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1.1 Introduction

Many objects in nature are best described geometrically as fractals, with self-similar
features on all length scales. The universe consists of clusters of galaxies, organized in
clusters of clusters of galaxies and so on [1.1]. Mountain landscapes have peaks of all
sizes, from kilometers down to millimeters. River networks consists of streams of all sizes.
Turbulent fluids have vortices over a wide range of sizes. Earthquakes occur on structures
of faults ranging from thousands of kilometers to centimeters. Fractals are scale-free in
the sense that viewing a picture of a part of a fractal one can not deduce its actual size if

a yardstick is not shown in the same picture.

If fractals are indeed the geometry of nature, one must still understand how nature
produces them. A good deal of effort has been put into the geometrical characterization of
these objects, but there has been practically no progress in understanding their dynamical
origin. We have a tendency to think of the universe and the crust of the earth as static
structures because the dynamics that formed these structures were of a much longer time
scale than the observation period, which could be a human lifetime. The earthquakes that
we observe last at most a few seconds, whereas the fault formations appear static and were

built up over millions of years.

The origin of fractals is a dynamical, not a geometrical, problem. The laws of physics
are local, but fractals are nevertheless organized over the furthest distances. The mystery
is enhanced by the fact that large equilibrium systems, operating near their ground state,
with tend to be only locally correlated. Only at a critical point where a continuous phase

transition takes place are those systems fractal.

But real systems are dissipative, that is they have friction, and rarely go to their
ground state, unlike the ideals discussed in freshman physics. Consider, for example, a
pendulum. The ideal motion is periodic and for small amplitudes is well approximated
by a sine wave. To make it more realistic one can put in a drag term, giving rise to
a damped oscillatory behavior with with a decreasing amplitude theoretically continuing

forever. However, in the real world the motion will be impeded by some imperfections,
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perhaps in form of grit. Once the amplitude gets small enough, the pendulum will suddenly
stop, and this will generally occur at the end of a swing where the velocity is smallest. This
is not the state of smallest energy, and indeed the probability is a minimum for stopping
at exactly the bottom of the potential. In a sense, the system is most likely to settle near

a “minimally-stable” state, far from any “thermal equilibrium.”

Generalizing to a multi-dimensional system of many coupled pendula, a new issue
arises. A minimally stable state will be particularly sensitive to small perturbations which
can “avalanche” through the system. Thus, small disturbances could grow and propagate
through the system with little resistance despite the damping and impediments. Since
energy is dissipated through this process, the energy must be replenished for avalanches
to continue. The systems that we shall study are ones where energy is constantly supplied

and eventually dissipated in the form of avalanches.

The canonical metaphoric example is a simple pile of sand. Adding sand slowly to a
flat pile will result only in some local rearrangement of particles. The individual grains,
or degrees of freedom, do not interact over large distances. Continuing the process will
result in the slope increasing to a critical value where an additional grain of sand gives rise
to avalanches of any size, from a single grain falling up to the full size of the sand pile.
The pile can no longer be described in terms of many local degrees of freedom, but only a
holistic description in terms of one sandpile will do. The distribution of avalanches follows

a power law.

“Self-Organized Criticality” (SOC) refers to this tendency of large dissipative systems
to drive themselves to a critical state with a wide range of length and time scales [1.2-4].
The idea provides a unifying concept for large scale behavior in systems with many degrees
of freedom. It has been looked for in such diverse areas as earthquake structure, economics,

and biological evolution.

The critical state is an attractor for the dynamics. If a slope were too steep one would
obtain a large avalanche and a collapse to a flatter and more stable configuration. On
the other hand, if it were too shallow the new sand will just accumulate to make the pile
steeper. If the process is modified, for instance by using wet sand in stead of dry sand, the
pile will modify its slope during a transient period and return to a new critical state. It
is this resiliency which suggests that self-organized criticality might be a quite universal

phenomenon. If one builds snow screens locally to prevent avalanches, the pile will again



respond by locally building up to steeper states, and large avalanches will resume. The
large fluctuations associated with the avalanches are unavoidable; this might provide some

food for thought when applied to vast economic or political systems.

Self-organized criticality complements the concept of “chaos” wherein simple systems
with a small number of degrees of freedom can display quite complex behavior. Chaos
is associated with fractal “strange” attractors in the phase space spanned by non-linear
systems with only a few degrees of freedom. These self-similar structures need have little
to do with fractals in real spatially extended physical systems. Specifically, chaotic systems
exhibit white noise with short temporal correlations whereas fractal systems are expected
to have long range temporal correlations. In contrast, self-organized criticality emphasizes

unifying features in the coherent evolution of systems with many degrees of freedom.

1.2 Simulations of Sandpile Models

The convergence to the self-organized critical state can be demonstrated by computer
simulations on toy sandpile models. The simplest example is a cellular automaton formu-
lated on a two-dimensional regular lattice of IV sites. Integer variables z; on each site ¢
are used to represent the local sandpile height. Here we consider a two-dimensional lattice
with open boundaries. Addition of a sand particle to a site ¢ is represented by increasing
the value of z; at that site by unity. When the height somewhere exceeds a critical value
Zer, here taken to be 3, there is a toppling event wherein 1 grain of sand is transferred
from the unstable site to each of the 4 neighbor sites, i.e the value of z; is reduced by 4
and the values of z at the 4 neighbor sites are increased by 1. The updating is done con-
currently, with all sites updated simultaneously. The initial toppling may initiate a chain
reaction, where the total amount of topplings is a measure of the size of an avalanche. As
an example of a state in this model, in Figure 1.0 we show the resulting pile of sand from
dropping 49, 152 grains of sand on a single site. Already we see signs of a fractal structure

emerging.

To explore self organized criticality in this model, one can randomly add sand and
have the system relax. The result of such an addition becomes unpredictable, with one

only being able to find the outcome by actually simulating the resulting avalanche.

In Fig. 1.1 we show a typical state of the sandpile after a large amount of sand has

been dropped pseudo-randomly. The lattice here is 286 by 184 sites and the boundaries are

3



Fig. 1.0 A sandpile obtained by adding 49,152 grains of sand to a single point. The

heights z; from 0 through 3 are represented by white, red, blue, and green, respectively.

open. At first glance, the system appears quite random. There are, however, some subtle
correlations. For example, never do two adjacent black cells lie adjacent to each other, nor
does any site have four black neighbors. This follows from the fact that in tumbling a site

to height 0, a grain of sand is dumped onto each neighbor.

To a configuration a small amount of sand was added to a site near the center, trig-
gering an avalanche. We follow this avalanche in Figure 1.2. To trace the avalanch, we
give the cells which have collapsed a cyan color. Figs. 1.2a and 1.2b show intermediate
active stages in the collapse. Yellow sites inside or outside the old avalanche area are still

active. Fig. 1.2c displays the final stable configuration.

This was a particularly large avalanche, selected for illustrative purposes. The initial
state was not exactly that of Figure 1.1 because in making this figure we first produced
several uninterestingly small avalanches. Indeed the ultimate size of the disturbance is
unpredictable without actually running the simulation. Some cascades may involve a

single tumbling, and others collapse most of the system.
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Fig. 1.1 A typical critical state for the sandpile on a 286 by 184 lattice with open
boundaries. The heights z; from 0 through 3 are represented by black, red, blue, and

green, respectively.

Note in Fig. 1.2b the appearance of islands which have not yet collapsed. These have
all disappeared in Fig. 1.2c, the final relaxed state. This is an exact result, special to this
model; once in the critical ensemble, it is impossible to trigger a set of avalanches which

will leave an isolated island of unaltered cells surrounded by disturbed ground.

Figure 1.3 shows a log-log plot of the distribution of the avalanche sizes s and durations

t. The linearity indicates a power law,
P(s)~s'™7,  r~21, (1.1)

where s is the number of tumblings in an avalanche and P is the probability distribution for
avalanches of a given size. Thus, the state in Figure 1.1, which at first appears featureless,
is actually remarkably correlated. For a random distribution of z’s one would expect the
chain reaction generating the avalanche to be either sub-critical, in which case the avalanche
would die after a few steps and large avalanches would be exponentially unlikely, or super-

critical, in which case the avalanche would explode with a collapse of the entire system.
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Fig. 1.2a-c¢ The progress of an avalanche obtained by increasing one of the z; in Figure
1.1 to 4. The undisturbed stable sites are colored as in Fig. 1.1 while the still active sites

in parts a and b are various shades of tan, and the tumbled region is cyan.

The power law indicates that the reaction is precisely critical, i.e the probability that
activity at some site branches into more than one active site is balanced by the probability

that the activity dies. Thus, by evolving through avalanche after avalanche, the matrix
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Fig. 1.3 A log-log plot of the distribution of the avalanche sizes s and durations ¢ for
the sandpile model.

has “learned” to respond critically to the next perturbation.

Several other quantities which obey fractal scaling laws can be defined for the sandpile.
For instance, the duration ¢, that is the number of updatings for an avalanche to complete,
has a distribution

Pt) ~t17™, 1~ 214, (1.2)

Also, the number of distinct tumbled sites, s4, which is different from the total number of

topplings since some sites topple more than once, goes as
P(sq) ~ sy ™, 142207 (1.3)

For some applications it is useful to define conditional expectation values. For instance,
one can define an exponent for the expectation value of the duration, ¢, for an avalanche
of size s

t=s" v~ 0.61. (1.4)

Similar relations connect mutually all the quantities s, £, s4, and the linear size r of

the clusters [1.5]. The exponent relating sq to r, vs,r, appears to be 2, indicating that the
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clusters are compact. The existence of relations between the different stochastic variables

suggests scaling relations between the exponents. In general

Ty =2+ (Ty - 2)/’wa- (1.5)

As long as the variables x and y are reasonably correlated, this is a mathematical identity

and does not imply new physics. The compactness of clusters thus suggests (1, — 2) =
(1. — 2)/2.

In order to calculate the power spectrum it turns out that one should calculate the

expectation value of s2 vs duration ¢, that is

At) =) s*P(s,t). (1.6)
This quantity is given by the power law

A(t) ~t7R, pe 2.1 (1.7)

The values of the exponents quoted here were calculated by Kim Christensen [1.7].
The model can be defined in d = 3,4, etc. dimensions. For instance, 7 ~ 2.31 in three
dimensions; thus, the values of the exponents depend on d. For an excellent discussion of

these exponents and their relation to each other, see the paper by Christensen et al. [1.6].

1.3. Abelian Sandpile Models

It would be highly desirable to have an analytical theory, such as the renormaliza-
tion group theory for equilibrium critical phenomena, by which one could estimate the
exponents and at the same time gain insights into the mechanisms of self-organized crit-
icality. We are not yet at that point. However, in a series of papers, Deepak Dhar and
co-workers have shown that the sand model has some rather remarkable mathematical
properties [1.8-11]. In particular, the critical attractor of the system is characterized in
terms of an Abelian group. The properties of the group can be utilized to calculate the
number of states belonging to the critical attractor, and the rate of convergence to the
attractor. Further consequences of the Abelian algebra have been explored by one of us

[1.12-13], and in the following we shall generally follow the discussion given in Ref. [1.13].

1.3.1 The Abelian Group



Dhar introduced the useful toppling matrix A; ; with integer elements representing
the change in height, z at site i resulting from a toppling at site j [1.8]. Under a toppling
at site j, the height at site ¢ becomes z; — A; ;. For the simple two dimensional sand model

the toppling matrix is given as

Aij=4 i=j
A;; =—1 4,j nearest neighbors (1.8)
A; ;=0 otherwise.

For this discussion there is little special to the specific lattice geometry; indeed the
following results easily generalize to other lattices and dimensions; in fact, on a Cayley
tree the model can be solved exactly. The analysis requires only that under a toppling of a
single site ¢, that site has its slope decreased (A;; > 0), the slope at any other site is either
increased or unchanged (A;; < 0,j # i), the total amount of sand in the system does not
increase () j A, ;j > 0), and, finally, that each site can be connected through topplings to

some location where sand can be lost, such as at a boundary.

For the specific case in Eq. 1.8, the sum of slopes over all sites is conserved whenever
a site away from the lattice edge undergoes a toppling. Only at the lattice boundaries can
sand be lost. Thus the details of this model depend crucially on the boundaries, which we

take to be open. A toppling at an edge loses one grain of sand and at a corner loses two.

The actual value of the threshold zp is unimportant to the dynamics. This can be
changed by simply adding constants to all the z;. Thus without loss of generality we
consider zr = 3. With this convention, if all z; are initially non-negative they will remain
so, and we restrict ourselves to states C' belonging to that set. The states where all z;
are positive and less than 4 are called stable; a state that has any z; larger than or equal
to 4 is called unstable. One conceptually important configuration is the minimally stable
state C'* which has all the heights at the critical value zr. By construction, any addition

of sand to C* will give an unstable state.

We now formally define various operators acting on the states C. First, the “adding
sand” operator «; acting on any C' yields the state a;C' where z; = z; + 1 and all other
z are unchanged. Next, the toppling operator t; transforms C' into the state with heights

z§- where z§ = z; — A; j. The operator U which updates the lattice one time step is now
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simply the product of ¢; over all sites where the slope is unstable,

ve =[]t (1.9)

where p; = 1 if z; > 4; 0 otherwise. Using U repeatedly we can define the relaxation
operator R. Applied to any state C' this corresponds to repeating U until no more z;
change. Neither U nor R have any effect on stable states. Finally, we define the avalanche

operators a; describing the action of adding a grain of sand followed by relaxation

aiC = ROJ;C (1.10)

At this point it is not entirely clear that the operator R exists; that is it might be that
the updating procedure enters a non-trivial cycle. We now prove that this is impossible.
First note that a toppling in the interior of the lattice does not change the total amount of
sand. A toppling on the boundary, however, decreases this sum due to sand falling off the
edge. Thus, the total sand in the system is a non-increasing quantity. No cycle can have
toppling at the boundary since this will decrease the sum. Next, the sand on the boundary
will monotonically increase if there is any toppling one site away. This can not happen in
a cycle, thus there can be no topplings one site away from the edges. By induction there
can be no toppling arbitrary distances from the boundary; thus, there can be no cycle,
and the relaxation operator exists. Note that for a general geometry this result requires
that every site be eventually connected to an edge where sand can be lost. With periodic
boundaries no sand would be lost and thus cycles are expected and observed. We call these
unphysical models “Escher models” after the artist constructing drawings of water flowing

perpetually downhill and yet circulating in the system.

It is useful to introduce the concept of recursive states. This set, denoted R, includes
those stable states which can be reached from any stable state by some addition of sand
followed by relaxation. As the minimally stable state C* can be obtained from any other
state by adding just enough sand to each site to make z; equal to three, it belongs to R.
Thus, one might conveniently define R as the set of states which can be obtained from C*

by acting with some product of the operators a;.

It is easily shown that there exist non-recursive, transient states; for instance, no

recursive state can have two adjacent heights both being zero. One can also show that the
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self-organized critical ensemble, reached under random addition of sand to the system, has

equal probability for each state in the recursive set.

The crucial result of Refs. 1.8-1.11 is that the operators a; acting on stable states
commute, and that they generate an Abelian group when restricted to recursive states.
We begin by showing that the operators commute, that is a;a;C = a;a;C for all C. First

we express the a’s in terms of toppling and adding operators

n1 n

aiajC’ = (H tlk> Qo ( H tlk> OtjC (1.11)
k=1 k=ni+1

where the specific number of topplings n; and n depend on %, j, and C. Acting on general

states, the operators ¢t and a all commute because they merely linearly add or subtract

heights. We therefore can shift «; to the right in this expression:

aiajC' = (H tlk> aiajC' (1.12)
k=1

Now we rearrange the product of topplings. In the non-trivial case that the a-operators
render either ¢ or j (or both) unstable, the product must contain toppling operators cor-
responding to those unstable sites. We shift those operators to the right. Those operators

constitute by definition the update operator, U, so we can write
a;a;C = (H tlk> Ua;a;C (1.13)

The factors within the bracket are the remaining ¢’s. Now, the update operator
may leave some sites still unstable, and then the product must include further toppling
operators; working on those sites, we can pull out another factor of the update operator.
This procedure can be repeated until we have used all the toppling factors and the state
is stable. Thus, we can identify the operator within the brackets in Eq. (1.12) as the

relaxation operator R. But a;o;C is the same state as o;0;,C, so a;a;C = a;a;C.

A trivial consequence of this argument is that the total number of tumblings occurring
in the operations a;a;C and aja;C are the same. Of course, if a particular site k£ tumbles

it can be caused by either addition; the orders of the tumblings may or may not be altered.

We now prove that the avalanche operators have unique inverses when restricted to

recursive states; that is, there exists a unique operator ai_l such that a;(a; 10) = (C for all

11



C in R. This implies that the operators a; acting on the recursive set generate an Abelian
group. For any recursive state C we first find another recursive state such that a; acting

on it gives C, and we then show that this construction is unique.

We begin by adding a grain of sand to the state C' and allowing it to relax. This
generates a new recursive state a;C. Now since the state C' is by assumption recursive,
there is some way to add sand to regenerate C' from any given state. In particular, there

is some product P of addition operators a; such that
C = Pa;,C (1.14)

But the a’s commute, so we have
C= aiPC’ (1.15)

and thus PC' is a recursive state on which a; gives C.

We must still show that this state is unique. To do this consider repeating the above

process to find a series of states C), satisfying
(a)"Cp, = C. (1.16)

Because on our finite system the total number of stable states is finite, this sequence must
eventually enter a loop. As the original state C can be generated by running around the
loop in the opposite direction, so C must itself belong to the loop. Calling the length of

the loop m, we have (a;)™C = C. We now uniquely define ai_lC = azm_lC.

We now have sufficient machinery to count the number of recursive states. As all
recursive states can be obtained by adding sand to C* |, we can write any state C € R in

the form
C = (H a;.%> C*. (1.17)

Here the integers n; represent the amount of sand to be added at the respective sites.
However, in general there are several different ways to reach any given state. In particular,
adding four grains of sand to any one site must force a toppling and is equivalent to adding

a single grain to each of its neighbors. This can be expressed as the operator statement

af = [] a; (1.18)

JENN
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where the product is over the nearest neighbors to site :. We can rewrite this equation
by multiplying by the product of inverse avalanche operators on the nearest neighbors on

both sides, thus obtaining
Ay
[[e;"=E (1.19)
J

where E is the identity operator. This allows us to change the powers appearing in Eq.
(1.17). If we now label states by the vector n = (nq,ns,ns.....nNy) we see that two such
states are equivalent if the difference of these vectors is of the form » j B;Ai; where the
coefficients 3; are integers. These are the only constraints; if two states can not be related
by toppling they are independent. Thus any vector n can be translated repeatedly until
it lies in an N- dimensional hyper-parallelopiped whose base edges are the vectors Aj;,
7 =1,.......N. The vertices of this object have integer coordinates and its volume is the
number of integer coordinate points inside it. This volume is just the absolute value of the
determinant of A . Thus the number of recursive states equals the absolute value of the

determinant of the toppling matriz A.

For large lattices this determinant can be found easily by Fourier transform. In par-

ticular, whereas there are 4N stable states, there are only

(ﬂ-aﬂ') d2q
1 _ _ ~ N
exp (N /( Gt 2qy)) ~ (3.2102..) (1.20)

recursive states. Thus starting from an arbitrary state and adding sand, the system “self-
organizes” into an exponentially small subset of states forming the attractor of the dynam-

1cs.

1.3.2 An Isomorphism

Following Ref. [1.12], we now look into the consequences of stacking sandpiles on top
of one another. Given stable configurations C' and C’ with configurations z; and z., we
define the state C' @ C’ to be the state obtained by relaxing the configuration with heights

zi + z,. Clearly, if either C' or C’ are recursive states, so is C & C".

One can show that under the operation @ the recursive states form an Abelian group
isomorphic to the algebra generated by the a;. First, the addition of a state C' with heights

z; i1s equivalent to operating with a product of a; raised to z;, that is
BoC = (Haf) B. (1.21)
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The operation & is associative and Abelian because the operators a; are.

Since any element of a group raised to the order of the group gives the identity, it

follows that a£A| = FE. This implies the simple formula ai_1 = a£A|_1. The analog of this

for the states is the existence of an inverse state, -C'
—-C=(Al-1)®C. (1.22)

Here, n ® C' means adding n copies of C' and relaxing. The state -C has the property that
for any state Be& C @ (—C) = B.

The state I = C & (—C) represents the identity and has the property I & B = B for
every recursive state B. The state which is isomorphic to the operator a; is simply a;I.
The identity state provides a simple way to check if a state, obtained for instance by a
computer simulation, has reached the attractor, i.e. if a given state is a recursive state:
A stable state is in R if and only if C' @ I = C. The proof is simple. By construction, a

recursive state has this property. On the other hand, since I is recursive, so is C & I.

The identity state can be constructed by taking any recursive state, say C* and
repeatedly add it to itself to use |A| ® C = I. However, on any but the smallest lattices,
|Al is a very large integer. A simpler scheme is given in Ref. [1.12]. Figure 1.4 shows the
identity state on a 286 by 184 lattice. Note the fractal structure, with features of many

length scales.

Here we present another scheme to construct this state. Figure 1.5a-b shows a sequence
of configurations obtained by pouring sand in from the boundaries: the heights at the edges
are kept very high, and the inside is initially empty. A variety of fractal structures emerge
as the interior slowly fills up. Figure 1.5c¢ shows the final stationary state where the
sand falling in from the boundaries matches that falling off from the updating. Then we
reverse the boundary conditions and allow the sand to fall back off. Figure 1.5d shows an
intermediate state of this procedure. When the sand finally stops falling off, we obtain the

identity state as shown in Figure 1.4.

1.3.3 A Burning Algorithm and the q=0 Potts Model

Majumdar and Dhar [1.11] have constructed a simple “burning” algorithm to check
and enumerate the configurations belonging to the recursive set. The boundary is included

as a single site, labeled 0. To decide whether a given configuration belongs to R, consider
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Fig. 1.4 The identity state on a 286 by 184 lattice. The heights are color coded as in
Fig. 1.1.

first, at time ¢ = 0, all the sites unburnt, except 0 which is burnt. An unburnt site 2
is defined to burn at time t =1 if z; exceeds the number of edges connecting ¢ to other
unburnt sites. Those sites burn at t = 2, and so on. The fires start from the edge and burn
inward. Once some sites have burned, other sites may become burnable since the number
of edges is reduced. The path of the fire may be indicated by bonds connecting burnt sites.
If and only if all sites eventually burn under this algorithm does the state belong to the

recursive set.

The burning algorithm can also be described in the following way. For a given con-
figuration, add one particle to each of the edge sites, two particles to the corners, and
update according to the usual rules. If the original state is recursive, this will generate an
avalanche under which each site of the system will tumble exactly once. If the state is not
recursive, some untumbled sites will remain. Figure 1.6 shows such a process underway.
Here sites which have already burned are shown in cyan, while the remaining sites in the
center have not yet burned. The small number of sites shown in light tan are the active

active burning sites. Note the fractal shape of the interphase.
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Fig. 1.5a-d A procedure for constructing the identity. In parts a and b an empty table
is having sand poured on from the edges. In part c the entire table is supercritical. In part
d the boundaries have been opened, and the sand is running back off. The system finally
relaxes the state shown in Fig. 1.4. In this sequence, heights are color coded as in Fig.

1.1, with active sites in various shades of tan.
It is unclear whether the dynamics of the burning algorithm, intended to identify and
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Fig. 1.6 The burning algorithm being applied to the state in Fig. 1.1. Burnt sites are

cyan, burning sites are tan, and the remaining sites are colored as in Fig. 1.1.

count allowed configurations, has anything to do with the dynamics of avalanche formation.
Majumdar and Dhar studied the scaling of the extension r of the burning cluster vs time

and found

toer? 2 =4l =5/4 (1.23)
The spanning tree problem corresponds to a problem in equilibrium statistical me-
chanics, namely the ¢ = 0 state Potts model. The Potts model is defined in terms of the

Hamiltonian
H=q"*> 6(ci,0;) (1.24)
ij

where the o are g state spins and the summation is over nearest neighbors on a two
dimensional lattice. Several results about the Potts model are known from an equivalence
with the two dimensional Coulomb gas model and from conformal field theory. From this
analogy Majumdar and Dhar [1.10] argue that the height-height correlation (z(r')z(r’ —
7)) — (2)? varies as r~2%¢ for large separations r, where z; = 2 is the exponent for energy-

energy correlation function for the Potts model. The height variable in the sandpile model
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corresponds to the energy density for the Potts model. This again indicates that there are
strong correlations built into the seemingly random configurations obtained numerically

(Figure 1.1) for the sandpile.

1.4. Real Sandpiles and Earthquakes.
1.4.1 The Dynamics of Sand

“Sand” represents a “state of matter” to which not much attention has been paid.
Sand can be shaped into many different forms; that is it can exist in very many stable
states, almost all of which are out of the flat equilibrium state. Thus, sand contains
memory: one can write letters in sand. If a heap of sand is perturbed, for instance by
adding more sand, by tilting the pile, or by shaking it, the system goes from one metastable
state to another. In some sense this happens by a diffusion process, but this process is
very different from the process which relaxes a glass of water to equilibrium when shaken.
The diffusion of sand can stop at any of many stable states, and the process is a threshold
process, since nothing happens before the perturbation reaches a certain magnitude. It
might therefore be reasonable to expect real sandpiles to exhibit self-organized critical

behavior.

After a couple of false starts with inconclusive results, there are now several exper-
iments reporting power law distributions of avalanches [1.14-16]. Figure 1.7 shows the
results of recent experiments by Grumbacher et al. [1.16] They built small heaps on a
scale, and monitored the distribution of avalanches of particles falling off the edges. The
figure shows log-log plots of the normalized distribution function of avalanches. The exper-
iments were performed using iron spheres (triangles) and glass spheres (circles) of the same
size. In all cases a power law distribution function was found. In a remarkable experiment
Bretz et al. [1.15] were even able to image the flow of small avalanches not reaching the

edge and measure their flow and size.

The threshold dynamics of sand is a paradigm of many processes in nature. Earth-
quakes occur only when the stress somewhere on the crust of the earth exceeds a critical
value, and the earthquake takes the crust from one stable state to another. Economic sys-
tems are driven by threshold processes; the individual agents may change their behavior
only when conditions reach a certain level. Biological species emerge or die when specific

conditions in the ecology are fulfilled. Neurons in a neural network fire when the input
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Fig. 1.7 The avalanche distribution from recent experiments by Grumbacher et al. [1.16]

from other neurons reaches a threshold level, etc. Indeed, the ideas of SOC have been
applied to these and many other natural phenomena., including volcanic activity [1.17]
and solar flares [1.18].

1.4.2 Earthquakes and SOC

The idea of self-organized criticality as applied to earthquakes [1.19- 23|, may be
visualized as follows. Think of the lithosphere of the earth as a collection of tectonic
plates, being squeezed very, very slowly into each other. At some time in our geological
history the stresses may have been small, without large ruptures or earthquakes. During
millions of years, however, the system evolved into a kind of stationary state where the
build-up of stress is balanced in average by its release during earthquakes. Because of
the long evolutionary process, the crust has “learned,” by suitably arranging the building
blocks at hand into a very balanced network of faults, valleys, mountains, oceans and other
geological structures, to respond critically to any initial rupture. The earthquake can be

thought of as a critical chain reaction where the process is just barely able to continue.

For a simple model, consider a two-dimensional lattice of interacting blocks. The

initial block structure represents a discretization of the space in much the same way as
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the lattice in lattice gauge theories of particle physics. The block size does not represent
an intrinsic length scale in the problem. On each block, at site (4, ) acts a force F; ; in
an unspecified general direction of motion in some fault region. In the beginning, F; ;
may assume small random values. The initial state is not important for the long term
dynamics. Let the force increase uniformly by a infinitesimal small amount per unit time;
this simulates the slow driving by the tectonic plate motion. Eventually, the force at some
site (7,7) will exceed a critical threshold value F¢ for rupture. The value chosen for Fo
may be either uniform or random. The initial rupture is simulated by updating the forces
at the critical site and the sites of the neighbors at (i, + 1) and (i £ 1, 5):
Fi; —0

(1.25)
Fo, — F,, + aFi’j

Where nn denotes the nearest neighbors and « is an adjustable parameter.

These equations represent the transfer of force to the neighbors. This may cause the
neighbors to be unstable and a chain reaction to take place. This chain reaction is the
earthquake. The equations are completely deterministic, with no external noise. We are
not dealing with a noise- driven phenomenon; on the contrary the physics turns out to
be stable with respect to noise, i.e. noise is irrelevant. When the earthquake stops, the
system is quiescent until the force at some other location exceeds the critical value and
a new event is initiated. The process continues again and again. One observes that for
some time the earthquakes become bigger and bigger. When one is convinced that the
system has self- organized into a stationary state, one can start measuring the energies of
subsequent earthquakes as defined by the total number of rupture events following a single

initial rupture.

This model was suggested by Olami, Christensen and Feder [1.22] who realized that
the picture could be directly related to earlier spring-block models. The value of « is
directly related to the elastic parameters of the crust of the earth. For o = 1/4 the force
is conserved, i.e. the amount lost on the unstable site equals the total amount gained by
the 4 neighbor sites. The criticality in this case has been observed to prevail for values of
a down to 0.05, with only 20% conservation. This came as a surprise since there was then
a widespread belief that the lack of conservation would spontaneously generate a length
scale, i. e. a “characteristic earthquake size”. In fact, it seems that criticality occurs

generically almost independently from the details of the toppling rule. Another model
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Fig. 1.8 The distribution of earthquakes for & = 0.20 for the model described in the

text. The straight line yields a power law distribution with an exponent b =1 — 7 = 0.8.

without conservation which appears to exhibit self-organized criticality is the “game of
life” [1.23], a cellular automaton representing a society of living and dying individuals.
Perhaps intermittent fluctuations in evolution, like the extinction of the dinosaurs, can be

seen as manifestations of SOC.

Figure 1.8 shows the distribution of earthquakes for & = 0.20. The straight line yields
a power law distribution with an exponent b = 1 — 7 = 0.8. The straight line indicates
that the system has self-organized into the critical state. Indeed, real earthquakes exhibit
a power law distribution, known as the Gutenberg-Richter law. The slope depends on
the degree of dissipation, (1/4 — «), so there is no universality of the exponent b in the
non-conservative case. One should not look for unique b-values in nature. Indeed different

values have been observed in different geographical areas.

The power law distribution of earthquakes stems from the fractal nature of the SOC
state, with correlated regions ranging over all length scales; those correlated regions, gen-
erated by the long term dynamics, are the equivalent of the active faults or fault segments
in real earthquakes. The fault structure changes on large geological time-scales. More

realistic long-range SOC models produce faults which topologically look much more like a
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Fig. 1.9 The distribution of A for o = 0.20 for the earthquake model described in the
text. The slope of the straight line gives p = 0.8.

real fractal-like arrangement of two-dimensional faults in a three dimensional matrix [1.21].

1.5. 1/f Noise

One-over-f, 1/f, noise can thought of as a signal arising from the superposition of
avalanches occurring in a self-organized critical state [1.2]. In order to illustrate how this
works, consider the weighted lifetime distribution of avalanches A(t) as defined in Section
1.2. Christensen et al. [1.6] showed that if A has a scaling behavior, A(t) ~ t*, then the

power spectrum S(f) becomes

S(f)y~f17H  for —1<p<l. (1.26)

Figure 1.9 shows the distribution of A for @ = 0.20 for the above earthquake model
[1.24]. The slope of the straight line gives b+ 1 = 1.8.

Figure 1.10 shows a direct measurement of the power spectrum; an exponent ¢ = 1.75
was found from the slope of the log-log plot, in reasonable agreement with the value 1.8

expected from the lifetime distribution function defined above.

In nature, values of the exponent of the 1/f noise in the interval 0.6- 2.0 have been

22



Fig. 1.10 A direct measurement of the power spectrum in the earthquake model.

reported [1.25]. A value of 1 corresponds to p = 0; this particular value is obtained for
a ~ 0.11 in the model. The exponent does depend on the parameters of the model and

thus is not universal, unlike the conventional exponents for equilibrium critical phenomena.

1.6 On Forest-Fires and Turbulence

A liquid driven by imposing a velocity difference v over a length scale L undergoes a
transition to a turbulent state with vortices exhibiting a large range of length scales. The
temporal variations of the velocity at a given spot are intermittent, with large and small
bursts of activity. The energy is dissipated locally within a short length scale known as

the Kolmogorov length.

Mandelbrot [1.1] has suggested that in turbulent systems the dissipation of energy
is confined to a fractal structure with features of all length scales. This behavior can
be simulated by a simple forest-fire model [1.26]. Distribute randomly a number of trees
(green dots) and a number of fires (yellow dots). on a two dimensional rectangular lattice.
Sites can also be empty. Update the system at each time ¢ as follows: (1) grow new trees
with probability p from sites that are empty at time ¢t — 1; (2) trees that were on fire at
time t — 1 die (become empty sites) and are removed at time ¢; (3) a tree that has a fire

as a nearest neighbor at time ¢ — 1 catches fire at time ¢. Periodic boundaries are used.
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Fig. 1.11 A typical state in the dynamics of the forest fire model described in the text.
Trees are green, fires yellow, and empty sites are black. The periodic lattice is 286 sites by

178 sites and new trees are born on empty sites with a probability of 1/32 per time step.

After a while the system evolves to a critical state with fire fronts of all sizes (Figure 1.11).
Drossel and Schwabl [1.27] have extended the model by adding a small probability f of
igniting new fires at each time step. In the limit f/p — 0 the ignitions create forest fires

where the number of trees burned, s, follows a power law, P(s) ~ s1™7 with 7 ~ 2.

The physics of earthquakes can be described in a similar language. The crust in a fault
region is driven by imposing a force or a strain over a large length L. In the stationary
state, the energy is dissipated in narrow fault structures forming a fractal set. The spatio-
temporal correlation functions for the two phenomena are quite similar although the time
scales are vastly different. In both cases, the energy enters the system uniformly (zero
wave vector) and leaves the system locally. There are a lot of similarities between the
earthquake model studied by Olami et al. [1.22] and the forest fire model. The analogy
has been explored in some detail by Kagan [1.28]. Maybe it is useful to think of self-

organized criticality and turbulence as one and the same phenomenon.
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