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ABSTRACT

Self organized criticality refers to the tendency of highly dissipative systems to drive
themselves to a critical state. This has been proposed to explain why observed
physics often displays a wide disparity of length and time scales. The phenomenon
can be studied in simple cellular automaton models.

Many objects in nature are best described geometrically as fractals, with self-
similar features on all length scales. The universe consists of clusters of galaxies,
organized in clusters of clusters of galaxies and so on [1]. Mountain landscapes have
peaks of all sizes, from kilometers down to millimeters. River networks consists
of streams of all sizes. Turbulent fluids have vortices over a wide range of sizes.
Earthquakes occur on structures of faults ranging from thousands of kilometers to
centimeters.

The origin of fractals is a dynamical, not a geometrical, problem. The laws of
physics are local, but fractals are nevertheless organized over the furthest distances.
The mystery is enhanced by the fact that large equilibrium systems, operating near
their ground state, tend to be only locally correlated. Only at a critical point where
a continuous phase transition takes place are those systems fractal.

But real systems are dissipative, with friction, and rarely go to their ground
state, unlike the ideals discussed in freshman physics. Consider, for example, a pen-
dulum. The ideal motion is periodic and for small amplitudes is well approximated
by a sine wave. To make it more realistic one can put in a drag term, giving rise
to a damped oscillatory behavior with with a decreasing amplitude theoretically
continuing forever. However, in the real world the motion will be impeded by some
imperfections, perhaps in form of grit. Once the amplitude gets small enough, the
pendulum will suddenly stop, and this will generally occur at the end of a swing
where the velocity is smallest. This is not the state of smallest energy, and indeed
the probability is a minimum for stopping at exactly the bottom of the potential.
In a sense, the system is most likely to settle near a “minimally-stable” state, far
from any “thermal equilibrium.”

Generalizing to a multi-dimensional system of many coupled pendula, a new
issue arises. A minimally stable state will be particularly sensitive to small pertur-
bations which can “avalanche” through the system. Thus, small disturbances could
grow and propagate through the system with little resistance despite the damping



and impediments. Since energy is dissipated through this process, the energy must
be replenished for avalanches to continue. The systems that we shall study are
ones where energy is constantly supplied and eventually dissipated in the form of
avalanches.

The canonical example is a simple pile of sand. Adding sand slowly to a flat
pile will result only in some local rearrangement of particles. The individual grains,
or degrees of freedom, do not interact over large distances. Continuing the process
will result in the slope increasing to a critical value where an additional grain of
sand gives rise to avalanches of any size, from a single grain falling up to the full
size of the sand pile. The pile can no longer be described in terms of many local
degrees of freedom, but only a holistic description in terms of one sandpile will do.
The distribution of avalanches follows a power law.

“Self-Organized Criticality” refers to this tendency of large dissipative sys-
tems to drive themselves to a critical state with a wide range of length and time
scales [2-5]. The idea provides a unifying concept for large scale behavior in sys-
tems with many degrees of freedom. It has been looked for in such diverse areas as
earthquake structure, economics, and biological evolution.

Self-organized criticality complements the concept of “chaos” wherein sim-
ple systems with a small number of degrees of freedom can display quite complex
behavior. Chaos is associated with fractal “strange” attractors in the phase space
spanned by non-linear systems with only a few degrees of freedom. These self-
similar structures need have little to do with fractals in real spatially extended
physical systems. Specifically, chaotic systems exhibit white noise with short tem-
poral correlations whereas fractal systems are expected to have long range temporal
correlations. In contrast, self-organized criticality emphasizes unifying features in
the coherent evolution of systems with many degrees of freedom.

The self-organized critical state can be demonstrated by computer simula-
tions on toy sandpile models. The simplest example is a cellular automaton formu-
lated on a two-dimensional regular lattice of N sites. Integer variables z; on each site
i are used to represent the local sandpile height. Here we consider a two-dimensional
lattice with open boundaries. Addition of a sand particle to a site i is represented by
increasing the value of z; at that site by unity. When the height somewhere exceeds
a critical value z.., here taken to be 3, there is a toppling event wherein 1 grain of
sand is transferred from the unstable site to each of the 4 neighbor sites, i.e the
value of z; is reduced by 4 and the values of » at the 4 neighbor sites are increased by
1. The updating is done concurrently, with all sites updated simultaneously. The
initial toppling may initiate a chain reaction, where the total amount of topplings
is a measure of the size of an avalanche.

To explore self organized criticality in this model, one can randomly add sand
and have the system relax. The result of such an addition becomes unpredictable,
with one only being able to find the outcome by actually simulating the resulting
avalanche. Figure 1 shows a log-log plot of the distribution of the avalanche sizes s

2



Fig. 1 A log-log plot of the distribution of the avalanche sizes s and durations ¢
for the sandpile model.

and durations t. The linearity indicates a power law,
P(s)~s'"7, r1~21, (1)

where s is the number of tumblings in an avalanche and P is the probability distri-
bution for avalanches of a given size.

For a random distribution of 2’s one might expect the chain reaction gener-
ating the avalanche to be either sub-critical, in which case the avalanche would die
after a few steps and large avalanches would be exponentially unlikely, or super-
critical, in which case the avalanche would explode with a collapse of the entire
system. The power law indicates that the reaction is precisely critical, i.e the prob-
ability that activity at some site branches into more than one active site is balanced
by the probability that the activity dies. Thus, by evolving through avalanche after
avalanche, the matrix has “learned” to respond critically to the next perturbation.

Several other quantities which obey fractal scaling laws can be defined for
the sandpile. For instance, the duration ¢, that is the number of updatings for an
avalanche to complete, has a distribution

Pt)~t"T 1 ~214, (2)

Also, the number of distinct tumbled sites, s;, which is different from the total
number of topplings since some sites topple more than once, goes as

P(sq) ~ sy ™, 14~ 2.0T. (3)

The values of the exponents quoted here were calculated by Kim Christensen
[6]. The model can be defined in d = 3,4, etc. dimensions. For instance, r ~ 2.31 in
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three dimensions; thus, the values of the exponents depend on d. For an excellent
discussion of these exponents and their relation to each other, see the paper by
Christensen et al. [7].

It would be highly desirable to have an analytical theory, such as the renor-
malization group theory for equilibrium critical phenomena, by which one could
estimate the exponents and at the same time gain insights into the mechanisms
of self-organized criticality. We are not yet at that point. However, in a series of
papers, Deepak Dhar and co-workers have shown that the sand model has some
rather remarkable mathematical properties [8-11]. In particular, the critical attrac-
tor of the system is characterized in terms of an Abelian group. The properties of
the group can be utilized to calculate the number of states belonging to the critical
attractor, and the rate of convergence to the attractor. Further consequences of the
Abelian algebra have been explored [12-13].

Dhar introduced the useful toppling matrix A;; with integer elements rep-
resenting the change in height, z» at site i resulting from a toppling at site j [8].
Under a toppling at site j, the height at site i becomes z; — A; ;. For the simple two
dimensional sand model the toppling matrix is given as

A

A ;=0 otherwise.

i; =—1 i,j nearest neighbors (4)

For this discussion there is little special to the specific lattice geometry;
indeed the following results easily generalize to other lattices and dimensions; in
fact, on a Cayley tree the model can be solved exactly. The analysis requires only
that under a toppling of a single site i, that site has its slope decreased (A;; > 0),
the slope at any other site is either increased or unchanged (A;; <0, #4), the total
amount of sand in the system does not increase (3_; A;; > 0), and, finally, that each
site can be connected through topplings to some location where sand can be lost,
such as at a boundary.

For the specific case in Eq. (4), the sum of slopes over all sites is conserved
whenever a site away from the lattice edge undergoes a toppling. Only at the lattice
boundaries can sand be lost. Thus the details of this model depend crucially on
the boundaries, which we take to be open. A toppling at an edge loses one grain of
sand and at a corner loses two.

The actual value of the threshold z; is unimportant to the dynamics. This
can be changed by simply adding constants to all the z;. Thus without loss of
generality we consider zr = 3. With this convention, if all 2; are initially non-
negative they will remain so, and we restrict ourselves to states C' belonging to
that set. The states where all z; are positive and less than 4 are called stable; a
state that has any z; larger than or equal to 4 is called unstable. One conceptually
important configuration is the minimally stable state C* which has all the heights
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at the critical value zr. By construction, any addition of sand to C* will give an
unstable state.

We now formally define various operators acting on the states C. First, the
“adding sand” operator «; acting on any C yields the state «;C where z; = 2; + 1 and
all other » are unchanged. Next, the toppling operator ¢; transforms C into the state
with heights 2} where 2 = z; — A; ;. The operator U which updates the lattice one
time step is now simply the product of ¢; over all sites where the slope is unstable,

UC = H e (5)

where p; = 1 if z; > 4; 0 otherwise. Using U repeatedly we can define the relaxation
operator R. Applied to any state C this corresponds to repeating U until no more
z; change. Neither U nor R have any effect on stable states. Finally, we define the
avalanche operators a; describing the action of adding a grain of sand followed by
relaxation

aiC = RaiC. (6)

At this point it is not entirely clear that the operator R exists; that is it might
be that the updating procedure enters a non-trivial cycle. We now prove that this
is impossible. First note that a toppling in the interior of the lattice does not
change the total amount of sand. A toppling on the boundary, however, decreases
this sum due to sand falling off the edge. Thus, the total sand in the system is
a non-increasing quantity. No cycle can have toppling at the boundary since this
will decrease the sum. Next, the sand on the boundary will monotonically increase
if there is any toppling one site away. This can not happen in a cycle, thus there
can be no topplings one site away from the edges. By induction there can be no
toppling arbitrary distances from the boundary; thus, there can be no cycle, and the
relaxation operator exists. Note that for a general geometry this result requires that
every site be eventually connected to an edge where sand can be lost. With periodic
boundaries no sand would be lost and thus cycles are expected and observed. We
call these unphysical models “Escher models” after the artist constructing drawings
of water flowing perpetually downhill and yet circulating in the system.

It is useful to introduce the concept of recursive states. This set, denoted
R, includes those stable states which can be reached from any stable state by some
addition of sand followed by relaxation. As the minimally stable state C* can be
obtained from any other state by adding just enough sand to each site to make z;
equal to three, it belongs to R. Thus, one might conveniently define R as the set of
states which can be obtained from C* by some addition of sand.

It is easily shown that there exist non-recursive, transient states; for instance,
no recursive state can have two adjacent heights both being zero. One can also show
that the self-organized critical ensemble, reached under random addition of sand to
the system, has equal probability for each state in the recursive set.
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The crucial result of Refs. [8-11] is that the operators a; acting on stable
states commute, and are invertable when restricted to recursive states. Indeed they
generate an Abelian group when applied to recursive states.

This result enables us to count the number of recursive states. As all recursive
states can be obtained by adding sand to C* , we can write any state C € R in the

form
C = (H agi> C*. (7)

Here the integers n; represent the amount of sand to be added at the respective
sites. However, in general there are several different ways to reach any given state.
In particular, adding four grains of sand to any one site must force a toppling and is
equivalent to adding a single grain to each of its neighbors. This can be expressed
as the operator statement

af =[] @ (8)

jEnn

where the product is over the nearest neighbors to site i. We can rewrite this
equation by multiplying by the product of inverse avalanche operators on the nearest
neighbors on both sides, thus obtaining

H a]-A” =F 9)

where E is the identity operator. This allows us to change the powers appearing in
Eq. (7). If we now label states by the vector n = (ni,ns,ns....ny) we see that two
such states are equivalent if the difference of these vectors is of the form -, 8;A;
where the coefficients 3; are integers. These are the only constraints; if two states
can not be related by toppling they are independent. Thus any vector n can be
translated repeatedly until it lies in an N- dimensional hyper-parallelopiped whose
base edges are the vectors Aj;, j =1,....... N. The vertices of this object have integer
coordinates and its volume is the number of integer coordinate points inside it. This
volume is just the absolute value of the determinant of A . Thus the number of
recursive states is given by the determinant of the toppling matrix A.

For large lattices this determinant can be found easily by Fourier transform.
In particular, whereas there are 4N stable states, there are only

(7,m) qu N
exp (N/( @n)? In(4 —2¢, — qu)> ~ (3.2102..) (10)

—m,—)

recursive states. Thus starting from an arbitrary state and adding sand, the system
“self-organizes” into an exponentially small subset of states forming the attractor
of the dynamics.

Majumdar and Dhar [11] have constructed a simple “burning” algorithm to
check and enumerate the configurations belonging to the recursive set. For a given
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configuration, add one particle to each of the edge sites, two particles to the corners,
and update according to the usual rules. If the original state is recursive, this will
generate an avalanche under which each site of the system will tumble exactly once.
If the state is not recursive, some untumbled sites will remain. Fig. 2 shows such a
process underway on a typical recursive state. Here sites which have already burned
are shown in cyan, while the remaining sites in the center have not yet burned. The
small number of sites shown in light tan are the active active burning sites. Heights
zero through three are shown as black, red, blue, and green, respectively. Note the
fractal shape of the interphase.

One might ask if these power law distributions of avalanches can be observed
with real sandpiles. After a couple of false starts with inconclusive results, there
are now several experiments reporting power law distributions of avalanches [14-16].
Grumbacher et al. [15] built small heaps on a scale, and monitored the distribution
of avalanches of particles falling off the edges. The experiments were performed
using iron and glass spheres of the same size. In all cases a power law distribution
function was found. In a remarkable experiment Bretz et al. [16] were even able to
image the flow of small avalanches not reaching the edge and measure their flow
and size.

Mandelbrot [1] has suggested that the dissipation of energy in turbulent
systems is confined to a fractal structure with features at all length scales. This
behavior can be simulated by a simple forest-fire model [17]. Distribute randomly
a number of trees (green dots) and a number of fires (yellow dots). on a two
dimensional rectangular lattice. Sites can also be empty. Update the system at
each time t as follows: (1) grow new trees with probability p from sites that are
empty at time t—1; (2) trees that were on fire at time ¢t -1 die (become empty sites)
and are removed at time ¢; (3) a tree that has a fire as a nearest neighbor at time
t — 1 catches fire at time ¢. Periodic boundaries are used. After a while the system
evolves to a critical state with fire fronts of all sizes (Figure 3). Drossel and Schwabl
[18] have extended the model by adding a small probability f of igniting new fires
at each time step. In the limit f/p — 0 the ignitions create forest fires where the
number of trees burned, s, follows a power law, P(s) ~ st 7, with 7 ~ 2.

The physics of earthquakes can be described in a similar language. The crust
in a fault region is driven by imposing a force or a strain over a large length L. In
the stationary state, the energy is dissipated in narrow fault structures forming a
fractal set. The spatio-temporal correlation functions for the two phenomena are
quite similar although the time scales are vastly different. In both cases, the energy
enters the system uniformly (zero wave vector) and leaves the system locally. There
are a lot of similarities between the earthquake model studied by Olami et al. [19]
and the forest fire model. The analogy has been explored in some detail by Kagan
[20]. Maybe it is useful to think of self-organized criticality and turbulence as one
and the same phenomenon.
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Fig. 2 The burning algorithm being applied to a typical critical state. Burnt
sites are cyan, burning sites are tan, and heights zero through three are shown as
black, red, blue, and green, respectively.

Fig. 3 A typical state in the dynamics of the forest fire model described in the
text. Trees are green, fires yellow, and empty sites are black. The periodic lattice
is 286 sites by 178 sites and new trees are born on empty sites with a probability
of 1/32 per time step.



