FUN WITH DIRAC EIGENVALUES
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Itis popular to discuss low energy physics in lattice gatng®ty in terms of the small eigenvalues of
the lattice Dirac operator. | play with some ensuing pigfati the interpretation of these eigenvalue
spectra.

1 Introduction

Amongst the lattice gauge community it has recently becouiie gpopular to study the
distributions of eigenvalues of the Dirac operator in thespnce of the background gauge
fields generated in simulations. There are a variety of ratitins for this. First, in a clas-
sic work, Banks and Casheelated the density of small Dirac eigenvalues to spontasieo
chiral symmetry breaking. Second, lattice discretizatiohthe Dirac operator based the
Ginsparg-Wilson relatidrhave the corresponding eigenvalues on circles in the comple
plane. The validity of various approximations to such anrafme can be qualitatively
assessed by looking at the eigenvalues. Third, using théapvenethotito construct a
Dirac operator with good chiral symmetry has difficultieshié starting Wilson fermion
operator has small eigenvalues. This can influence thetegleaf simulation parame-
ters, such as the gauge actidinally, since low eigenvalues impede conjugate gradient
methods, separating out these eigenvalues explicitly otenpally be useful in develop-
ing dynamical simulation algorithms.

Despite this interest in the eigenvalue distributionsrdta@e some dangers inherent in
interpreting the observations. Physical results come fiwarfull path integral over both
the bosonic and fermionic fields. Doing these integrals dreetame is fine, but trying
to interpret the intermediate results is inherently daoger While the Dirac eigenvalues
depend on the given gauge field, it is important to rememlaritha dynamical simula-
tion the gauge field distribution itself depends on the eigkres. This circular behavior
gives a highly non-linear system, and such systems areioosty hard to interpret.

Given that this is a joyous occasion, | will present some of thsues in terms of
an amusing set of puzzles arising from naive interpretatmfrDirac eigenvalues on the
lattice. The discussion is meant to be a mixture of though¥gking and confusing. Itis
not necessarily particularly deep or new.

2 The framework

To get started, | need to establish the context of the digmuskconsider a generic path
integral for a gauge theory

2 = [(aA)(ay)(dp) e-Se@TDwe, (1)

Here A andy represent the gauge and quark fields, respectigelyA) is the pure gauge
part of the action, and(A) represents the Dirac operator in use for the quarks. As the
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Figure 1: In the naive continuum picture, all eigenvalueshef Dirac operator lie along a line parallel to
the imaginary axis. In a finite volume these eigenvalues mecdiscrete. The real eigenvalues divide into
distinct chiralities and define a topological invariant.

action is quadratic in the fermion fields, a formal integratgives
7z = / (dA) |D(A)] e=SeA), @)

Working on a finite, latticeD(A) is a finite dimensional matrix, and for a given gauge
field | can formally consider its eigenvectors and eigereglu

D(A)p; = Xitbs. )
The determinant appearing in Eq. (2) is the product of thégenealues; so, the path
integral takes the form
7= / (dA) e=5¢A) T A (@)

Averaging over gauge fields defines the eigenvalue density
: 1 _S5a(A
pla+iy) = 7 [ (@A) [D(A)] e > 8~ ReN(A)5(y ~ T (4)). 6)

HereN is the dimension of the Dirac operator, including volumeygg spin, and flavor
indices.

In situations where the fermion determinant is not positivean be negative or com-
plex. Nevertheless, | still refer to it as a density. | wilsame thaip is real; situations
where this is not true, such as with a finite chemical pot&htiae beyond the scope of
this discussion.

At zero chemical potential, all actions used in practicésgat 5 hermiticity”

v5D7ys = DI (6)
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Figure 2: Free Wilson fermions display an eigenvalue spattrvith a momentum dependent real part. This
removes doublers by giving them a large effective mass.

With this condition all non-real eigenvalues occur in coexptonjugate pairs, implying

for the density
p(2) = p("). )

This property will be shared by all the operators considénete following discussion.

The quest is to find general statements relating the behaf/tbe eigenvalue density
to physical properties of the theory. | repeat the earlieming; p depends on the distri-
bution of gauge fieldgl which in turn is weighted by which depends on the distribution
of A....

2.1 The continuum

Of course the continuum theory is only really defined as thmt lof the lattice theory.
Nevertheless, it is perhaps useful to recall the standatdrgi, where the Dirac operator

D =~,(0,+igA,) +m

is the sum of an anti-hermitian piece and the quark masgAll eigenvalues have the
same real pant

p(x +iy) = 6(x —m)p(y).
The eigenvalues lie along a line parallel to the imaginaris,awhile the hermiticity
condition of Eq. (6) implies they occur in complex conjugpégers.

Restricted to the subspace of real eigenvalygs;ommutes withD and thus these
eigenvectors can be separated by chirality. The differert@een the number of positive
and negative eigenvaluesfin this subspace defines an index related to the topological
structure of the gauge fieldS.he basic structure is sketched in Fig. (1).

The Banks and Casher argument relates a non-vanigiiindo the chiral condensate
occurring when the mass goes to zero. | will say more on thes la the lattice context.

Note that the naive picture suggests a symmetry betweetiveoshd negative mass.
Due to anomalies, this is spurious. With an odd number of figuvihe theory obtained
by flipping the signs of all fermion masses is physically ingglent to the initial theory.

2.2 Wilson fermions

The lattice reveals that the true situation is considerafbye intricate due to the chiral
anomaly. Without ultraviolet infinities, all naive symmies of the lattice action are true
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Figure 3: The overlap operator is constructed by projedtieg/Vilson Dirac operator onto a unitary operator.

symmetries. Naive fermions cannot have anomalies, whieltancelled by extra states
referred to as doublers. Wilson fermidasoid the this issue by giving a large real part to
those eigenvalues corresponding to the doublers. For filseifermions the eigenvalue
structure displays a simple pattern as shown in Fig. (2).

As the gauge fields are turned on, this pattern will fuzz ouh a@lditional compli-
cation is that the operatdp is no longer normal, i.e[D, D] # 0 and the eigenvectors
need not be orthogonal. The complex eigenvalues are stilghaalthough, as the gauge
fields vary, complex pairs of eigenvalues can collide andusgp along the real axis. In
general, the real eigenvalues will form a continuous diatron.

As in the continuum, an index can be defined from the spectiuimed/ilson-Dirac
operator. Again;y; hermiticity allows real eigenvalues to be sorted by chiyaliTo
remove the contribution of the doubler eigenvalues, sedepbint inside the leftmost
open circle of Fig. (2). Then define the index of the gauge fielde the net chirality
of all real eigenvalues below that point. For smooth gaudddithis agrees with the
topological winding number obtained from their interpaatto the continuum. It also
corresponds to the winding number discussed below for thdaqy operator.

2.3 Theoverlap

Wilson fermions have a rather complicated behavior undaakctransformations. The
overlap formalisrhsimplifies this by first projecting the Wilson matt; onto a unitary
operator

V = (DwDy,) "Dy . (8)

This is to be understood in terms of going to a basis that cdialg'gz}asDWDT , doing
the inversion, and then returning to the initial basis. hmi of this unitary quantity, the
overlap matrix is

D=1+V. 9)

The projection process is sketched in Fig. (3). The mass insth@ starting Wilson op-
erator is taken to a negative value so selected that the lawantum states are projected
to low eigenvalues, while the doubler states are driven tdsva ~ 2.

The overlap operator has several nice properties. Fissdtigfies the Ginsparg-Wilson
relation? most succinctly written as the unitarity &f coupled with itsys hermiticity

vsVAsV = 1. (10)
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Figure 4: Inverting a complex circle generates anotheteirc

As it is constructed from a unitary operator, normality ofis guaranteed. But, most
important, it exhibits a lattice version of an exact chinahsnetry. The fermionic action
D is invariant under the transformation

1/} N ei@fyg)w

U — el (11)
where

A5 = Vs. (12)

As with ~s, this quantity is Hermitean and its square is unity. Thugiignvalues are all
plus or minus unity. The trace defines an index

v = 5T (13)

which plays exactly the role of the index in the continuum.

It is important to note that the overlap operator is not uaiqlis precise form de-
pends on the particular initial operator chosen to projatd the unitary form. Using the
Wilson-Dirac operator for this purpose, the result stilpeirds on the input mass used.
From its historical origins in the domain wall formalismiglguantity is sometimes called
the “domain wall height.”

Because the overlap is not unique, an ambiguity can remaiet&rmining the wind-

ing number of a given gauge configuration. Issues arise vslh@rD&/ is not invert-
ible, and for a given gauge field this can occur at specificasbf the projection point.
This problem can be avoided for “smooth” gauge fields. Indead‘admissibility con-
dition,” 1911 requiring all plaquette values to remain sufficiently clasethe identity,
removes the ambiguity. Unfortunately this condition isdmpatible with reflection
positivity!? Because of these issues, it is not known if the topologicateptibility is
in fact a well defined physical observable. On the other hasdt is not clear how to
measure the susceptibility in a scattering experimentetseems to be little reason to
care if it is an observable or not.
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Figure 5: Inverting the overlap operator generates a lirie kel part 1/2.

3 A Cheshire chiral condensate

Now that | have reviewed the basic framework, it is time foittsel fun. | will calculate
the chiral condensate in the overlap formalism. | shouldwau that, in the interest of
amusing you, | start the argument in an intentionally ddagephanner.

3.1 Heshere

| begin with the standard massless overlap theory. | wanalmutate the quantityi))).
Remarkably, this can be done exactly. | start with

@) = (D) = <Z Ai> — (T Rey ) (14)

2

where | have used the complex pairing of eigenvalues to téineemaginary parts. At
the end, the average is to be taken over appropriately wesigiduge configurations.

Now the crucial feature of the overlap operator is that iieevalues all lie on a circle
in the complex plane. An interesting property of a generahglex circle is that the
inverses of all its points generates another circle, axkketin Fig. 4.

This process is, however, somewhat singular for the overtegrator itself since the
corresponding circle touches the origin. In this case therted circle has infinite radius,
i.e. it degenerates into a line. For the circle of the ovedperator, with center at = 1
and radius 1, the inverse circle is a line with real part 1/@ parallel to the imaginary
axis. This is sketched in Fig. 5.

This placement of eigenvalues enables an immediate cttmulaf the condensate

@)=Y Res =Y 2 =73 as)

HereN is the dimension of the matrix, and includes the expectedmelfactor.

So the condensate, supposedly a signal for spontaneous sjainmetry breaking,
does not vanish! But something is fishy, | didn’t use any dyicamThe result also is
independent of gauge configuration.
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Figure 6: As the mass changes sign a pole moves between astleutside the overlap circle. This
generates a jump in the condensate.

3.2 He'sgone

So lets get more sophisticated. On the lattice, the chimransgtry is more complicated
than in the continuum, involving botyy and?s in a rather intricate way. In particular, the
operatoryy does not transform in any simple manner under chiral ratatié possibly
nicer combination ig)(1 — D/2)«. If | consider the rotation in Eq. (11) with = 7/2,
this quantity becomes its negative. But it is also easy toutale the expectation of this
as well. The second term involves

(YD) = TrD™'D = Trl = N. (16)

Putting the two pieces together

(v(1—D/2)) =N/2—N/2=0. a7)

So, I've lost the chiral condensate that | so easily showedd’dianish just a moment
ago. Where did it go?

3.3 He'sback

The issue lies in a careless treatment of limits. In finiteuwd, (¢)(1 — D/2)1)) must
vanish just from the exact lattice chiral symmetry. Thisighimg occurs for all gauge
configurations. To proceed, introduce a small mass and bekedlume to infinity first
and then the mass to zero. Toward this end, consider theiyuant

1
i +m’

W) =3 (18)

i

The signal for chiral symmetry breaking is a jump in this ditgras the mass passes
through zero.



As the volume goes to infinity, replace the above sum with aatorintegral around
the overlap circle using = 1 + ¢*°. Up to the trivial volume factor, | should evaluate

27
. p(0)
“Jo del—kei@—i—m' (19)

As the mass passes through zero, the pole-at—m passes between lying outside and
inside the circle, as sketched in Fig. (6). As it passes tiltdhe circle, the residue of
the pole isp(0) = limy_ ¢ p(6). Thus the integral jumps B p(0). This is the overlap
version of the Banks-Casher relatioa;non-trivial jump in the condensate is correlated
with a non-vanishing(0).

Note that the exact zero modes related to topology are sgatdsy the mass and do
not contribute to this jump. For one flavor, however, the zaes do give rise to a
non-vanishing but smooth contribution to the condensaléore on this point later.

4 Another puzzle

For two flavors of light quarks one expects spontaneous symgroeeaking. This is the
explanation for the light mass of the pion, which is an appnae Goldstone boson. In
the above picture, the two flavor theory should have a noiskarg p(0).

Now consider the one flavor theory. In this case there shoalddochiral symme-
try. The famoud/(1) anomaly breaks the naive symmetry. No massless physidal par
cles are expected when the quark mass vanishes. Furthemsirapde chiral Lagrangian
arguments-? for multiple flavor theories indicate that no singularitse expected when
just one of the quarks passes through zero mass. From the dispussion, this leads to
the conclusion that for the one flavor thegrf)) must vanish.

But now consider the original path integral after the femmsicare integrated out.
Changing the number of flavors,; manifests itself in the power of the determinant

/ dA |D|Ns e=%A) (20)

Naively this suggests that as you increase the number offlathe density of low eigen-
values should decrease. But | have just argued that with aworp(0) # 0 but with one
flavor p(0) = 0. How can it be that increasing the number of flavors actuaklygases
the density of small eigenvalues?

This is a clear example of how the non-linear nature of thélera can produce
non-intuitive results. The eigenvalue density dependshengauge field distribution,
but the gauge field distribution depends on the eigenvalasije It is not just the low
eigenvalues that are relevant to the issue. Fermionic fieldd to smooth out gauge
fields, and this process involves all scales. Smoother ghelgs in turn can give more
low eigenvalues. Thus high eigenvalues influence the lovg,cened this effect evidently
can overcome the naive suppression from more powers of teentieant.

5 AEthereal instantons

Through the index theorem, the topological structure ofjtugge field manifests itself in
zero modes of the massless Dirac operator. Let me agairt mserall mass and consider



the path integral with the fermions integrated out

Z— / dA eS0TI\ +m). 21)

(2

If | take the mass to zero, any configurations which contaiera eigenmode will have
zero weight in the path integral. This suggests that for thesiess theory, | can ignore
any instanton effects since those configurations don'tritmrie to the path integral.

What is wrong with this argument? The issue is not whethezéne modes contribute
to the path integral, but whether they can contribute to glaysorrelation functions. To
see how this goes, add some sources to the path integral

Z(n,m) = / dA dip dip e~ ST DFm)erin+ny (22)

Differentiation (in the Grassmann sense) with respecy end 7 gives the fermionic
correlation functions. Now integrate out the fermions

7z = / dA =S+~ TT(\ + m). 23)

If | consider a source that overlaps with one of the zero maglengectors, i.e.

(tho,m) # 0, (24)

the source contribution introduces An factor. This cancels the from the determinant,
leaving a finite contribution as goes to zero.

With multiple flavors, the determinant will have a mass faétom each. When sev-
eral masses are taken to zero together, one will need a sfatkar from the sources for
each. This product of source terms is the famous “t Hoofteset 16 While it is correct
that instantons do drop out &f, they survive in correlation functions.

While these issues are well understood theoretically, tagyraise potential difficul-
ties for numerical simulations. The usual numerical procedyenerates gauge configu-
rations weighted as in the partition function. For a smadryumass, topologically non-
trivial configurations will be suppressed. But in these aunfations, large correlations
can appear due to instanton effects. This combination ofl sse&yhts with large correla-
tions can give rise to large statistical errors, thus cooafilng small mass extrapolations.
The problem will be particularly severe for quantities doated by anomaly effects, such
as then’ mass. A possible strategy to alleviate this effect is to gEreconfigurations
with a modified weight, perhaps along the lines of multicacaalgorithms”

Note that when only one quark mass goes to zero, the 't Hooféxeés a quadratic
form in the fermion sources. This will give a finite but smogatntribution to the con-
densatg7)). Indeed, this represents a non-perturbative additive hihe quark mass.
The size of this shift generally depends on scale and regutigtails. Even with the
Ginsparg-Wilson condition, the lattice Dirac operatora$ nnique, and there is no proof
that two different forms have to give the same continuumtlfiari vanishing quark mass.
Because of this, the concept of a single massless quark iphysical’® invalidating
one popular proposed solution to the strong CP problem. arhisiguity has been noted
for heavy quarks in a more perturbative cortfexind is often referred to as the “renor-
malon” problem. The issue is closely tied to the problemstineaad earlier in defining
the topological susceptibility.



6 Summary

In short, thinking about the eigenvalues of the Dirac omerat the presence of gauge
fields can give some insight, for example the elegant Bardsh€r picture for chiral
symmetry breaking. Nevertheless, care is necessary ledaeiproblem is highly non-
linear. This manifests itself in the non-intuitive exampfehow adding flavors enhances
rather than suppresses low eigenvalues.

Issues involving zero mode suppression represent onedbaaset of connected unre-
solved issues. Are there non-perturbative ambiguitiesiangjties such as the topological
susceptibility? How essential are rough gauge fields, aagg fields on which the wind-
ing number is ambiguous? How do these issues interplay hétlytiark masses? | hope
the puzzles presented here will stimulate more thoughigalloase lines.
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