this case there exist quite efficient
iterative schemes for finding the inverse of a large sparse matrix applied to a single
vector. Thus it was proposed to directly simulate the partition function in Eq. (5.1)
using a Gauss-Seidel algorithm to calculate M~1¢. Most recent work has turned to
the conjugate gradient algorithm for this inversion.

The conjugate gradient algorithm has also been quite useful for fermionic stud-
ies in the “valence” or “quenched” approximation, where the Dirac equation is solved
on gauge field configurations obtained by simulations ignoring the feedback of the
dynamical quarks on the gauge fields themselves [4]. This approximation, discussed
many places elsewhere in this book, circumvents the problem of simulating dynam-
ical quarks, but still imposes substantial computational demands when the lattices
are large.

The conjugate gradient method to find ¢ = M~'¢ works by finding the mini-
mum over ¢ of the function |M¢ — ¢|2. The solution is iterative; starting with some &,
a sequence of vectors is obtained by moving to the minimum of this function along
successive directions d;. The clever trick of the algorithm is to choose the d; to be
orthogonal in a sense defined by the matrix M itself; in particular (Md;, Md;) = 0 when-
ever i # j. This last condition serves to eliminate useless oscillations in undesirable
directions, and guarantees convergence to the minimum in a number of steps equal
to the dimension of the matrix. There are close connections between the conjugate
gradient inversion procedure and the Lanczos algorithm for tridiagonalizing sparse
matrices. [5]

The procedure is a simple recursion. Select some arbitrary initial pair of non-
vanishing vectors go = do. For the inversion problem, convergence will be improved
if these are a good guess to M~'¢. Then generate a sequence of further vectors by

5

iterating
giv1 = (Mg;, Md;)g; — (g:,9:) M Md;

(15)
dit1 = (Md;, Md;)gi+1 — (Md Mg;11)d;

This construction assures that g; is orthogonal to g;1; and (Md;, Md; 1) = 0. It should
also be clear that the three sets of vectors {do,...dx}, {90, ---gx}, and {do, ...(MTM)*d,} all
span the same space.

The remarkable core of the algorithm, easily proved by induction, is that the
set of g; are all mutually orthogonal, as are Md;. For an N dimensional matrix, there
can be no more than N independent orthogonal vectors. Thus, ignoring roundoff
errors, the recursion in Eq. (15) must terminate in N or less steps with the vectors g
and d vanishing from then on. Furthermore, as the above sets of vectors all span the
same space, in a basis defined by the g; the matrix MTM is in fact tri-diagonal, with
(Mg;, Mg;) vanishing unless ¢ = j £ 1.

To solve ¢ = M¢ for ¢, simply expand in the d;
f = Zaidi.
The coeflicients are immediately found from the orthogonality conditions
Q; = (Mdi, ¢)/(Md1, Mdz)
Note that if I start with the solution do = M~'¢, then I have a; = &;0.

This discussion applies for a general matrix M. If M is Hermitian, then one
can work with better conditioned matrices by replacing the orthogonality condition
for the d; with (d;, Md;) vanishing for i # j.

In practice, at least when the correlation length is not too large, this procedure
adequately converges in a number of iterations which does not grow severely with the
lattice size. As each step involves vector sums with length proportional to the lattice
volume, each conjugate gradient step takes a time which grows with the volume of
the system. Thus the algorithm of Ref. 3 is expected to require computer time which
grows as the square of the volume of the lattice. Such a severe growth has precluded
use of this algorithm on any but the smallest lattices. Nevertheless, it does show the
existence of an exact algorithm with considerably less computational complexity than
would be required for a repeated direct evaluation of the determinant of the fermionic
matrix.

Here and below when I discuss volume dependences, I ignore additional factors
from critical slowing down when the correlation length is also allowed to grow with the
lattice size. The assumption is that such factors are common for the local algorithms
treated here. In addition, such slowing occurs in bosonic simulations, and I am
primarily concerned here with the extra problems presented by the fermions.

6

This issue of critical slowing is potentially quite important, and has been
mentioned in Sokal’s chapter of this book. Cluster and multigrid type algorithms
will inevitably become important to speed the above matrix inversions. At present,
however, in lattice gauge theory the correlation lengths are rather small, and these
acceleration algorithms are not yet used in major production runs. Thus I will not
mention them further in this chapter.

Two other exact, but also volume squared, methods for fermionic simulation
were presented in Ref. [6]. To use a Metropolis et. al. [7] scheme to find a
configuration of A fields with distribution

Pey(A) o< |M(A)]e M), (16)

requires knowledge of how the determinant |M| changes when A4 is replaced by a trial
value 4’. Actually one only needs the ratio of the old and the new determinants, and
this can be calculated as an expectation value in two ways. First, if I construct an
ensemble of complex scalar fields ¢ with distribution

P(£) e—§TM(A) (17)
then I have
()| 1 | "
|M(A)| (exp(—&*(M(A") — M(A))E))

Alternatively, if I construct the fields ¢ using the trial 4’
P(€) o e €M%, (19)

then I have ()
M) (exp(—€"(M(A) — M(A"))E)). (20)

Both approaches involve a Monte Carlo to find the ensemble of ¢ fields inside the
Monte Carlo determination of the A fields. Thus they are also volume squared algo-
rithms.

Grady [8] found an intriguing variation on the second of these two approaches.
In particular, the ensemble average over the ¢ fields is unnecessary in this “look ahead”
scheme where the probability for ¢ is determined from the trial field 4’. Consider a
trial change A’ chosen with a probability distribution Pr 4(4’). Solely to simplify the
following equations, assume that this trial probability is symmetric under interchange
of A and 4’. Then generate a single ¢ field with probability distribution as given in
Eq. (19). The prescription is to accept the change with probability

Pycc = min1, exp(Se — Sg + & (M’ — M)¢E)]. (21)

Here I use the shorthand notation Sg, S5, M, and M’ for Sg(4), Se(4’), M(A), and
M(4A"), respectively.

To justify this procedure, consider the overall probability for taking A to 4’
P(A— A') = PT,A(A’)ZLE / (de*de)e ¢ MEp, ... (22)
Here I have defined the normalization factor for the ¢ integral
Ze = [(grae M o o) (23)

Multiplying Eq. (22) by the equilibrium distribution in Eq. (16) and combining things
gives
P, (A) P(A— A') < |M||M'|Pr 4(4")

/(dE*d€)min[e‘SG—5*M’€, e~ Sa—€" M|, (24)

Remembering the symmetry of Pr, we see that this expression is symmetric under
interchange of primed and non-primed variables. This symmetry is precisely the
statement of detailed balance for the equilibrium distribution from Eq. (16).

The fact that a large ensemble of ¢ fields is not required is a definite advantage
of this approach. Nevertheless, it still contains a Monte Carlo inside a Monte Carlo to
obtain the equilibrated ¢ field. Thus as an exact algorithm it still requires computer
time growing as the system volume squared.

The above exact approaches all require volume squared times. To avoid this,
many fermionic schemes used in practice involve additional approximations. This
usually involves an expansion in a step size for proposed changes. To eliminate
systematic errors in principle requires an extrapolation to the limit of vanishing step.
I will later return to exact algorithms and discuss how using a guided random walk
can give a volume dependence intermediate between the above volume squared and
the linear behavior of bosonic simulations.

The advantage of making small steps lies in the fact that a time consuming
step such as a conjugate gradient inversion or a Monte Carlo generation of auxiliary
fields need only be done once per sweep of all the gauge variables. In essence, this
is an attempt to eliminate a Monte Carlo inside a Monte Carlo. Once one is making
small steps anyway, there is no particular loss in using algorithms formulated in
terms of a differential evolution. This is the basis of both the Langevin [9-10] and
the microcanonical [11] methods discussed below. I begin this treatment of small-step
algorithms with one of the oldest.

4. Pseudofermions

Fucito, Marinari, Parisi, and Rebbi [12] proposed a simple approximate method
for calculating changes in the determinant of the matrix M. They begin by rewriting
Eq. (12) in the form

Z = /(dA) e °FF, (25)

8

where
Spr = Sa(A) — Tr log M(A) (26)

For a Metropolis et al. [7] updating scheme one needs to know the change in the
action upon a trial change of A. As a first approximation, consider making only small
changes in the gauge field and then linearizing the change in the action

dSpr _ dSg _,dM
dA ~ dA - Tr(M dA)'

(27)
The quantity ¥ is easily calculated for a local M. The inverse of the matrix M is
estimated using

(M) = (& &) (28)
where the expectation value is over fields ¢, called pseudofermions, and distributed
with weighting

P(€) ox exp(~& ME). (29)

Note that this is the same distribution required in Eq. (17). A standard Monte
Carlo simulation is used to give a set of N. configurations of the ¢ fields to estimate
this expectation value. This simulation is normally done only once per full sweep of
the lattice variables. This is not a major new assumption because a small-step-size
approximation is already being made in using only the first derivative to calculate
the changes in the action.

This algorithm, as several of the fermionic approaches discussed later, is not
exact because of the approximation of small changes in 4. The step size is merely
a parameter in the standard applications of the Metropolis et al. [7] algorithm to
bosons, but here it acquires a more significant role in characterizing an approximation.
Whether the step size is sufficiently small can in principle be determined by comparing
results for several values and doing an extrapolation to zero. Unfortunately, the
amount of computer time necessary is sufficiently large that this check is rarely made.

Another source of error appears if the pseudofermionic fields are not calculated
with the appropriate distribution. This would happen with insufficient equilibration
time during the Monte Carlo simulation from which they are obtained. This error
can in principle be eliminated by a trick if M is the square of a simple operator, say
M = DD'. In this case consider first generating a random vector x with a Gaussian
distribution

P(x) ox e™X'x (30)

As all components of x are uncorrelated, it can be rather quickly generated. Then a
simple change of variables gives a properly distributed pseudofermionic field

x = D¢ (31)

This equation can in principle be solved by some iterative algorithm such as the
conjugate gradient method. This trick replaces the convergence of a Monte Carlo

9

updating of the pseudofermionic fields with a potentially tedious inversion. I mention
it here because this use of Gaussian random numbers is potentially quite useful with
other fermionic algorithms as well.

The finite number of configurations of pseudofermionic fields used to estimate
the expectation value in Eq. (28) introduces a random error into the estimate of the
inverse of M. These errors, however, average out in the final extrapolation of observ-
ables to zero step size. This is a point I return to later when I discuss interpolation
between pseudofermions and the Langevin approach.

5. Langevin, microcanonical, and hybrid schemes

Both the Langevin and microcanonical algorithms for lattice gauge theory are
formulated as differential equations for evolution in a fictitious “time” 7. While these
approaches are also applicable for the pure gauge theory, their main interest appears
with fermionic simulations, where a differential evolution permits time consuming
conjugate gradient inversions to be done only once per sweep of the lattice variables.

Rather than in terms of field theory, I frame this discussion in the context of
a single degree of freedom, the coordinate z of a particle of mass m moving in one
dimension. I do this because the basic ideas of these algorithms are nothing more
than generalizations of Newton’s equation. I will also treat the Langevin and micro-
canonical approaches together as limits of a more general hybrid formalism. I will be
using a second order version of the Langevin equation, similar to that advocated by
Horowitz. [13]

I begin by considering a particle moving in a potential V(z). Newton’s equation

for the particle motion is
mdz—z = —a—V (32)
dr? GEN
I now doctor this motion by adding two terms. First I add a drag slowing the particle
down with a force proportional to its velocity. This will tend to damp out any motion
until the particle lies at a minimum of the potential. To keep things moving, I then

add a random noise to the system. Thus consider the equation

d’z ov dz 20,1/
mﬁ ——a—ag-i-(ﬁ) "7(7—)' (33)

where o and B are parameters. Here the noise n(r) formally satisfies

(n(r)n(r")) = 8(r —). (34)

How the 5(r) is actually defined will become clearer momentarily when I make the
evolution discrete. I have written the coefficient of the noise as (2a/8)/? with hind-
sight. It is convenient to introduce the momentum p of the particle and rewrite this

10

second order equation as two first order equations

ap OV _op (2_0‘
dr 0z m B
dt p

dr ~ m’

)2 (),
(35)

For simulation purposes the fictitious time is discreetly made discrete. Thus
consider taking steps of size e in 7. In one such step, p and z at time r will become p’
and z’ at time 7 +e. Eq. 6.4 becomes

P':P-i-f(—a——; (F)l/2) (36)
:z:'::z:—}—%pl. (37)

Note that I have written the updating of z such as to use the new value
p' of the momentum. This amounts to alternately updating the coordinates and
the momenta of the system. Such a “leap frog” procedure effectively treats these
variables at interleaved times. In the deterministic limit this advantageous technique
serves to eliminate O(e?) errors in the evolution. This transformation also preserves
phase space volumes and is inverted by changing the sign of . These properties will
be particularly helpful later when I return to exact algorithms.

The quantity 7 is obtained from a random number generator with probability
distribution p(n). The properties required of p(n) are simply specified in terms of its
moments

7)
/dn P =9 2 e, i=2 (38)

<O(e?), j>3.

In this equation the first part indicates that the probability distribution is normalized,
the second balances positive and negative noise, the third normalizes the delta func-
tion in Eq. (34), and the fourth eliminates nasty tails from the distribution. In many
discussions the noise is considered as Gaussian, but this is not generally necessary.

To proceed, consider ensembles of particle coordinates and momenta. A neces-
sary condition for any simulation algorithm is that it leave the equilibrium ensemble
unchanged. Indeed, this condition is also sufficient if the algorithm is ergodic. Thus
I am interested in finding ensembles of (z,p) pairs invariant under the evolution of

Eq. (35), or its discretization in Eqgs. (36-37).

Consider an ensemble with a probability density P(z,p) of finding a state with
given coordinate z and momentum p. Updating the states gives a new ensemble with

11

probability distribution

P'(z',p) = /dz dp P(z,p)P(z,p— ', p')

dz dp dn p(n) P(z,p)

40
xé(p’—p—f(—g—z—% (2;)1/2 n)) 0
x 8(z' —z — %)
A little algebra gives the result
P'(z,p) = P(z,p)
OH 0P BH 9P 19°P poP 1 (41)

+e [(+ o+ P+ O(€?)

8z 8p Op Oz +a(,58p2 m dp

Here I have defined the Hamiltonian corresponding to the original Newton’s equation

of Eq. (32) .
H= 2p—m + V(=) (42)

In deriving Eq. (41) it is necessary to keep terms of order n? because of the 1/¢ in the

third part of Eq. (38).

Eq. (41) is a Fokker-Planck equation for the evolution of the probability density
P(z,p). It is now easily verified to order ¢ that a stationary distribution for this
evolution is the simple Boltzmann weight

P(z,p) = exp{—BH(p,z)}. (43)

When « is non-zero, the algorithm is ergodic, and the solution is unique. Note that
this distribution factors into a function of p times a function of z. Thus the equilibrium
distributions of p and z are independent.

We see that repeated updating of an ensemble with the stochastic differential
equation of Eq. (33) will eventually give thermal equilibrium at inverse temperature
B. The source term can be thought of as a thermal bath coupled to the system. To
apply these ideas to the gauge theory problem and obtain a distribution of fields as
in Eq. (14), I merely generalize, replacing the variable z with the fields 4 and ¢ and
replacing the potential BV (z) with the action Sg + ¢*M~1¢. Note that calculating the

term involving 2%

&% will require, among other things, the evaluation of

0 oM
a¢*M_l¢: —¢*M_1ﬂM_l¢. (4:4:)

This involves M~1¢, which requires a conjugate gradient or equivalent inversion every
time step.

12

It is interesting to consider various limits of this stochastic evolution. First,
suppose that I had not included the drag term in Eq. (33). This situation follows from
taking o to zero with B varying proportionally to keep the stochastic term. Thus noise
without drag gives infinite temperature; that is, the random force will, on the average,
increase the system energy without bound. Alternatively, if I include the drag but
not the noise, the system will drop into a minimum energy state at effectively zero
temperature. A finite temperature simulation requires the presence of both the drag
and noise terms. The relation between the dissipative term proportional to o and the
fluctuations of strength (2a/8)'/? is the essence of the fluctuation dissipation theorem.

Note that the distribution in Eq. (43) is independent of the parameter o. Thus
there is a class of algorithms. One of these corresponds to taking parameter m to zero.
This can be effected by simultaneously adjusting o and rescaling the units of time.
In this case Eq. (33) becomes first order and is the usual Langevin equation as used

in Refs. [6] and [7].

dz _ OV, 2y

&~ 8z T(g) 7 (r) (45)
For later reference, I write this in the discrete form for evolving z to z’ in one time

step of length e

o =z+ex (_%Jr(%)l/z n). (46)

Another interesting limit corresponds to taking « to zero while holding 8 con-
stant. This case removes both the drag and noise terms, and returns simply to
Newton’s equation. This is the microcanonical approach, first advocated for pure
gauge theories by Callaway and Rahman [14] and proposed for fermionic simulations
in Ref. [11]. In this case the algorithm has no explicit dependence on 8. Indeed,
microcanonical algorithms require the temperature to be determined after the fact
by some sort of thermometer. A convenient monitor is the average kinetic energy
kT = <%). To change the temperature, one should start with a different total initial
energy, which remains constant during the evolution.

Intermediate values of a give hybrid algorithms interpolating between the
Langevin and microcanonical approaches. An alternative hybrid approach was pro-
posed by Duane and Kogut, [15], who advocate updating with a microcanonical
scheme for some number of iterations and then doing a step where all the momenta
touch a heat bath. Eq. (43) shows that the momenta in equilibrium are Gaussianly
distributed; thus, the latter step consists of replacing them all with new Gaussian
random numbers.

This mixing of a molecular dynamics simulation with a randomizing noise on
the momenta is is philosophically similar to keeping a small & in the above discussion.
This would represent a small continuous refreshing of the momenta rather than a large
refreshing of all momenta at the end of a “trajectory.” Such an approach has been
advocated in Ref. 13.

13

When the microcanonical trajectory length is short, the hybrid algorithm in
fact becomes the first order Langevin equation. To see this, consider first replac-
ing p with a Gaussianly distributed random number and then update the system
microcanonically for a short time §. This will take the coordinate z into

g =z+=— - _——+0(). (47)

If the microcanonical updating time § is small enough that the 0(3) effects are neg-
ligible, then this evolution is identical to that in Eq. (46) where £. plays the role of
¢ and (£)3p represents the noise n. Because the Langevin method is a special case
of the hybrid approach, it will not in general represent the optimum choice of hybrid

parameters.

In these hybrid approaches, one should adjust together both the step size ¢
and either the parameter a or the refreshing frequency in such a manner as to hold
the finite step errors in observables at an acceptable size. The optimal algorithm
minimizes the number of steps required to decorrelate lattices at a given error.

6. A Langevin-pseudofermion hybrid

In this section I discuss a fermion algorithm presented by Gavai and myself. [16]
The approach has similarities with the Langevin evolution but is based on a small
step-size limit of the Metropolis et al. [7] scheme. The interest in this approach is
that a simple modification permits an interpolation to the pseudofermionic algorithm,
thus clarifying the connection between them.

The goal is to generate an ensemble of configurations of fields 4 and ¢ dis-
tributed as in Eq. (14). To explicitly insure the positivity of the fermionic matrix M,
assume that it is a square

M = DD! (48)

This effectively doubles the number of fermionic species, one interacting with 4 via
D(4A) and the other via D!(4). I will later mention a possible way to remove this
doubling. With this form for M, the desired probability distribution for 4 and ¢ is

P(4,9) x exp(~Sg — ¢*(D')71D"*¢). (49)
The algorithm consists of alternate sweeps through the ¢ and 4 fields. The

¢ updating is particularly simple, and represents a variation on egs. (30) and (31).
First generate a random vector x with Gaussian weight

P(x) o« e X'X (50)
I now change variables and construct
¢ = Dx. (51)

14

This will be distributed with the desired probability
P4 « exp(—¢*(D1)~tD714). (52)

The Jacobian factor associated with the change of variables in Eq. (51) is irrelevant
as the fields A are being held fixed during this step.

This construction is computationally fast because the individual components
of x are independent and because the matrix D is assumed to be local. Thus I can
rapidly obtain a new ¢ field independent of its old value. This trick for updating ¢ is
also used in the implementation of the Langevin algorithm in Ref. 9. Actually, the
remainder of the algorithm does not explicitly need ¢. Although I could eliminate this
field and consider only x, the discussion is simpler in terms of the coupled probability

in Eq. (49).

In addition to the field yx, the updating of the gauge fields will require another
quantity
§=(D")'x=M"¢. (53)

This, unfortunately, is not so trivial to obtain, requiring a conjugate gradient inver-
sion. Such a step is in common with the Langevin and microcanonical approaches.

[now come to the updating of the gauge field. What would be most desirable
would be something like a Metropolis et al. [7] procedure where the acceptance of
trial changes is governed by changes in the action

S(A,¢) = Se + ¢*(DN) "D 1. (54)

However, this is impractical because every time A is changed, D changes and its
inverse on ¢ would have to be recalculated. To avoid this slow procedure, consider
making only small changes in A. The changes in the action are then related to the
first derivative with respect to 4

as 0Sc¢ 6

a4l =51 2 Re(¢ (DN)~'D~1 2= D7g)
%5 00, aaffg (55)
where ¢ is defined in Eq. (53).
Now consider the quantity
Sr(4,x,€) = Se¢ — & Dx — x*D'¢. (56)

Eq. (55) implies
a5t
_14-|4> 9A |X7

15

If T consider small changes in A4, first order changes of the action S at constant
¢ equal the changes in Sr calculated at constant x and ¢. As only changes in the
action enter into the Metropolis et al. [7] algorithm, updating the A fields using Sy is
equivalent in lowest order to using the exact action S. This is the proposal of Ref. 16,
and is easily implemented because Sr is local.

As with the pseudofermion, Langevin, and microcanonical methods, this al-
gorithm makes a small-step-size approximation. To have confidence that the errors
induced by a finite step are small, one should study a desired measurable for a few
values of this step size and extrapolate to the infinitesimal limit. Ref. 9 argued that
with for the Langevin algorithm a finite step represents a simulation with an effective
action which differs from the initial one by terms vanishing with the step size. If this
new action has the same continuum limit, then these finite step simulations should
give the same numerical results for physical observables. Nevertheless, an extrapola-
tion to vanishing step is still necessary to compare results of different algorithms with
a given set of parameters at a finite lattice spacing.

The solid points in figure 1, taken from Ref. 13, show the average plaquette
P = (fRe Tr U,) measured with this algorithm for the SU(3) theory at 8 = 4.5. This is
plotted versus the acceptance per hit, a simple measure of the step size. This simu-
lation was done using the action from Ref. 14 with eight flavors and a fermion mass
of 0.1 in lattice units. The zero step limit, which follows from extrapolation to unit
acceptance, represents the correct plaquette value with the inclusion of the dynamical
fermions. The crosses in this figure were obtained in a standard pseudofermionic run.

The Metropolis et al. [7] algorithm in the limit of small step size is quite close
to the Langevin approach. Both cases involve small random changes in the field
variables. A standard Metropolis et al. [7] program first tries unbiased changes about
the old field, and then, to maintain the desired peaking of the distribution towards
lower action, rejects a fraction of those changes which go towards larger action. In
contrast, the Langevin approach always accepts the changes, but makes them in
a direction biased towards lower action. This bias is determined by the same first
derivative of the action with respect to 4 used above to construct Sy. The similarity of
the approaches suggests that the finite step errors should be comparable. To directly
make such a comparison, one should use a common definition of step size. One such
measure would be to use the number of iterations needed to decorrelate lattices. I
conjecture that the behavior of the solid points in figure (1) will mimic that of a
Langevin simulation when plotted versus the decorrelation time.

We can now show the close connections of this algorithm with the pseud-
ofermion method. To see this note that the field ¢ has a probability distribution
precisely the same as the pseudofermionic one in Eq. (29). Indeed, the present al-
gorithm is equivalent to using but a single pseudofermionic field for the expectation
value used in Eq. (28) to estimate M~. As mentioned earlier, the systematic errors

16

Fig. 1: The average plaquette as a function of the acceptance probability
per Metropolis et al. [7] hit. The parameter N, is discussed in the text. Note the
interpolation between the simple algorithm of this section as shown by the solid points
and the pseudofermionic simulation shown by the crosses.

from using a finite number of pseudofermionic configurations average out after the
extrapolation to zero step size.

Clearly the present algorithm represents an extreme case. One could inter-
polate between this and the pseudofermionic algorithm by averaging over some fixed
number N, of ¢ fields. This may also be thought of as considering N4 species of
fermions, each with its own ¢ field, but then letting each species contribute only
1/Ny in the updating of the A field. As N, increases, | approach the pseudofermion
algorithm. The remaining points in figure 1 exhibit this interpolation.

The allowing of each species to contribute only fractionally to the updating of
the A field may provide a scheme to reduce the effective number of fermion species
overall. Naively, this can remove the extra doubling introduced in Eq. (48) as well
as any inherent doubling in the basic formulation of the fermions. Such a possibility
has been frequently mentioned in the context all the approximate algorithms. There
may, however, be some danger in this procedure because chiral symmetry breaking

17

and anomalies suggest nonanalytic behavior as the number of fermionic species varies.
This is an important issue which warrants further analytic study.

7. Exact global algorithms

These small-step fermionic algorithms, including pseudofermions, Langevin,
microcanonical, and that of the previous section, all involve an extrapolation in a
step size parameter. This is unfortunate in that lattice gauge calculations already
involve tenuous extrapolations to zero lattice spacing and infinite volume, and this
just gives us another thing to worry about.

The difficulty with the exact approaches discussed earlier is that a time con-
suming inversion must be done to test every trial change in the gauge field. The
approximate schemes all work to reduce the frequency of such inversions to one per
sweep. One could imagine making trial changes of all lattice variables simultaneously,
and then accepting or rejecting the entire new configuration using the exact action.
The problem with this approach is that a global random change in the gauge fields will
generally increase the action by an amount proportional to the lattice volume, and
thus the final acceptance rate will fall exponentially with the volume. The acceptance
rate could in principle be increased by decreasing the step size of the trial changes,
but then the step size would have to decrease with the volume. Exploration of a
reasonable region of phase space would thus require a number of steps growing as the
lattice volume. The net result is again an exact algorithm which requires computer
time growing as volume squared.

So far this discussion has assumed that the trial changes are made in a random
manner. If, however, one can properly bias these variations, it might be possible
to reduce the volume squared behavior. An algorithm of this type was proposed
in [17] For example, one could do either a Langevin or Metropolis et al. [7] sweep
using the action Sy of the last section. By keeping track of all the probabilities
for accepting changes along the way, one could in principle calculate the inverse
probability for taking the new lattice back to the original in a similar sweep. Then
one can construct a generalized acceptance for the entire lattice which will exactly
restore detailed balance. If the changes in Sr are a good approximation to the changes
in the true action, the factors in the acceptance criterion should tend to cancel, giving
a reasonably large final acceptance rate. Attempts to use this approach in [18] were
moderately successful, although those authors felt that standard hybrid techniques
were superior. A variation on this idea where one does a global accept/reject step on
the entire lattice after a microcanonical trajectory was presented in Ref. [19]. These
algorithms have an interesting theoretical volume dependence that I now discuss. [20-

22]

In some sense, the difficulties with fermions stem from the time consuming
evaluation of M~!¢ appearing in the action of Eq. (13). For simplicity, let me not

18

write ¢ explicitly and assume that I have some action which is particularly difficult
to calculate; so, I want to evaluate it as rarely as possible. To further simplify the
notation, I write the following equations in term of a single variable A.

To begin, consider a possible trial change of this variable A to
A" = A +pb+ F(A)8. 58

Here 6 is an adjustable step size parameter introduced for bookkeeping purposes. The
“momentum” variable p represents a random noise, which for convenience I take to
be Gaussianly distributed

P(p) x e P2, 59

The function F(4) represents a driving force or bias in the trial selection procedure
and is for the moment arbitrary. It will soon correspond to the force term in the
hybrid approach.

The Metropolis et al. [7] scheme accepts trial changes with a conditional prob-
ability chosen to maintain detailed balance when applied to an equilibrium ensemble.
With an unbiased trial change this acceptance is determined entirely by the exponen-
tiated change in the action. Here, however, the force term in the selection procedure
must be corrected for in the acceptance condition. I can fully restore detailed balance
by accepting the new value A’ with probability

Pacc = min[l,exp(H(p, A) — H(p', A"))]. 60
Here H is a classical "Hamiltonian” analagous to that in Eq. (42)
H(p, A) = p*/2+ S(4). (61)

In Eq. 60 I introduce p’ as the reverse noise, i.e. the noise which would be required
for the selection of A as the trial had A’ been the initial value

P =—p—(F(4)+ F(4)s. (62)

After the accept/reject step, the momenta should be refreshed; thus, they should
be modified in a Monte Carlo or other fashion that the preserves the distribution
in Eq. 59. Note that H is precisely the Hamiltonian used in the microcanonical
algorithm [10] to describe evolution in ”simulation time.” Because of this analogy, I
refer to H as the classical energy.

Note that with the second order terms in §, the mapping defined by Eq. 58
and Eq. 62 exactly preserves areas in phase space

dA dp=dA' dp'. (63)

Were this not so, the acceptance criterion would also need to depend on a ratio of
measures.

19

Because of this preservation of areas, it is easy to show that the average change
of energy is positive. In particular, I have

Z = /dAdp exp(—H(4,p))
= [dA'dp’ exp(H(A',p') — H(A,p)) ezp(H(4,p)) (64)
= Z(exp(H(A',p') — H(A,p)))

where the expectation is with the weighting e~ #(2). Using Jensen’s inequality (ef) >
elf) we find
(H(4',) - H(4,p)) > 0. (65)

Thus regardless of the biasing force, on average the trial change will tend to increase
the energy. A useful relation comes from expanding Eq. (64) in powers of the energy
change. This gives immediately

(H(A',p') - H(A,p)) = %((H(A',p’) ~ H(A,p)*) + O((H' - H)) (66)

To proceed I expand the energy change in the parameter §. It is readily verified

that
o H— (s L2 2)95(4) 3
B = H = (p6+ 5 (054 + 2F(4)87)(12 + 2F(4)) + O(8°). (67)
This implies that the choice
188

Fi(d) = -5 50 (68)
leads to an energy change

H' — H=0(6) (69)

Indeed, making this choice and ignoring the possibility of rejecting the trial change
gives the usual Langevin algorithm [9,10], where the parameter § is the square root of
the step size used for discretization. In particular, compare Eq. (58) with (46), where
e corresponds to §2.

Let me first consider not making the Langevin choice for the driving force. In
this case I use Eq. (66) to obtain

_ 8, 05(4)

(' = H)ap = (0 +2P(4))) + O(5%) (70)

Note that terms with odd powers of § in the energy change expansion all involve odd
powers of p and thus vanish on averaging. If I now consider updating some large
number V of variables together, the positive 0(6?) quantities will coherently add and
I expect to find a total energy change increasing linearly with V. By the central limit
theorem, the fluctuations about this growth will become gaussian. Thus for large
volumes I expect to find

H' —H ~ C§*V + Bpsv*/? (71)

20

where C and B are constants and p is a gaussian random variable which I normalize
such that its probability distribution is

P(p) ~e " /2. (72)

If Eq. 71 were exact, then Eq. (64) would relate C and B
C = B?/2. (73)
With this explicit form for the energy change, I can obtain the expected acceptance

in the large V limit

2
VrCV §2

The calculations required to derive Eq. (73) and Eq. (74), however, depend strongly
on the tails of the distribution of the energy change and thus cannot be regarded
as completely rigorous. For a further discussion on this point see [23]. For the
following I will only assume that the expected acceptance is exponentially suppressed
when Vé? is large.

1

—CV§i/a
e % (1 +O(Gyga))

(Pace) = (min[1,e#~H']) = (74)

To avoid this exponential suppression and have a reasonable acceptance re-
quires § ~ V-2, However a small value for the step size raises the issue that the
lattice will evolve only slowly from its original configuration. More precisely, consider
taking N sweeps over the lattice. As the motion of 4 has both random and driven
terms, the overall change in any given variable should go as

AA = O(VN)+ O(82N) = O(\/N/V) + O(N/V). (75)

The final result is that the number of sweeps required to obtain a substantially new
configuration should grow as V. If V is proportional to the system volume, then
the overall algorithm requires time growing as volume squared, one factor of volume
from the number of sweeps, and the other from the fact that each sweep takes time
proportional to the volume.

For a bosonic simulations this growth would be a disaster. The standard algo-
rithms only grow as the system volume, and thus should be preferred over updating
many variables simultaneously. On the other hand, for fermions this is the same
overall growth observed above for the exact Monte Carlo inside a Monte Carlo ap-
proaches. That this is the same, however, indicates that there is no obvious additional
penalty in going to global updates. Indeed, it might be possible to gain something
by a judicious choice of F which will reduce the coefficient of this growth. This is the
basis of the algorithms discussed below.

I now return to the Langevin choice of Eq. (68) for the driving force. Consider
again updating only a single variable. At first glance one might think that since the
exact action is so difficult to calculate, the requisite derivative for this force would be

21

yet more intractable. Note, however, that this derivative was also needed to linearize
the action for the approximate algorithms.

To proceed I slightly generalize this force and take

F(A) = —%Z—j + g(A)82. (76)

The ¢6% piece is included for the purpose of discussing possible higher order improve-
ments. Using this, I calculate the next term in the expansion for the energy change

3

§
H —-H= —ﬁ(s3 p° — 351 Sy p— 24g p) + O(6%). 77

Here I use the notation
s

= . 78
0A"

Sn

Note that if S; is non-vanishing, i.e. if the theory is not harmonic, then no
choice of g(4) can make the 0(63) term in this equation vanish for all p.

I now consider applying this procedure to a group of V variables simultane-
ously, as in the earlier discussion of unbiased changes. I am interested in any coherent
addition of changes which could give an exponential suppression of the final accep-
tance. Because the 0(6°) term in Eq. 77 contains only odd powers of p, it will vanish
on the average. The expectation for the energy change can again be most easily found
using Eq. (66). With a little algebra and explicitly doing the average over p, I find

(H'—H) = 2@53 +3(8g — S3 + S1 S2)*) + O(8®). (79)

This can be written in many forms; this expression as the sum of two squares empha-
sizes positivity.

I now return to updating a large number V of independent variables simulta-
neously. The positive contributions indicated in Eq. (79) will add coherently. Similar
arguments to those leading to Eq. (74) now give an expected acceptance falling as

Pyoo ~ e OV©° (80)

To have a reasonable acceptance requires only § ~ V~1/¢. This changes Eq. (75) to

AA =0O(VN) 4+ O(82N) = O(1/ N/VLI3) + O(N/V/3), (81)

Thus, the number of sweeps for an independent lattice grows as V'/2 and the overall
computer time for decorrelation increases as

T ~ V43, (82)

22

This behavior is only slightly worse than the linear growth of the pure bosonic theory.

This algorithm was proposed in Ref. 17 and tested further with somewhat
discouraging results in Ref. 18. Ref. [19] presents a quite promising variation,
generally referred to as the “hybrid Monte Carlo” algorithm, which I now discuss.
Recapitulating on the above treatment of biased updatings, I constructed both the
trial new 4 and the noise needed to return

A' = A+ ps+ F(A)8 (83a)
p'=-p—(F(A)+ F(A))s. (83b)

This is an area preserving map of the (4, p) plane onto itself. The scheme proposed in
Ref. 19 is to iterate the combination of this mapping with an inversion p’ — —p’ several
times before making the accept/reject decision. This iterated map remains reversible
and area preserving. The second order terms in this equation make it equivalent to
the leap frog procedure with an initial half step as used in Ref. 19. The procedure
thus generates a microcanonical trajectory.

The important point is that after each step the momentum remains exactly
the negative of that which would be required to reverse the entire trajectory and
return to the initial variables. If at some point on the trajectory I were to reverse
all the momenta, the system would exactly reverse itself and return throughtr the
same set of states from whence it came. Thus a final acceptance with the probability
of Eq. (60) still makes the overall procedure exact. This slight modification of the
hybrid algorithm of Ref. 15 makes it exact, just as the procedure with a single step
removes the systematic errors of Langevin evolution. After each accept/reject step,
the momenta p are refreshed, their values being replaced by new Gaussian random
numbers. The fields ¢ could also be refreshed at this time, or less often, as turns out
to be appropriate. The goal of the procedure is to use the microcanonical evolution
as a way to restrict changes in the action so that the final acceptance will remain
high for reasonable step sizes.

This procedure contains several parameters which can be adjusted for opti-
mization. First is N,,;., the number of microcanonical iterations taken before the
global accept /reject step and refreshing of the momenta p. Then there is the step size
§, which presumably should be set to give a reasonable acceptance. Finally, one can
also vary the frequency with which the auxiliary scalar fields ¢ are updated.

The arguments for following a microcanonical trajectory for some distance
before refreshing the momenta have been stressed in Ref. [15]. Refs. [21] and [22]
show that this approach gives an algorithm where the computer time grows as V5/4.
I now review that argument.

The goal of the approach is to speed flow through phase space by replacing
a random walk of the 4 field with a coherent motion in the dynamaical direction

23

determined by the conjugate momenta. As long as the total microcanonical time for
a trajectory is smaller than some characteristic time for the system, the net change
in A will grow linearly with both N,;. and §; thus Eq. 3.24 is replaced by

AA ~ Npicb. 84
which should be valid as long as
Npicd < O(1). (85)

With large N, the change in the classical energy will also grow. In any given
microcanonical step the energy changes by an amount of order §2. For N,,;. of order
6§71, the total energy change will then be of order §2. Because the evolution preserves
areas in phase space, Eq. (66) still applies to the overall evolution and I have for the
expected energy change

(H'—H) = %((H'—H)zHO((H'—H)?')20(54)- (86)

Now if I update V independent variables together, these positive contributions can
coherently add and earlier arguments give an overall acceptance falling as

P.cc ~ exp(—CV§*). (87)

This means that 6 should be taken to decrease with volume as V-*/4. Correspondingly,
Nyic should grow as v/, the maximum allowed by Eq. (85). The final result is that
the total time required to obtain a substantially changed lattice grows as

T ~ Vo/4 (88)

This may be only an asymptotic statement, valid for systems much larger than the
correlation length. The main uncertainty lies in the unknown characteristic time
scales that determine the O(1) right hand side of Eq. (85).

A variation on the hybrid Monte Carlo scheme in Ref. 13 essentially corre-
sponds to keeping the parameter a of the earlier second order Lanbgevin discussion,
and doing an acceptance after each step. Presumably this gives a similar time depen-
dence to the above.

It has been argued [24] that the hybrid Monte Carlo algorithm will perform
better if one does not always use a constant trajectory length. This will certainly be
the case if the trajectory is some multiple of a fundamental frequency of the dynamical
system being considered. Having variable trajectory lengths, in either a random of
systematic manner, is a straightforward and worth while addition to the approach.

24

8. Higher order schemes

While the above theoretical volume dependence is quite promising, it is inter-
esting to ask whether one can do better. Campostrini and Rossi [25] presented such
a higher order scheme, while Ref. [26], generalized the scheme to reduce the errors
to an arbitrarily small power of delta. This gives a higher order hybrid Monte Carlo
scheme whose volume growth is arbitrarily close to that for bosonic simulations. On
the other hand, the coefficient of this growth seems to increase with order, and in
practice the above scheme appears to work adequately. I now review this higher order
approach.

The change of variables in Eq. (83) is an area preserving map on (4, p) that con-
serves energy to order §3. It is often written in a “leapfrog” manner as a combination
of the transformation

T4(8) : (A,p) — (A + P, p) (89)

and
T,(8) : (4,p) — (a, p— S'(A)8) (90)

Eq. (83) is equivalent to the application of T,(6/2)T4(6)T,(6/2). I refer to this combin-
tation as Ty(6) because it preserves the energy through order §%).

I now wish to generalize this transformation giving a T,(6) which preserves the
energy through order §* while maintaining the property of preserving areas in phase
space. To apply the Metropolis et al. [7] algorithm one also needs the property of
reversability

T-1(8) = T(~6) (91)

Then one can use this transformation to replace T; in the generation trial changes for
the hybrid Monte Carlo algorithm discussed above, and presumably improve on the
asymptotic volume dependence..

A simple construction of a suitable T, is recursive; I consider combinations of
lower order T,, which cancel out the errors at order 6. Since I have above an explicit
Ty, I can recursively generate any higher order transformation required.

To proceed, consider the Hamiltonian as the generator of translations in time.

In particular, for any function F(t) which depends on the phase-space variables at
time t, I write

H8 . F(t) — F(t + 6) (92)

where F(T + 6) is the value of F after evolving along the exact classical trajectory for
time §. Suppose I now have an area preserving transformation 7,, which gives the
same evolution accuate through order 6. Thus I assume

et =T, (8) + A6™*! + (higher order terms) (93)

25

Now consider two such transformations of different distances in time
T (82) T (61) = €810 H | AeHO1gn+1 | gHE pgntL 4 | (94)
To order n+ 1 in the step sizes, this reduces to

T (82) T (61) = eCrH02)H o (241 L 67T A 4. (95)

Note that with the reversibility property of Eq. (91), T(-6)T(6) = 1 is exact.
This implies that the operator A in the above equation must vanish when n is odd.
Indeed, this is a simple way to understand why the simple leapfrog algorithm has
errors that do not start until the third order in the step size. Indeed, only the
elimination of odd powers of § is a problem in going to higher orders. Thus I consider
n even in the following.

For the inductive step, I now pick an arbitrary integer i. Consider taking i
steps of size § forward with our transformation 7,, and then one step backward with
a different size s6, and finally 1 more forward steps of size §. This combination results
in a net motion of distance (2i — s)§, with the errors adding non-linearly

Tn(6)F Tp(—s6) T, (6)" = eF(F=2)8 1 (24— s"t1)6"HIA 4+ O(573).

If T pick
s = (24)1/(n+1),

the order 6**! terms cancel and I can write

Trt2((26 — 8)8) = Tp(8)* Tn(—56) Tn(6)" (96)

This algorithm is not unique, in particular there is the parameter i giving the
number of forward steps before a backward one. In [26] it was argued that one
should adjust 1 to minimize the largest step in a microcanonical trajectory of fixed
length. Tests on simple models, however, showed that the simple leapfrog algorithm
was quite adequate in most practical cases. One should bear in mind, however, in
going to large systems that higher order schemes may eventually become useful.

9. Concluding remarks

So with all these algorithms, which is best? It appears that the local algo-
rithms are all too time consuming for practical use. As the simple Langevin approach
is a special case of the hybrid algorithm, one should certainly include the more gen-
eral possibilities included in the latter. Adding the accept reject step to make the
algorithm exact has the additional advantage that one need not worry about system-
atic biases beyond the lattice cutoff. These arguments are responsible for the current
popularity of the hybrid Monte Carlo approach.

26

This method does, however, require the fermion matrix to be a square, re-
quiring at least two species for Wilson fermions and eight for the Kogut Susskind
case. Users of the hybrid algorithm without the global accept-reject step have ar-
gued for adjusting the number of fermion species by inserting a factor proportional
to the number of flavors in front of the pseudofermionic term when the gauge fields
are updated. Such a possibility was mentioned above in the discussion of the interpo-
lation between Langevin and pseudofermionic methods. This modification is simple
to make, but is not completely theoretically understood. Indeed, it may introduce
spurious behavior if the physics is not smooth in the number of flavors. Nevertheless,
this flexability of the hybrid algorithm has made it quite popular, although when
the global accept condition can be applied, it is probably worthwhile for the extra
confidence it supplies.

Despite the successes of these fermion algorithms, the overall procedure re-
mains somewhat awkward, particularly when compared with the ease of setting up
a pure bosonic simulation. This appears to be due to the non-local actions resulting
from integrating out the fermions. Indeed, had one integrated out a set of bosons
coupled quadratically to the gauge field, one would again have a non-local effective
action, indicating that this analytic integration was not a good idea. Perhaps we
should step back and explore algorithms before integrating out the fermions. One
such attempt is the world line Monte Carlo method of [27]. Here one explicitly
follows the paths of the fermions through the lattice and the Monte Carlo procedure
involves random changes in these paths. The method has been shown to work well
in two space-time dimensions, although sign problems have severely limited work in
higher dimensionality. A recent attempt to treat these signs exactly using a recur-
sive enumeration of paths appears to work well, although memory issues restrict the
approach to extremely small systems. [28]

As Monte Carlo methods are particularly difficult with fermions, perhaps one
should look for other numerical methods not based on stochastic processes. Here I
include such possibilities as direct diagonalization of the Hamiltonian. So far these
methods have been very constrained on possible system size, suggesting that one
should look for new approximations to discard irrelevant information as the systems
grow in volume.

An extremely difficult unsolved question is the simulation of fermionic systems
when the corresponding determinant is not always positive. This situation is of
considerable interest because it arises in the study of quark-gluon thermodynamics
when a chemical potential is present. This issue is extensively discussed and referenced
in Gavai’s chapter of this book. All known approaches to this problem are extremely
demanding on computer resources. One can move the phase of the determinant into
the observables, but then one must divide out the average value of this sign. [29] This
is a number which is expected to go to zero exponentially with the lattice volume;,
thus, such an algorithm will require computer time growing exponentially with the

27

system size. Another approach is to do an expansion about zero baryon density, but
again to get to large chemical potential will require rapidly growing resources. New
techniques are badly needed to avoid this growth; hopefully this will be a particularly
fertile area for future algorithm development.

10. References

10.

11.

12.

13.

14.

15.

F.A. Berezin, The method of second quantization (Academic Press, NY, 1966).
P.T. Matthews and A. Salam, Nuovo Cimento 12 (1954) 563.
D. Weingarten and D. Petcher, Phys. Lett. 99B (1981) 333.

D. Weingarten and D. Petcher, Phys. Lett. 99B (1981) 333; H. Hamber and G.
Parisi, Phys. Rev. Lett. 47 (1981) 1792.

A.N. Burkitt and A.C. Irving, Comp. Phys. Comm. 59 (1990) 447.
G. Bhanot, U.M. Heller, and [.O. Stamatescu, Phys. Lett. 129B (1983) 440.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller,
J. Chem. Phys. 21 (1953) 1087.

M. Grady, Phys. Rev. D32 (1985) 1496.

G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. Lepage, B. Svetitsky and K.G.
Wilson, Phys. Rev. D32 (1985) 2736.

A. Ukawa and M. Fukugita, Phys. Rev. Lett. 55 (1985) 1854.

J. Polonyi and H.W. Wyld, Phys. Rev. Lett. 51 (1983) 2257; J. Kogut, J.
Polonyi, HW. Wyld, and D.K. Sinclair, Phys. Rev. Lett. 54 (1983) 1475.

F. Fucito, E. Marinari, G. Parisi, and C. Rebbi, Nucl. Phys. B180[FS2] (1981)
369.

A.M. Horowitz, Physics Letters 156B (1985) 89; Nucl. Phys. B280[FS18] (1987)
510; preprint Cern-Th-6172/91 (1991).

D. Callaway and A. Rahman, Phys. Rev. D28 (1983) 1506.

S. Duane and J. Kogut, Phys. Rev. Lett. 55 (1985) 2774; Nucl. Phys. B275
(1986) 398.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Creutz and R. Gavai, Nucl. Phys. B280 (1987) 181.
R. T. Scalettar, D.J. Scalapino and R.L. Sugar, Phys. Rev. B34 (1986) 7911.
S. Gottlieb, W. Liu, D. Toussaint and R.L. Sugar, Phys. Rev. D35 (1986) 2611.

S. Duane, A. D. Kennedy, B.J. Pendleton and D. Roweth, Phys. Lett., 195
(1987) 2.

H. Gausterer and S. Sanielevici, Phys. Rev.D38 (1988) 1220.

R. Gupta, G. Kilcup, and S. Sharpe, Phys. Rev.D38 (1988) 1278 (1988).

M. Creutz, Phys. Rev. D38 (1988) 1228.

A.D. Kennedy and B. Pendleton, Nucl. Phys. B (Proc. Suppl.) 20 (1991) 118.

P.B. Mackenzie, Phys. Lett. B226 (1989) 369; S. Gupta, preprint CERN-
TH.6178/91.

M. Campostrini and P. Rossi, Nucl. Phys. B329 (1990) 753.

M. Creutz and A. Gocksch, Phys. Rev. Lett. 63 (1989) 9.

J.E. Hirsch, R.L. Sugar, and D.J. Scalapino, Phys. Rev. B26 (1982) 5033.
M. Creutz, preprint BNL-46782 (1991).

A. Gocksch, Phys. Rev. Letters 61 (1988) 2054.

29

