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We present the series for the free energy and our estimate for the critical exponent a, as computed by a recursive

bookkeeping algorithm on the CMS5.

1. TRANSFER-MATRIX ALGORITHM

We begin with a discussion of the algorithm
to compute the High-Temperature(HT) expan-
sion on finite 3-d Ising lattices. Starting from
the action

E{s}=- Z 5is; (€))]

<i,j>

the partition function is expanded in a HT series

Z = Zexp (—BE) = (2cosh® B)¥ Zp(k)t", (2)
{s} k

with the expansion parameter ¢t = tanh . V is
the volume of the system. The free energy per
spin is defined as

1 _ 2cosh®g 1 E
f_—ﬁ—vlogZ_——ﬁ——Ezk:fki .3

For simplicity, consider a finite simple cubic lat-
tice which, in the recursion algorithm, is built up
by adding one site after the other, layer by layer.
This procedure defines the recursion step, which
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requires knowledge only of those spin states that
are contained in the exposed two-dimensional sur-
face layer. To minimize finite size effects, it is best
to use helical boundary conditions [1,2]. One can
visualize helical boundary conditions by imagin-
ing all spins in the layer laid out along a straight
line. In this picture, the nearest neighbours to a
given site in the sequence in the ith direction can
be chosen to be h; sites away, with : = z,y,2. It
is convenient to assume h; < hy < h,. It is easy
to see that as spins are added, one needs only to
keep track of the states of spins on the topmost
h, sites. Let these spins be denoted sy,...,ss,.
Then the partition function can be rewritten as

Zocd Y plkisy,..oosm )t (4)

ko S1,8hy

The recursion step, which consists of adding an-
other spin sg to the system, can be can be carried
out by performing the following updating proce-
dure for the coefficients p [4]

2p'(k; 80,51,y 5h, —1)
= p(k—-0;81,...,8h,-1,5%0)
+ p(k—0551,...,55,-1,5%0)
+ plk—=1;81,...,5h,-1,50)(s08n, + s05n, +1)
+ plk—=1;51,...,5h,—-1,5)(508h, +503hy—1) (5)
+ plk—2;51,...,5n,-1:50)(3h, Sk, + 505k, + S05n,)
+ plk—2;81,...,5n,-1,50)(Sh.5h, — S0Sh, — 505k, )
+ p(k—3i81,...,58,-1,50)(5n.5n,)
+ p(k—3;351,...,5h,-1,%0)(=5h %h,) -
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Table 1
Structures and weights w of the lattices used

759

hz 9 1 9 5 7
hy 11 12 14 15 15 13 15 15 16
h 13 14 16 16 16 17 17 17 17

10 5 14 11 14
16
17

9 9 5 5 16 10 16 1 17
17 16 17 19 17 19 20 18 21
19 20 20 20 21 21 21 22 22

w -3 3 -3 -3 3 -3 3 -3 3 3

-1

-2 -1 1 -2 5 2 -2 2

Table 2
Free energy up to 24th order
order k free energy f,

0 0
2 0
4 3
6 22
8 375/2
10 1980
12 24044
14 319170
16 18059031/4
18 201010408/3
20 5162283633/5
22 16397040750
24 266958797382

It is crucial to remove finite-size errors by com-
bining the results of different lattice structures as
described in refs. [1,2]. We use the set of lattices
listed in table 1 and obtain the free energy coef-
ficients up to 24th order as given in table 2. In
order to eliminate the contribution from (unphys-
ical) loops with an odd number of links in any di-
rection, we use the cancellation technique of ref.
[2]. Possible contributions of higher-order finite-
size-loops are at least of order 25 for this set of
lattices. Since we use open boundary conditions,
the coefficients p are invariant under the global
transformation s; — —s;. This Z(2) symmetry
enables us to reduce memory requirements by a
factor of two. Unlike refs. [1-3] we use multiple-
word arithmetic to account for the size of the coef-
ficients. This implementation needs about 100%
more memory but leads to a doubling in perfor-
mance. Since the number of words can be ad-

justed separately for every order, the computa-
tional effort can be reduced accordingly. On a 32
node Connection Machine CM-5 the total time
for all computations was about 50 hours.

Compared to the finite-lattice approach of Ent-
ing and Guttmann [3], our method appears to re-
quire more CPU-time since we need to cancel un-
physical loops. It should be noted, however, that
helical lattices are very naturally implemented in
data parallel software environments and thus lead
to better performance. In the usual finite lattice
method [3] on the other hand, the HT expansion
can only be extended in fairly coarse steps, using
lattices with (4 x 5) cross-section for 22nd order
and (5 x 5) cross-section for 26th order. Thus
a 24th order computation would not have been
feasible with out 1 Gbyte machine.

2. CRITICAL EXPONENT

The specific heat is defined as

62
clh=0 = ﬁza—ﬂzlogz = E cart?* (6)
k

and is expected to behave near T¢ as
clh=o = AIT=Tc|™* [1+ B|IT —=Tc|* +...],(7)

with 4 and B being analytic near T¢ [7].
We find for the critical exponent using inhomo-
geneous differential Padé-approximants (IDPs)

(8]

a =

0.102 + 0.008
0.109+0.016 ,

at the value t¢c = 0.218092 obtained from Monte-
Carlo simulations [9]. The first value is obtained
using a linear fit to the unbiased approximants
[4], whereas the second value is the mean value
from directly biased approximants.

(8)

a2 =
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Figure 1. [Estimates of a using 2- and 3-

parameter-fits. Each point represents the results
of a fit to the set of values {sn, ., - sSnnas}-
The error bars of the rightmost values represent
the uncertainty of the extrapolated 26th term.

IDPs can also be used to predict the most sig-
nificant digits of the next term in the specific heat
series {3]. The estimate of the 24th order term as
obtained in ref. [3] agrees perfectly with our ex-
act result. In the same manner we can estimate
the 26th order term in the expansion to be

fas = 443762(4) x 107, (9)

where the error quoted refers to two standard de-
viations.

The ratio r, = ¢n/ca—2 of successive coeffi-
cients of the specific-heat series is expected to
behave as [7]

1 a—1 c d
Ty = t—zc_ (1 t——t ot t ) .(10)
Assuming that the correction-to-scaling exponent
6 is close to 0.5 [9,10], the following sequence s,
1s expected to converge towards o like

c d
= (tir, — 1 1= — +—+....
sn = (tarn )n+ a+nl/2+n+ (11)

We performed 3-parameter fits to the set of val-
ues {s12,...,526} to obtain estimates for a. The
results of these fits are shown as diamonds in fig.

1. To get an estimate of the uncertainties of our
results, we investigate the stability of the fits by
eliminating the point s;» from the data. As a
result we obtain sizeable changes for a shown as
crosses in fig. 1.

Since we find that the correction-to-scaling co-
efficient ¢ vanishes within error we also performed
2-parameter fits to the same data set. The results
of these fits are also shown in fig. 1

Finally we investigate the influence of the un-
certainty in the correction-to-scaling exponent
6 on our results. Repeating the analysis with
6 = 0.53 [9] we find that the error in « is smaller
than 0.0005.

Taking into account the fact that omitting the
7z term gives rise to an additional systematic
error, we endup with the estimate for the critical
exponent

a = 0.104(4) . (12)
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