
supercomputing cycles—despite much of the community
historically regarding the use of computation as somehow
intellectually inferior to pure thought.

Although we’ve long known that atoms consist of elec-
trons surrounding a nucleus made of nucleons (protons and
neutrons), we’ve recently learned that at a deeper level, the
nucleons themselves are composites. We can best explain
the strong forces between them by assuming they are com-
posed of three quarks interacting via fields called gluons. The
need for three constituents helps explain much of the zoo of
similar states seen in particle physics experiments. Under-
standing these forces is one of the main goals of particle
physics. Certain intractable aspects of the interactions be-
tween quarks and gluons have driven us to the computer. In-
deed, large-scale simulations have helped us make major in-
roads into issues highly resistant to traditional approaches.
We can’t predict quantities such as the transition to a
quark–gluon plasma at 100 million Kelvins in a controllable
way by any other means.

Lattice-gauge theory provides a controlled scheme for
studying strong interactions at low energies. In this arti-
cle, we’ll see that the main tools are powerful but de-
manding algorithms (such as conjugate-gradient sparse-
matrix inversions) familiar in other fields. Still-unsolved
issues involve the “sign” problem and the basic formula-
tion of parity violation on the lattice. Although we cer-
tainly need additional computing capability, we also need
new ideas.

Seeing Is Believing
Why do we believe in quarks in the first place? We’ve never
seen them isolated; they don’t fit our naive concept of an el-
ementary particle being something that can propagate over

long distances through space. But several observed facts
have forced us to believe that quarks do have a fundamental
meaning. The first arises in the basic spectrum: observed
particles appear in families corresponding to combining dif-
ferent types, called flavors, of quarks. History has given
rather frivolous names to quark types—up, down, and
strange for the three lightest ones. There are 10 ways to
combine these three quark types into a bound state. The
corresponding states form a decouplet, all members of which
have been found in experiment. The proton containing two
up quarks and one down, and the neutron containing two
down quarks and one up are members of a different multi-
plet of eight (rather than 10 because some combinations are
removed for symmetry reasons).

A second piece of evidence for quarks appears in the ex-
cited states of elementary particles. These excitations cor-
respond to bound quarks rotating around each other with
increasing angular momentum. Indeed, from the observed
spectrum, the quarks seem to be held together by some-
thing like a string with a 14-ton tension. In the quark–gluon
theory, this string’s origin is the gluonic field, which I’ll dis-
cuss shortly.

A third reason to believe in quarks comes from the high-
energy scattering of electrons (or muons or neutrinos) on
protons. In this observation, the electron appears to be a
point-like object, with a radius of less than 10–16 cm, but the
proton has a measured radius on the order of 10–13 cm. Very
high-energy electrons often scatter at rather large angles,
like a bullet bouncing off a paper bag—obviously, something
hard must be inside the bag. In the proton case, the contents
are the quarks themselves.

Finally, evidence has appeared over the years for several
rather exotic heavier quarks, including the—again, frivo-
lously named—charm, bottom, and top quarks. Their
masses range widely, from about 1.5 times the proton mass
for the charm quark up to 185 proton masses for the top
quark. These heavier quarks move relatively slowly in their
bound states, making accurate predictions possible for a
large spectrum of excited states. The stunning agreement of
these predictions with experimental observation has made
the concept of quarks incontrovertible.
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Gluons
If quarks are real, how is it that we’ve never seen them iso-
lated? The answer might lie in the rather special properties
of their interactions via the exchange of gluons. The quark-
confining dynamics of QCD (which stands for quantum
chromodynamics, a confusing name for something that has
nothing to do with the 5,000-Angstrom scale of visible col-
ors) proceeds in close parallel to electrodynamics—but with
some elegant embellishments. 

First, unlike the unique photon of electrodynamics, the
strong interactions involve eight distinct gluons: free parti-
cles such as the proton contain three quarks—a concept in-
tricately tied mathematically with the eight generators of the
group SU(3), the set of three by three unitary matrices of
unit determinant. This group’s structure is crucial to en-
abling bound states of three quarks, such as in the proton.
Second, unlike the neutral photon of electrodynamics, these
eight gluons are charged with respect to each other. In the
basic picture of confinement, the quarks are the sources for
gluonic fields, but the gluon self-charges to prevent these
fields from spreading in electricity’s familiar 1/r2 manner.
Instead, the lines of electric flux form themselves into flux
tubes (see Figure 1). These flux tubes are real objects with an
energy-per-unit length representing the 14-ton tension
holding the quarks together. We call this formation the con-
finement phenomenon, which early lattice-gauge simulations
rather convincingly demonstrate.

The main theoretical difficulty concerning quark con-
finement is that we can’t see it in an expansion of the
quark–gluonic charge. When the gauge coupling is turned
off, we have a bunch of free quarks running around; when
the coupling is turned on, the theory is qualitatively differ-
ent, with only quarks bound into the physical hadrons (those
particles that feel the strong nuclear force) allowed to move
long distances. The traditional Feynman diagram methods
are restricted to phenomena at short distances, so they aren’t
applicable here.

Lattice-Gauge Theory
The lattice approach to quantum field theory is much
deeper than a mere calculation tool: it provides a funda-
mental regularization scheme for defining a general renor-
malizable field theory. As with all known field theories in
four dimensions, the basic interactions of quarks and glu-
ons immediately show the famous ultraviolet divergences
that must be renormalized. Traditional renormalization
schemes involve diagrammatic expansion: we calculate
Feynman diagrams until we find an infinite factor, at which

point we must control the infinity with some regulariza-
tion scheme. However, Feynman diagrams are inherently
perturbative, meaning they’re based on a power expansion
for small forces. To study nonperturbative phenomena
such as confinement, we need a nonperturbative cutoff.
Lattice-gauge theory provides just what we need. 

A lattice has a minimum wavelength, given by the lattice
spacing a. This is the lattice regulator’s cutoff parameter,
which we should extrapolate to zero at the end of any calcu-
lation. A lattice is just a mathematical trick that defines
things further; this idea contrasts with solid-state physics, in
which nature provides a physical underlying lattice at the
atomic scale.

QQ

Figure 1. A flux tube. The gluonic fields connecting a quark to
an antiquark arrange themselves in a flux tube that gives rise
to an energy that linearly increases with the separation of the
quarks.

Recommended Reading

You can find a simple introduction to the basics of lattice-
gauge theory in my book, Quarks, Gluons, and Lattices

(Cambridge, 1983); you’ll find a more modern and thor-
ough discussion of the subject in I. Montvay and G. Mun-
ster’s Quantum Fields on a Lattice (Cambridge, 1997).

For a retrospective on the early developments in the
field, see my article, “The Early Days of Lattice Gauge
Theory,” The Monte Carlo Method in the Physical Sciences,
J. Gubernatis, ed., Am. Inst. of Physics, 2003; http://arxiv.
org/abs/hep-lat/0306024.

The proceedings of annual lattice-gauge conferences
contain up-to-date reviews of the field’s status: two ex-
cellent examples are Nuclear Physics B Proc. Supplement,
vol. 119, 2003, and vol. 106, 2002; http://arxiv.org/html/
hep-lat/0203004/.

A good reference on the Z2 experiments appears in M.
Creutz, L. Jacobs, and C. Rebbi, “Experiments with a
Gauge Invariant Ising System,” Physical Rev. Letters, vol.
42, no. 21, 1979, pp. 1390–1393.
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Gluons are gauge fields, a rather elegant concept with
many definitions. The lattice approach is based on a gauge
theory as a theory of phases. As a quark propagates
through space–time, its wave function picks up a factor
from its interactions with gluons. In electrodynamics, the

corresponding factor is a phase in the electron wave func-
tion. For the non-Abelian generalization with our eight
gluons, the phase becomes a matrix from the group SU(3);
specifically, it becomes a 3 × 3 unitary matrix of unit de-
terminant. The quark field has an internal degree of free-
dom, usually (again, misleadingly) called color, which in-
troduces the three-valued index needed for multiplying by
this matrix.

This concept leads to the basic method for formulating
quark and gluon fields on a lattice. We approximate a gen-
eral quark-world line by a set of jumps or hoppings of the
quark between nearest-neighbor sites along the lattice bonds
(see Figure 2). We then introduce the gauge field as matri-
ces on these bonds; these fields form a set of SU(3) matrices,
one such associated with every nearest-neighbor bond on
our four-dimensional hypercubic lattice.

In terms of these matrices, gauge self-interactions take
a simple, natural form. Similar to regarding electromag-
netic flux as the vector potential’s generalized curl, we are
led to identify the flux via an elementary square, or plaque-
tte (see Figure 3). We work in four-dimensional space–
time, giving rise to two types of plaquette. Those with sides
in ordinary three-dimensional space are called “spatial” and
represent magnetic effects. When two opposite sides are
in the time direction, the plaquette is called timelike and
represents the electric effects. This motivates the conven-
tional “action” used for the gauge fields as a sum over all
the lattice’s elementary squares. Around each square, we
multiply the phases; to get a real number, we take the real
part of the trace

,

where the fundamental squares are denoted with p and the
links with l. Because we’re dealing with noncommuting ma-
trices, the product around the square is meant to be ordered.

To formulate a quantum theory of these variables, we
would use the Feynman path integral. For this, we expo-
nentiate the action and integrate over all dynamical variables
to construct

Z = ∫(dU)e–βS,

where the parameter β controls the bare coupling. Doing so
converts the three-dimensional quantum field theory of glu-
ons into a classical statistical mechanical system in four
space–time dimensions. Such a many-degrees-of-freedom
system cries out for Monte Carlo simulation, which now

S Ug l
l pp

=
∈
∏∑ReTr
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Figure 2. A quark’s motion through space–time as
approximated by a sequence of discrete hops. On each hop,
the quark wave function picks up a “phase” described by the
gauge fields. For the strong interactions, this phase is a
unitary matrix in the group SU(3).

3

1 4

2

Figure 3. An elementary square, or plaquette. In analogy with
Stoke’s law, we can find the flux through an elementary
square of the lattice from the product of gauge matrices
around that square. We determine the dynamics by adding
the real part of this product’s trace over all elementary
squares, and then inserting this “action” into a path integral.
The resulting construction is formally a partition function for a
system of “spins” existing in the group SU(3).
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dominates the field of lattice QCD. Note the close analogy
with a magnetic system; we can think of our matrices as
“spins” interacting through a four-spin coupling expressed
in terms of the plaquettes.

The usual lattice-gauge formulation is in Euclidian four-
dimensional space, based on an underlying replacement of
the time-evolution operator e–iH with e–H. Despite involv-
ing the same Hamiltonian, excited states are inherently sup-
pressed, so extracting information on high-energy scatter-
ing is particularly difficult. However, low-energy states and
matrix elements are the natural physical quantities to ex-
plore numerically. Such studies are the lattice theorist’s
bread and butter.

Using Algorithms
Restricted to gauge fields alone, the Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller algorithm provides an excel-
lent framework for lattice-gauge simulations (see the side-
bar). With the growth in small computers’ power, we don’t
even need supercomputing to study extensively this re-

stricted version of the theory. Difficulties arise only with the
introduction of anticommuting quark fields.

A pure gauge simulation provides a set of background
gauge fields on top of which we can study quark propaga-
tion. Until relatively recently, most lattice work with quarks
was in the so-called valence, or quenched, approximation.
(The approximation is to ignore any feedback from the
quarks on the gauge fields.) Because quarks involve large
sparse matrices, the conjugate-gradient algorithm is ideally
suited. Combining the resulting propagators into hadronic
combinations gives predictions on physical quantities such
as spectra, matrix elements, and so on. The rather random
nature of the relevant background fields has hampered the
application of standard multiscale techniques; more work in
this area is needed.

A dramatic increase in computational complexity occurs
when we try to include the quarks’ dynamical effects back
in the gauge fields. Quarks are fermions, which means
they should satisfy the Pauli exclusion principle (two
quarks cannot simultaneously occupy the same state). To

The Z2 Theory

A lattice-gauge program’s basic structure is quite sim-
ple, starting with nested loops over all the lattice’s

links. Inside the innermost loop is a probabilistic step that
determines the new value for the dynamical link variable.
The simple lattice-gauge model based on the group Z2 =
{±1} provides an amusing exercise for getting familiar with
the concept. This model has a strong first-order phase tran-
sition, which is easy to see even on quite small lattices. The
accompanying program listing presents a 150-line (with
comments) Z2 lattice-gauge program, on the basis of
which we can perform a variety of experiments.

A Simple Experiment
Perhaps the simplest first experiment is a thermal cycle. For
this, order the system with all links initially set to unity, and
then run the update procedure starting at, say, β = 1 and
gradually reducing it to β = 0. Then, we can return to the
initial β and expose a strong hysteresis effect.

For this model, the transition temperature is analytically
known:

.

If we run at this beta with an initially ordered or initially dis-
ordered start, with each link randomly ±1, then the runs
don’t converge to each other in an observable time: the sys-
tem remains in the corresponding phases. In particular, the
average energies observed in the runs remain quite different. 

To explore the different phases, the concept of a Wilson
loop is useful. Multiply the links around a large closed loop:

the average value of this product decreases with the loop
size. For the small β phase, this falloff is exponential with
the loop area, whereas in the large β phase, the decrease is
exponential only in the loop parameter.

To verify the transition temperature, we can start with a
mixed state—for example, we might have the first third of
the lattice random and the remainder ordered. Just above
or below the transition temperature, we can watch the ap-
propriate phase come to dominate.

With slight variations on the program, we can change
the physical dimension. With two space–time dimensions,
the model has no transition. In three, the model can be re-
lated via duality to the Ising model, which has a second-
order transition. In four or more dimensions, we have the
situation of a strong first-order transition.

Being a rather simple model, this system requires no par-
ticular tricks to program. Nevertheless, you might enjoy at-
tempting to store the links not as integers, but as single bits
in computer words. With this arrangement, you can update
several links in parallel by using logical operations.

A Simple Z2 Program
The following listing shows a lattice-gauge program’s sim-
ple structure as a set of nested loops over the links of a hy-
percubic lattice. The example is based on the group Z2, the
group of two elements {+1, –1}.

/* a Z_2 lattice gauge simulation      */ 

/* Michael Creutz <creutz@bnl.gov> */

/* http://thy.phy.bnl.gov/~creutz/z2  */ 

βt = =1
2

1 2log( )

continued on p. 84
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implement this principle mathematically, we treat the
quark fields as anticommuting variables. Their interac-
tions involve operators in a Grassmann space, not ordi-
nary numbers, so the standard approach replaces the
quarks with an integration over a new set of commuting
variables that interact with the inverse of the quark prop-
agator. This brings us back to a classical statistical me-
chanics problem, which now involves a computationally
intensive nonlocal interaction. We can apply well-devel-
oped hybrids of molecular dynamics and Monte Carlo
simulations to the resulting system, but as a rule of thumb,
doing so requires about two orders of magnitude more
computer time than the valence approximation. This av-
enue of attack represents the current state of the art, dri-
ving the lattice-gauge community’s voracious appetite for
computer cycles.

The Road Ahead
Several interesting technical issues remain. Because the
fermionic matrices become poorly conditioned as the

quark masses are reduced, the essential conjugate-gradient
steps converge slowly. To circumvent this, most simula-
tions rely on quark mass extrapolations, assisted by chiral
symmetries. Such simulations require underlying lattice
actions that possess as much of these symmetries as possi-
ble. Much recent work is concentrated in this area, with re-
searchers finding actions that give great accuracy, but at a
penalty of an additional one to two orders of magnitude in
computer time.

Going beyond this standard approach, several algorith-
mic obstacles further hamper the application of lattice
methods to a variety of tantalizing problems. The basic
Monte Carlo approach has a “sign problem” whenever the
quark matrices’ determinant is not positive. Shuffling the
signs into observables gives rise to theoretically valid algo-
rithms, but requires computer time that grows exponen-
tially with volume, thus precluding simulation on any but
the smallest systems. 

These issues become particularly severe in some of the
more interesting physical situations. The most notorious in-

C O M P U T E R  S I M U L A T I O N S

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h>

/* the lattice is of dimensions SIZE**4 */ 

#define SIZE 6 

int link[SIZE][SIZE][SIZE][SIZE][4]; /* last

index gives link direction */

/* utility functions */ 

void moveup(int x[],int d) {

x[d]+=1; 

if (x[d]>=SIZE) x[d]-=SIZE; 

return;

} 

void movedown(int x[],int d) {

x[d]-=1; 

if (x[d]<0) x[d]+=SIZE; 

return;

} 

void coldstart(){/* set all links to unity */ 

int x[4],d; 

for (x[0]=0;x[0]<SIZE;x[0]++) 

for (x[1]=0;x[1]<SIZE;x[1]++) 

for (x[2]=0;x[2]<SIZE;x[2]++) 

for (x[3]=0;x[3]<SIZE;x[3]++) 

for (d=0;d<4;d++)

link[x[0]][x[1]][x[2]][x[3]][d]=1; return;

} 

/* for a random start: call coldstart() and

then update once at beta=0 */

/* do a Monte Carlo sweep; return energy */ 

double update(double beta){

int x[4],d,dperp,staple,staplesum; 

double bplus,bminus,action=0.0; 

for (x[0]=0; x[0]<SIZE; x[0]++) 

for (x[1]=0; x[1]<SIZE; x[1]++) 

for (x[2]=0; x[2]<SIZE; x[2]++) 

for (x[3]=0; x[3]<SIZE; x[3]++) 

for (d=0; d<4; d++) {

staplesum=0; 

for (dperp=0;dperp<4;dperp++){

if (dperp!=d){

/* move around thusly: 

dperp          6–-5 
∧ |  |

|               1-–4 

|               |  |

——-> d          2-–3    */ 

/* plaquette 1234 */

movedown(x,dperp); 

staple=link[x[0]][x[1]][x[2]]

[x[3]][dperp] 

*link[x[0]][x[1]][x[2]]

[x[3]][d]; 

moveup(x,d); 

staple*=link[x[0]][x[1]]

[x[2]][x[3]][dperp]; 

continued from p. 83
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volves the quark–gluon plasma in the presence of an excess
of matter over antimatter, also called background baryon
density. Recent progress has shown the feasibility of simu-
lations for small density, allowing studies of the critical point
at the end of a first-order line separating the quark–gluon
plasma from low-temperature hadronic matter. For much
higher densities, though, theoreticians have predicted fasci-
nating superconducting phases at low temperature. Equiv-
alent mathematical problems occur in attempts to simulate
doped strongly correlated electron systems. Numerical al-
gorithms to simulate such phenomena are not known, but
they would be highly desirable. Frustration with the stan-
dard approaches suggests we might try to work indepen-
dently from Monte Carlo—for example, by using exact di-
agonalization methods—but such approaches remain in
their infancy.

A more fundamental issue arises for lattice theories of the
standard model when parity violation is included. No known
lattice formulation of left-handed neutrinos has been found
that does not introduce mirrored right-handed particles.

This is troubling because the lattice is the most precise way
to define a quantum field theory nonperturbatively. This is
not a practical problem for experimental predictions because
weak interactions in most cases can be handled perturba-
tively. Nevertheless, from a conceptual viewpoint, the ab-
sence of a lattice formulation for the full standard model
might point to deep issues that are as yet not understood.
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moveup(x,dperp); 

staplesum+=staple; 

/* plaquette 1456 */ 

staple=link[x[0]][x[1]]

[x[2]][x[3]][dperp]; 

moveup(x,dperp); 

movedown(x,d); 

staple*=link[x[0]][x[1]]

[x[2]][x[3]][d]; 

movedown(x,dperp); 

staple*=link[x[0]][x[1]]

[x[2]][x[3]][dperp]; 

staplesum+=staple;

}

} 

/* calculate the Boltzmann weight */ 

bplus=exp(beta*staplesum); 

bminus=1/bplus; 

bplus=bplus/(bplus+bminus); 

/* the heatbath algorithm */ 

if (drand48() < bplus){

link[x[0]][x[1]]

[x[2]][x[3]][d]=1; 

action+=staplesum;

} 

else{

link[x[0]][x[1]]

[x[2]][x[3]][d]=-1; 

action-=staplesum;

}

} 

action/=(SIZE*SIZE*SIZE*SIZE*4*6); 

/* normalize the action */ 

return 1.-action;

}

/******************************/ 

int main(){

double beta, dbeta, action; 

srand48(1234L); /* initialize random number

generator */ 

/* do your experiment here; this example is 

a thermal cycle */

dbeta=.01; 

coldstart(); 

/* heat it up */ 

for (beta=1; beta>0.0; beta-=dbeta){

action=update(beta); 

printf(“%g\t%g\n,”beta,action);

} 

printf(“\n\n”); 

/* cool it down */ 

for (beta=0; beta<1.0; beta+=dbeta){

action=update(beta); 

printf(“%g\t%g\n,”beta,action);

} 

printf(“\n\n”); 

exit(0);

}
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