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On simple-cubic lattices, we compute low-temperature series expansions for the energy, magnetiza-
tion, and susceptibility of the three-state Potts model in D =2 and D =3 to 45 and 39 excited bonds, re-
spectively, and the eight-state Potts model in D =2 to 25 excited bonds. We use a recursive procedure
that enumerates states explicitly. We analyze the series with Dlog Padé analysis and inhomogeneous

differential approximants.

Some of the present authors recently described a
method!? similar to the finite-lattice method? for generat-
ing low-temperature series for discrete models. This
method is based on a recursive computer enumeration of
configurations and has resulted in series expansions for
the D=3 Ising model that extend available series by
several terms.2™*

In this paper, we present results from a similar analysis
for the low-temperature expansions of Potts models in
two and three dimensions on a simple-cubic lattice. We
will not describe the method used in much detail. It has
already been outlined in Ref. 2 and will be described in
detail in a separate paper.

The energy for the g-state Potts model is defined to be

E=3(1-8,,), (1)
ij

where o; is a site-defined field that takes g possible
values. The sum is taken over all nearest-neighbor pairs
of spins, with § being the Kronecker symbol.

The partition function is the sum of the Boltzmann
weights over all configurations,

Z=Se7FE, (2)
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Sorting configurations by energy, we rewrite this as a sum
over E. Defining P(E) to be the number of states with a
given energy E, we have

dN
Z=3 P(EuE, &)
E=0

where d is the number of dimensions, N is the number of
sites, and u =e 5.

We compute the coefficients P (E) exactly on small sys-
tems by recursively assembling the system one site at a
time. The method enables us to build up a lattice with
arbitrary length in one direction. Intermediate stages re-
quire an explicit enumeration of exposed slices transverse
to this direction. This effectively reduces the computa-
tional complexity to that of a system of one less dimen-

sion.

The starting point is a list of all states and correspond-
ing energies for a single transverse layer of the lattice. In
D=2 the transverse layer is a line of spins; in D=3 itis a
plane of spins. All the spins outside this transverse layer
are frozen to the same value; that is, the boundary condi-
tions in the longitudinal direction are cold. Spins are
then sequentially freed to build up the lattice in the longi-
tudinal direction. We store the number of states with a
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given energy E and the exposed top layer in an array
Do(E,I), where the integer I is an index which specifies
the exact configuration of the exposed transverse layer
using bit coding. When a new spin is added, we obtain
the new counts py(E, ) as a sum over the old counts, i.e.,

PoE,D="S po[E—AULI)I']. @)
<

Here I’ can differ from I only in the bits representing the
newly covered spins, and A(Z,I') is the change in energy
due to any newly changed bonds. For the present
analysis we add the spins one at a time. Thus, the sum in
the above equation is only over q terms, representing the
g possible values of the newly covered spin. After the lat-
tice is grown, a sum over the top layers gives the result-
ing P(E)= 3 po(E,I). We always continue this recur-
sion sufficiently to avoid finite-size errors in the longitudi-
nal direction.

As the temperature goes to zero, so does the variable u.
Thus, what we have in Eq. (3) is the low-temperature ex-
pansion for Z. From it we compute the series for the
average energy, {E)=[u(d/3u)]log(Z). Subtracting
this expectation value before adding the last spin from its
value after adding the last spin, we obtain the average en-

ergy per new site. This also eliminates the effect of the

fixed end boundaries. Writing

(E/N)= 3 e;u’, . (5)
i

the low-temperature expansion amounts to listing the
coefficients e;.

The recursive technique can be extended to enable cal-
culation of quantities such as the magnetization and sus-
ceptibility. We define a magnetization in the Potts model

by
(M)=3(8, o)=NF mu’, (6
i j

assigning to each unexcited spin the value 1, and to each
excited spin the value zero. The calculation of suscepti-
bility is carried out using the fluctuation-dissipation
theorem and we define the low-temperature series
coefficients x; as follows:

N, ={M?*)—(M)*=N3 x;u’. @
i

Let p(E,M,I) be the number of states with given energy,
magnetization, and exposed top layer I. To compute any
moment of the magnetization, it would be sufficient to
compute p (E,M,I). However, one can avoid computing
this memory expensive quantity. Let us demonstrate this
for the case of the magnetization.

First, note that po(E,I)= 3, p(E,M,I) is the count
we had before. To compute the magnetization, we need
one more count: p,(E,I)= 3, M,(E,M,I). This is be-
cause the expectation value of magnetization can be writ-
ten as

3 P(EuE

_E o .
(M)= Z , (8)

GYAN BHANOT et al. 48

with P{(E)=3;p,(E,I) and Z= 31, po(E,[)u®. The
counting scheme for p,(E,I) is easy to derive. In analogy
with Eq. (4) one can write

PYED= Mp"(E,M,)= S Mp(E—A,M—A,,I')
M M, I
=3 (M—A,+A,)p(E—A,M—A,,I'
M I

= [p(E—A,I')+A,,p(E—A,I)]. 9
Iz

Here A,=A,(LI') and A, =A,(I,I') denote the
change in energy and magnetization when adding the
new spin. Thus, computation of the magnetization series
requires just the introduction of one additional count
(which only doubles the memory requirement) and we
can calculate the magnetization series to essentially the
same order as the energy series.

For the susceptibility series, we need to compute
(M?). This requires a count p,(E,I)=T,,M?p (E,M,]I).
It is easy to see that p, obeys the recursion relation

PYUED=S [py(E —A,,I')+2A,,p,(E—A,,I')
<

+A2 po(E —A,,I] . (10)

As discussed in Ref. 2, we work on generalized helical
lattices and label our lattice points by their ordinal num-
ber on a helix. In three dimensions, the nearest neighbors
on the lattice in the x, y, and z directions are separated by
hy, hy, and h, steps along the helix, respectively. We as-
sume that the 4’s are ordered so that h, <h, <h,. Then,
our numerical method requires us to keep track of, at

most, g * states and so we try to make A, as small as pos-
sible. Let n be the effective lattice size, defined as the

. length of the shortest closed path on the helical lattice.

For a given set of h values, if we compute the set of
nonzero vectors S ={n,,n,,n,;n.h,+n,h,+n,h,=0}
then n =minS (|n,,|+|ny|+rnz[). The series expansion
will be correct up to the order »4* ™V, Higher orders are
corrupted by contributions from graphs that wrap
around the lattice. However, as described in Ref. 2, we
can combine results from different helical lattices to can-
cel these finite-size effects to some order in the series. In
two dimensions, there is not enough complexity for this
cancellation mechanism to work. Instead, one observes
that keeping 4, spins in the top layer, the optimal choice
of the lattice is A, =h,—1. This gives the series correct
to order 4h, —3.

Our series are listed in Tables I-III. The series for
D=2 and D=3 Potts models were computed on a CM-
200/CM-2 connection machine using CM-FORTRAN and
c* programs. The D=2, eight-states model series were
computed on a CRAY-2 using a C code and checked on a
CM-2 using CM-FORTRAN code. To obtain 3D series up
to 39 excited bonds, we used lattices of effective size up to
ten. This required the top layer to have at most 15 spins.
In Table IV we show the lattices and combination factors
used.

Note that our definition of M in Eq. (6) is such that in
the completely disordered state it has the value N /q.
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The proper order parameter for Potts models is the so-
called reduced magnetization My which is related to M
by the formula My =(gM —N)/(qg —1). The reduced
magnetization takes the values N and O in the completely
ordered and disordered states, respectively. The results
we give below from our analysis of series are for the re-
duced magnetization and the corresponding susceptibili-
ty.
In addition to the usual Dlog Padé (DIP) method,*$
we will use the method of inhomogeneous differential ap-

proximants (IDA) introduced by Fisher and Au-Yang’
(see also Ref. 8). These are useful in handling singulari-
ties of the form

F(u)=A4w)1—u/u¥+Bu), (11)

where 4 and B are analytic in u.

Given a series expansion for F(u) to Nth order,
Fy(u)=1+ 3N, f:u’, (we will use the simplification that
one can always normalize the series so that the constant

TABLE 1. The low-temperature expansion coefficients ¢;, m;, and y; for the energy, magnetization,
and susceptibility series for the g=3 Potts model in D=2 on a simple-cubic lattice.

i e; m; c;
0 0 1 0
1 0 0 0
2 0 0 0
3 0 0 0
4 8 -2 2
5 0 0 0
6 24 —8 16
7 28 —8 16
8 32 —24 100
9 216 —72 216
10 160 —140 844
11 660 —320 1552
12 2072 —1164 7 844
13 1664 —1560 12112
14 11760 —7044 60268
15 17700 —13000 118944
16 41088 —35984 424072
17 156 468 —101736 1081382
18 207 240 —219616 3201728
19 849 300 — 647536 8670688
20 1817048 —1602 194 25713154
21 4021780 —3970384 67206 560
22 13178 624 —11239056 203077760
23 25754296 —26891584 532881432
24 75653408 —73534214 1558159918
25 193458 400 —191374 464 4250639632
26 440725376 —486 815472 11956293 152
27 1296485 460 —1323 802480 33296 697 848
28 3009317200 —3380001 144 92 820406 096
29 7977739920 —8964 296480 257249275776
30 21217637 824 —23766 809 488 721023458 656
31 51359965976 —61628612552 1986 080278 600
32 140885970816 —165028 619666 5561045323298
33 354038121756 —432231505 864 15359165767 512
34 916153258448 —1142 608 252 368 42717 426328784
35 2439917838708 —3039729276 192 118457 421095792
36 6161990034 800 —7994207 679 356 328 170466 563 836
37 16397314 674708 —21295402476752 909 829 346 983 664
38 42 540 620 667 584 —56399959949412 2520622 606 225 868
39 110314458936 968 — 149510058 508 096 6973368 153491 880
40 292427 669006272 —398 341255729 746 19322 697243220158
41 756 553239055 504 —1056 154269 407 136 53409977 638 363032
42 1994 873374110312 —2 813530068 950904
43 5238354130103 568 —7489 714 245193 504
44 13686 401970717088 —19928407 714223232
45 36195015152016276 —53175417 534052 136
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term is unity), one computes coefficients for polynomials
Qi lu)=3Foqu’, Ry(u)=1+ SM . ru’, and S;(u)
=3J_,s;u’, which satisfy

FyQp +S;=FyRy, (12)

to order N, with L +M +J=N—2. Note that for
S;=0, one obtains the usual Dlog Padé ratio from
Q; /Ry Tt is easy to see that potential critical points u,
are the zeros of R, and for each of these, the exponent §
is estimated as £=—Q; (u.) /Ry (u,).

Consider first the D=2 Potts models. Here, we know
from self-duality that the critical point is at u,
=1/(V/qg +1). For q <4 the transition is continuous and
the critical exponents are known exactly (see Ref. 9 and
references therein). Models with ¢>4 undergo a first-
order phase transition. Having results from both of the
above categories available, our D=2 series offer them-
selves as a good testing ground for series analysis
methods.

Given the low-temperature series, does one have
enough information to determine the nature of the transi-
tion, assuming that the critical temperature is exactly
known? In D=2, because of self-duality, this is easy if
the series at hand has a sufficient number of terms. To il-
lustrate this, we plot in Fig. 1(a) the energy as a function
of u from the low-temperature series and its dual high-
temperature series for g=3 and ¢=8. In Figs. 1(b) and
1(c) we plot the latent heat L (n) derived using duality at
the known critical point as a function of the number of

terms n in the series. The fits of L to a power law in 1/n
[Figs. 1{b) and 1(c)] convincingly demonstrate that the
g=3 model has a second-order transition while the g=8
model has a first-order transition with the latent heat
equal to 1 to 2 parts/10°.

In general however, self-duality is not available as a
symmetry. In this case, one must rely on DIP and IDA
analyses on the low-temperature series to determine the
critical properties. Our arguments below are similar in
spirit to the discussion presented by Enting and
Guttmann. 1°

If the system undergoes a second-order phase transi-
tion, one expects, in general, that the order parameter
Mp /N vanishes at the critical point, approaching it with
infinite slope. Estimates of the critical temperature
(poles) from DIP should then cluster well around the ex-
act value and estimates of the critical exponent S (resi-
dues) should also be quite accurate. On the other hand,
at a first-order transition, the magnetization is finite and
nonzero and its slope can be either finite or infinite. In
this case one would expect the approximants to continue
the curve beyond the critical temperature along the so-
called pseudospinodal line.!! This line intersects the tem-
perature axis at the point ug with corresponding ex-
ponent B¢. Applying DIPs in this case should then result
in a systematic overestimation of the critical temperature
because it is ug that the Padé is trying to fit.

In the case of a first-order transition with a divergent
slope of the magnetization as the transition is ap-
proached, DIPs still tend to overestimate the transition

TABLE II. The low-temperature expansion coefficients e;, m;, and y; for the energy, magnetization,

and susceptibility series for the g=38 Potts model is D=2 on a simple-cubic lattice.

i & ) R o ¢
0 0 1 0
1 0 0 0
2 0 0 0
3 0 0 0
4 28 -7 7
5 0 0 0
6 84 —28 56
7 588 —168 336
8 —588 o9 0
9 4536 —1512 4536
10 11760 —4060 14 504
11 —13860 0 15792
12 2050172 —68 859 288 169
13 144 144 —84 840 556752
14 271460 —256424 2062088
15 7553700 —2678760 15132264
16 —713692 —2049229 25582802
17 45219048 —21023016 165495792
18 232853880 —93466 856 720185368
19 — 14850780 —107 162496 1588846728
20 2822644748 —1187630969 10588 862 669
21 6212314080 —3159741984 33856 668 720
22 8166041 834 —~7756 117236 108 773 186 200
23 131708 763 816 —56277329 304 596266427 232
24 167481870528 —118516443339 1709093729238
25 846 878 642 400 —506752816584 .7126592218032
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TABLE III. The low-temperature expansion coefficients e;, m;, and y;, for the energy, magnetiza-
tion, and susceptibility series for the g=3 Potts model in D=3 on a simple-cubic lattice.

i e; m; ) e;
0 0 1 0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 12 —2 2
7 0 0 0
8 0 0 0
9 0 0 0
10 60 —12 24
11 66 —12 24
12 —168 28 —56
13 0 0 0
14 420 —90 270
15 900 —180 540
16 —1728 318 —930
17 —2448 432 —1296
18 6708 —1320 4768
19 9462 —1992 7968
20 —14280 2760 —10560
21 —49 686 9368 —36992
22 71940 —14460 64812
23 177192 —35280 163 440
24 —194 544 36680 — 165464
25 —684 300 134568 —659088
26 515892 —108516 600024
27 3087234 —609 692 3278256
28 —1927296 370500 —1980408
29 —10943 904 2153016 12285816
30 3863712 —792218 5005014
31 44 383 506 —8 867580 55200 864
32 —4406976 935124 —6062712
33 — 177069 948 34889512 —227203096
34 —1133220 63834 1954 650
35 652 560090 — 130265472 914339736
36 199263288 —39322372
37 —2553456210 507 892056
38 —1235636652 239776 590
39 9742992 324 — 1940344 524

TABLE IV. The lattice parameters and combination factors
that give the series accurate to 39 excited bonds in D=3,

hs hy he _ Coefficient
9 14 15 2
11 12 15 —1

9 11 15 —2 -
10 13 14 1
11 12 14 5

9 11 14 -1

7 12 13 1
10 11 13 -3

8 10 13 1

5 11 12 3

7 10 12 —5

point because the finite value of the magnetization is not

modeled in the DIPs (more detailed reasons can be found

in Ref. 12). However, for this case, the IDAs should

- treat the situation better because they can account for a

finite (M /N ) at the critical point. Thus, comparing the
results of the two types of approximants, one might be
able to determine the order of the transition.

Applying DIPs to the 45-term magnetization series of
the three-state model in D=2 leads to a slight systematic
underestimation of the critical point. Taking into ac-
count seven most central approximants we obtained
u,=0.3659510.00003, which is to be compared with
the exact value u,=0.36602... . The error here corre-
sponds to the scattering of values from the different DIPs.

-.In the light of the above discussion, this suggests that the
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transition is continuous. We estimate the critical ex-
ponent $=0.108410.0002 by evaluating it at the known
critical point for this model. The error bar is meaning-
less, of course, as it comes only from the error on the ex-
trapolation and ignores the systematic effects of the finite-
ness of the series. The value obtained is about 2.5%
below the exact result S=1. e

In the eight-state model in D=2, on the other hand,
DIPs show a critical point at u,=0.2628+0.0003, which
is substantially beyond the true value u,.=0.2612... .
This suggests a first-order phase transition. In Fig. 2 we
plot u, vs B for small values of J. The points for different
J lie fairly well on a line with an obvious tendency to

overestimate the critical point. This again establishes the
first-order nature of the transition. The corresponding
pseudoexponent estimated from DIPs has the value
Bg=0.05910.005. '

Similar ideas can be applied to the energy and specific-
heat series. At a first-order phase transition there is a

- finite latent heat but the energy curve can have either

finite or infinite slope (specific heat) as that point is ap-
proached. DIP analysis of the g=3 specific-heat series in
D=2 shows a slight overestimate of the critical point,
namely u,=0.36626+0.00001. IDAs, on the other
hand, lead to a small underestimate (see Fig. 3) giving an
overall consistency with the second-order phase transi-

— g > - . [ ad = . -~ :

0.5 T 1 1 T L {1 T T 11 T T T T 7 l“t Trrr
- ] [ I ! |
B (b)
- Lo : . _:f‘ . | .
- " Latent Heat X .
0.4 —, q=3, D=2, <E/N> Series —]
- ° R ) i
=, ]
03| ° ]
- - °. -
’E g S o m
=0 ]
0.2 <—— 1.028(7) n~°8M® —
0.1— " —
a 6‘0 C 1 "‘ !-l l. 11 1 T’r ‘I‘-;l" ['; {“Ml'»l; i L [ " lA i1 1t 11 7
0 10 20 30 40 50 60

n

Latent Heat o
q=8, D=2, <E/N> Series

o]

<~ 0.501(1) + 1.00(8)n 2%

2-Ollll]|lllﬁllll.lll’llll"’“
I (@]
1.5 — —
Ao
S —
=3} | B
v 4
05— —
0\0_7:1' 111]111r4|r>‘ g |_>
0.0 0.2 0.4 0.6 0.8 1.0
u
1.0 T T T ] T
r o
09— . ° -
- °
3 °
— B °°
£ 08—
3 - )
0.7 —
0.6 1 1 1 1 1 TR
0 10

FIG. 1. (a) The average energy from the series expansions in D=2 for ¢=3 and g=8. Duality was used to get the series in the
high-temperature phase from the series in the low-temperature phase. The exactly known transition points are shown as vertical
lines. (b) The latent heat L (n) as a function of n for g=3 in D=2. The solid line is a fit to a power law and demonstrates that for

n = o0, the latent heat vanishes. (c) The latent heat L (n) as a function of n for g=8 in D=2. The solid line is a fit to a power law
plus a constant and demonstrates that for » = o, the latent heat is about 1/2.
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FIG 2. u, vs the exponent 3 from the magnetization series
for the g=8 model in D=2. The exact value of u, is the vertical
line.

tion present. DIPs average for critical exponent
a=20.41210.001 is rather poor when compared to the ex-

act value a=1. This is probably due to the strong

confluent singularity present in this case.!® The results of
the IDA analysis is shown in Fig. 3 where we plot u, vs a
for various J comes from 0-20 with L and M chosen to
be equal or differing by, at most, 1 [see Eq. (12)]. Notice
that if we fit the data to a straight line and compute the
value of o at the exactly known critical point (vertical
line in Fig. 3), we obtain a result which differs from the
exact value by about 1%.

In the g=8 model, the results from the specific-heat
series and magnetization series are very consistent with
each other. There is an overestimate of the critical point
by DIPs (u3=0.26200.0001) as well as by IDAs. The

T LB LA e B L R
- <E/N> Series, q=3, D=2~ '~
- IDA-s to J=20 -
- a = 0.330 - 4.
0.330— a (Exact) = 1/3

0.325 |—

1|c']l||||!4lllv||1

0.36600 0.36B01 0.36602

U

0.320

FIG. 3. u, vs the exponent o from the series for the specific
heat for ¢g=3 in D=2 from IDA analysis. The vertical line is
the exact value of u,.
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- averaged pseudoexponent from DIPs is ag=0.592

'+0.004, o

Finally, an analysis of the susceptibility series for the
¢=3 model using the Dlog Padé and IDA analyses gave
¥=1.47140.02 by extrapolating to the known critical
point, as was done above for o and B. This is to be com-
pared with the exact result y=13/9=1.444... . For
the ¢==8 model, we ‘estimate uy=0.262940.0009,

ys=1.1620.07.

Let us now turn to the series for the g=3 Potts model
in D=3, given in Table III. Theoretically, this is the
most interesting case of these considered in this paper,

“because of its connection to the SU(3) lattice gauge

theory in D=4 (Ref. 14) and because of the lack of any
exact results. There was a good deal of confusion about
the nature of the transition in the past but by now the
first-order nature of this transition seems to be well estab-
lished.'® Although the transition temperature is not
known exactly, there are very accurate Monte Carlo esti-
mates for it. For the purpose of our analysis we will as-
sume that the value u,=0.57659(1) estimated in Ref. 15
is the exact result. We will do so because we found that
neither the DIP nor the IDA analyses can yield a more
accurate value.

Consider first the magnetization series. In Fig. 4 we
show the results from central Dlog Padés. The data
cluster well around the value u,=0.578510.0003, quite
far from 0.57659. IDAs show the same tendency as can
be seen in Fig. 5. Here, the results from small J fall very
nicely on a straight line beyond the critical point which is
marked by a cross. These results support the conclusion
that this model has a first-order phase transition in agree-
ment with Ref. 10 and Monte Carlo data.’® The critical
pseudoexponent from DIPs has the value Bg=0.204
+0.002, which agrees very accurately with results of Mi-
yashita, Betts, and Elliot'® who analyzed a shorter series,
and also with numerical simulations. !’

T Q2040 i I T T T l-‘] LI l T T | T T 1 L
- M series o 4' . .;' T
q=3, D=8~ L R, i
L DIP-s A o |
I - —_—
@ 0.20351— -t R e —
o
L e -
: P T I |
+ 0.2030 —|—J{ 1y lrl [N | |v"TA|7|A1 1 l (=
0.57846 0.57848 0.57850 0,5785% 0.57854
u. - -

FIG. 4. u. vs the exponent B from the magnetization series
for the =3 model in D=3 using DIPs.
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FIG. 5. u. vs the exponent £ from the magnetization series
for the g=3 model in D=3 using IDAs with small J values.
The exact value of u, is marked with a plus and is a Monte Car-
lo result from Ref. 15.

Next consider the specific-heat series. Here one ob-
tains stable results from many central Dlog Padés. Also,
the IDAs are quite stable for small J. Figure 6 shows the
results of these analyses. The circles correspond to the
DIPs and the other symbols are the results from the
IDAs for J =4. There is no clear evidence for systematic
overestimation of the critical point by either DIPs or
IDAs, suggesting that the transition is weakly first order
in this variable. The straight lines in Fig. 6 are least-
square fits to IDAs and DIPs. Since the latent heat is
small, one would expect that these should intersect at the
critical point where they are both dominated by the
singularity. Away from the critical point, the Dlog Padé
and the IDAs treat the nonleading corrections differently
and so the results from them could be different. Indeed,
the lines in Fig. 6 intersect at u, =0.5766(2), a==0.421(2).
We have estimated the error on these parameters from
the errors in the fitted parameters for the straight lines.

Finally, we analyzed the ¢g=3 susceptibility series in
three dimensions. Here the combined data for DIP and
IDA fall nicely on a line. We estimate ¥ =1.085+0.005
by evaluating the fitted line at 4, =0.57659.

Recently, Vohwinkel'® has extended the shadow lattice
method and shown how one can obtain extremely high-

c

FIG. 6. u. vs the exponent a from the series for the specific
heat for ¢=3 in D=3 from DIP and IDA analysis. The transi-
tion point is accurately determined by the crossing of the lines
for DIPs and IDAs.

order low-temperature expansions. His series for the
magnetization has several more terms than ours and al-
though he does not generate series for the other quanti-
ties we measure in the present paper, we presume he can
do so. A challenge now is to see if the ideas of Ref. 18
can be incorporated into our method.
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