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Abstract

A popular approximation in lattice gauge theory is an extrapolation in the number of fermion species away from the four fold degeneracy
natural with the staggered fermion formulation. I show that the procedure mutilates the expected continuum holomorphic behavior in the quark
masses. This is due to a chiral symmetry group that is of a higher rank than desired. The conventional resolution proposes canceling the unphysical
singularities with a plethora of extra states appearing at finite lattice spacing. This unproven conjecture requires an explicit loss of unitarity and
locality. Even if correct, the approach implies large cutoff effects in the low-energy flavor-neutral sector.
© 2007 Elsevier B.V. All rights reserved.
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Lattice gauge theory provides a powerful tool for the investi-
gation of non-perturbative phenomena in strongly coupled field
theories, such as the quark confining dynamics of the strong
interactions. However numerical calculations are quite com-
puter intensive, strongly motivating approximations that reduce
this need. One such, the valence or quenched approximation
[1,2], introduces rather uncontrolled uncertainties, but with the
growth in computer power, its use is currently being eliminated.

Another popular approximation [3,4] arises from the sim-
plicity of the staggered fermion formulation [5–7]. With only
one Dirac component on each site, the large matrix inversions
required are substantially faster than with other fermion formu-
lations. However the approach and its generalizations are based
on a discretization method that inherently requires a multiple
of four fundamental fermions. The reasons for this are related
to the cancellation of chiral anomalies. To apply the technique
to the physical situation of two light and one intermediate mass
quark requires an extrapolation down in the number of fermi-
ons. As usually implemented, the approach involves taking a
root of the fermion determinant inside standard hybrid Monte
Carlo simulation algorithms. This step has not been justified
theoretically. The purpose of this Letter is to show that at fi-
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nite lattice spacing this reduction inherently mutilates the quark
mass dependence expected in the continuum theory. A prelimi-
nary discussion of these points appears in Ref. [8].

The method has its roots in the “naive” discretization of the
derivatives in the Dirac equation

(1)ψ̄γμ∂μψ → 1

2a
ψ̄xγμ(ψx+aeμ − ψx−aeμ)

with a denoting the lattice spacing. Fourier transforming to mo-
mentum space, the momentum becomes a trigonometric func-
tion

(2)pμ → 1

2ia

(
eiapμ − e−iapμ

) = 1

a
sin(apμ).

The natural range of momentum is −π/a < pμ � π/a. The
doubling issue is that the propagator has poles not just at small
momentum, but also when any component is near π in mag-
nitude. These all contribute as intermediate states in Feynman
diagrams; so, the theory effectively has 24 = 16 fermions. I re-
fer to these multiple states as “doublers” or “flavors” in the
following discussion.

Note that the slope of the sine function at π is opposite to
that at 0. This can be absorbed by changing the sign of the
corresponding gamma matrix. This changes the sign of γ5 as
well; so, the doublers divide into different chirality subsets. The
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determinant of the Dirac operator is not simply the sixteenth
power of a single determinant.

Without a mass, the naive action has an exact chiral symme-
try of the kinetic term under

ψ → eiθγ5ψ,

(3)ψ̄ → ψ̄eiθγ5 .

The conventional mass term is not invariant under this rotation

(4)mψ̄ψ → mψ̄ψ cos(2θ) + imψ̄γ5ψ sin(2θ).

Thus any mass term of the form on the right-hand side of this
relation can have theta rotated away. This is consistent with
known anomalies since this is in reality a flavor non-singlet chi-
ral rotation. The different species use different signs for γ5. As
special cases, in this theory m, −m, and ±iγ5m are all physi-
cally equivalent.

To arrive at the staggered formulation, note that whenever a
fermion hops between neighboring sites in direction μ, it picks
up a factor of γμ. An arbitrary closed fermion loop on a hyper-
cubic lattice gives a product of many gamma factors, but any
particular component always appears an even number of times.
Bringing them through each other using anti-commutation, the
net factor for any loop is proportional to unity. Gauge fields do
not change this fact since they just involve SU(3) phases on the
links. So if a fermion starts in one spinor component, it returns
to the same component after the loop. The 4 Dirac components
give 4 independent theories. There is an exact SU(4) symmetry.
Without a mass term, this is actually an exact SU(4) ⊗ SU(4)

chiral symmetry [9].
Staggered fermions single out one component on each site.

Which component depends on the gamma factors to get to the
site in question from one chosen starting site. Ignoring the other
components reduces the degeneracy from 16 to 4. The process
brings in various oscillating phases from the gamma matrix
components. One explicit projection that accomplishes this is
(using integer coordinates and the convention γ5 = −γ1γ2γ3γ4
with Euclidean gamma matrices)

P = P 2

= 1

4

(
1 + iγ1γ2(−1)x1+x2 + iγ3γ4(−1)x3+x4

(5)+ γ5(−1)x1+x2+x3+x4
)
.

Note that some degeneracy must remain. No chiral breaking
appears in the action, and all infinities are removed. The con-
ventional axial anomaly is canceled between the remaining
species. Furthermore, the naive replacement ψ → γ5ψ exactly
relates the theory with mass m and mass −m. With 4 flavors
this symmetry is allowed since it still represents a flavored chi-
ral rotation. The doublers appear in chiral pairs.

To proceed I sketch how a typical simulation with fermions
proceeds. For a generic fermion matrix D, the goal of the sim-
ulation is to generate configurations of gauge fields A with a
probability

(6)P(A) ∝ exp
(−Sg(A) + Nf Tr log

(
D(A)

))
.

Here Sg is the pure gauge part of the action and Nf is the
number of fermion species. With some algorithms additional
commuting “pseudo-fermion” fields are introduced [10,11], but
these details are not important to the following discussion. With
staggered or naive fermions the eigenvalues of D all appear in
complex conjugate pairs; thus, the determinant is non-negative
as necessary for a probability density.

In hybrid Monte Carlo schemes [12] auxiliary “momentum”
variables P are introduced, one for each degree of freedom
in A. The above distribution is generalized into

(7)

P(A,P ) ∝ exp
(
−Sg(A) + Nf Tr log

(
D(A)

) −
∑

P 2
i /2

)
.

As the momenta are Gaussian random variables, it is easy to
generate a new set at any time. For the gauge fields one sets up
a “trajectory” in a fictitious “Monte Carlo” time variable τ and
uses the exponent in (7) as a classical Hamiltonian

(8)H =
∑

P 2
i /2 + V (A)

with the “potential”

(9)V (A) = Sg(A) − Nf Tr log
(
D(A)

)
.

The Hamiltonian dynamics

dAi

dτ
= Pi,

(10)
dPi

dτ
= Fi(A) = −∂V (A)

∂A

conserves energy and phase space. Under such evolution the
equilibrium ensemble stays in equilibrium, a sufficient condi-
tion for a valid Monte Carlo algorithm. After evolution along
a trajectory of some length τ , discretized time steps δτ can
introduce finite step errors and give a small change in the “en-
ergy”. The hybrid Monte Carlo algorithm corrects for this with
a Metropolis accept/reject step on the entire the trajectory. The
trajectory length and step size are parameters to be adjusted for
reasonable acceptance. After the trajectory one can refresh the
momenta by generating a new set of gaussianly distributed ran-
dom numbers. The procedure requires the “force” term

(11)Fi(A) = −∂V (A)

∂A
= −∂Sg(A)

∂A
+ Nf Tr

(
D−1 ∂D(A)

∂A

)
.

To calculate the second term requires an inversion of the sparse
matrix D applied to a fixed vector. Standard linear algebra tech-
niques such as a conjugate gradient algorithm can accomplish
this. In practice this step is the most time consuming part of the
algorithm.

Returning to staggered fermions, one would like to eliminate
the unwanted degeneracy by a factor of four. One attempt to do
this reduction involves an extrapolation in the number of fla-
vors. In the molecular dynamics trajectories for the simulation
of the gauge field, the coefficient of the fermionic force term
in Eq. (11) is arbitrarily reduced from Nf to Nf /4, where Nf

is the desired number of physical flavors. Although not proven,
this seems reasonable when Nf is itself a multiple of four. The
controversy arises for other values of Nf .
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Here I argue that the procedure is an approximation that in-
herently mutilates the analytic structure expected in the quark
masses. To see this consider the case of two flavor QCD with
quark masses mu and md . Complexifying the mass terms in the
usual way

(12)
∑

a=u,d

Remaψ̄
aψa + i Immaψ̄

aγ5ψ
a

the physical theory is invariant under the flavored chiral rotation

mu → eiθmu,

(13)md → e−iθmd.

Due to the chiral anomaly, it must not be invariant under the
singlet chiral rotation

mu → eiθmu,

(14)md → eiθmd.

The symmetry in mass parameter space requires that the rota-
tions of the up and down quark masses be in opposite directions.
Indeed, this limitation is correlated with there only being one
neutral Goldstone boson for the two flavor theory.

Now formulate this theory with two independent staggered
fermions, one for the up and one for the down quark, each
reduced using the rooting procedure. From Eq. (5), the corre-
sponding complexification of the staggered mass term takes the
form

(15)
∑

a=u,d

(
Rema + iS(j) Imma

)
ψ†(j)ψ(j)

with S(j) being ±1 depending on the parity of the site j . The
issue arises from the fact that the staggered fermion determi-
nant, and therefore the path integral, are exactly invariant under
m → eiθm for either the up or the down quark. This is too much
symmetry in parameter space. The physical SU(2) chiral sym-
metry group is of rank one, while the chiral symmetry of the two
flavored staggered fermion formulation has rank two. It requires
two neutral Goldstone bosons in the massless limit, rather than
the one of the physical theory.

The issues become particularly severe in the chiral limit
when Nf is odd. For the staggered theory, the fermion de-
terminant is a function of m2. The surviving chiral symmetry
gives equivalent physics for either m or −m. However, it is well
known that with an odd number of flavors, physics has no sym-
metry under changing the sign of the mass [13–15]. The most
dramatic demonstration of this appears in the one flavor theory
[16]. In this case anomalies break all chiral symmetries and no
Goldstone bosons are expected. The theory behaves smoothly
as the mass parameter passes through zero. The lightest meson,
call it the η′, acquires a mass through anomaly effects, and the
lowest order quark mass corrections are linear

(16)m2
η′(m) = m2

η′(0) + cm.

Such a linear dependence in a physical observable is immedi-
ately inconsistent with m ↔ −m symmetry.

The one flavor case is perhaps a bit special, but there are
similar problems with the three flavor situation [15]. Identify
the quark bi-linear with an effective chiral field ψ̄aψb ∼ Σab .
Here a and b are flavor indices. The SU(3)⊗SU(3) chiral sym-
metry of the massless theory is embodied in the transformation

(17)Σ → g
†
LΣgR

with gL,gR ∈ SU(3). For positive mass, Σ should have an ex-
pectation value proportional to the SU(3) identity I . This is not
equivalent to the negative mass theory because −I is not in
SU(3). Indeed, for negative mass it is expected that the infi-
nite volume theory spontaneously breaks CP symmetry, with
〈Σ〉 ∝ e±2πi/3 [15,17].

These qualitative effective Lagrangian arguments are quite
powerful and general. Another way to see the one flavor behav-
ior is to start with a larger number of flavors, say 3 or 4, and
make the masses non-degenerate. As only one of the masses
passes through zero, the behavior for the lightest meson mim-
ics that in Eq. (16). Extrapolated staggered quarks with their
symmetry under taking any quark mass to its negative will miss
the linear term.

Small real eigenvalues of the Dirac operator are responsible
for these effects. The odd terms come from topological struc-
tures in the gauge fields [18]. For small mass in the traditional
continuum discussion, |D| ∼ mν with ν the winding number of
the gauge field. The condensate

(18)〈ψ̄ψ〉 = 1

Z

∫
(dA)|D|Nf e−Sg(A) TrD−1

receives a contribution going as mNf −1 from the ν = 1 sec-
tor. For the one flavor case, this is an additive constant. This
constant will be missing from the extrapolated staggered the-
ory because of the symmetry in Eq. (3). This phenomenon is
also responsible for the fact that a single massless quark is not
a well-defined concept [19].

For the general odd flavor case, the odd winding number
terms have the opposite symmetry under the sign of the mass
than the even terms, although with more flavors this starts at
a higher order in the mass. For 3 flavors the condensate at fi-
nite volume will display an m2 correction to the leading linear
behavior. The extrapolation down from the staggered 4 flavor
theory will not see this term.

It is during the transitions between topological sectors that
the unrooted theory behaves quite differently than the target
theory. In particular, with a smooth gauge field of unit winding
number near the continuum limit, the unrooted theory should
have four small eigenvalues representing the zero modes from
the index theorem. Considering an evolution of the gauge fields
from zero to unit winding number, two of these drop down from
positive imaginary part and two move up from below. Any ap-
proximate four fold degeneracies between the higher eigenval-
ues must break down during this evolution. Attempts to define
the rooting procedure by selecting one fourth of the eigenvec-
tors will necessarily involve ambiguities.

While I have shown diseases with the chiral behavior of
extrapolated staggered fermions at finite cutoff, it has been sug-
gested [21–23] that these problems go away as the cutoff is
removed. Indeed, in quantum field theory we are accustomed to
the non-commutation of certain limits, such as vanishing mass
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and infinite volume when a symmetry is being spontaneously
broken. In that case the mass and the volume are both infrared
issues. As the lattice is an ultraviolet regulator and the chiral is-
sues raised here involve long distance physics, it seems peculiar
for the order of these limits to affect each other. Nevertheless,
suppose that taking the cutoff to zero before taking the mass-
less limit does give the correct physics. Then the regulator must
introduce singularities that are not present in the continuum the-
ory.

The issue is again clearest for the one flavor theory, where in
the continuum the condensate, 〈ψ̄ψ〉 appropriately renormal-
ized, does not vanish and is smoothly behaved around m = 0.
Analyticity in the mass is expected with a radius of order the
eta-prime mass-squared over the typical scale of the strong in-
teractions, Λqcd. Now turn on the extrapolated staggered regu-
lator. At m = 0, 〈ψ̄ψ〉 must suddenly jump to zero. For every
eigenvalue of the staggered fermion matrix at vanishing mass,
its negative is also an eigenvalue. Configuration by configura-
tion the trace of D−1, and thus the condensate, is incorrectly
predicted to be identically zero. Furthermore, due to confine-
ment and the chiral anomaly, this unphysical jump occurs both
at finite volume and in the absence of any massless physical
particles for the continuum theory.

This problem generalizes to the multi-flavor theory with
non-degenerate quark masses. The proposed regulator forces
the condensate associated with any given species to vanish
with the corresponding mass, in direct contradiction with the
continuum behavior expected from effective Lagrangian analy-
sis. Physical observables at specific points in parameter space
where continuum physics is smooth are forced to develop in-
finite derivatives with respect to the cutoff as it is removed.
Even if this occurs only in the vicinity of isolated points, this
seems an absurd behavior for an ultraviolet regulator and is in
strong contrast to more sensible schemes such as Wilson fermi-
ons [20].

It has recently been argued [22] that this unphysical behav-
ior could be avoided in the continuum limit as long as one stays
away from these singularities. Consider the two flavor theory
discussed earlier. Due to the doubling, the unrooted theory has
32 neutral pseudo-scalar mesons. The anomaly should give one
of these a mass of order the QCD scale, and this becomes the
eta prime. At finite lattice spacing the remaining 31 particles
divide into two exact Goldstone bosons corresponding to the
exact chiral symmetries and 29 approximate Goldstone bosons.
If we now give only one of the quarks a small mass, one of the
massless pseudo-scalars should acquire a mass and represent
the neutral pion. The second, however, must remain massless
due to the remaining symmetry. Ref. [22] argues that at fi-
nite lattice spacing the 29 extra mesons at finite mass are still
there after rooting. They suggest, without proof, that if the sec-
ond quark is given a small mass and as the lattice spacing is
taken zero, it is possible that this plethora of extra states could
move down in energy and cancel the unwanted extra Gold-
stone boson. This scheme requires a loss of unitarity; indeed,
the production cross sections for some pairs of the unwanted
mesons must be negative so the total production can add to
zero. And before this happens the theory is non-local because
of long range forces due to the one unwanted massless parti-
cle.

Such a mechanism appears to me as rather contrived, but
Ref. [22] suggests that it is merely an ugly feature of the algo-
rithm. Even if the proposed cancellation does occur, at finite
lattice spacing we have a factor of 16 more neutral pseudo-
scalar mesons than in the physical theory. This suggests that
the lattice corrections to physics in the flavor singlet sector are
potentially rather large.

To summarize, at finite lattice spacing the holomorphic
behavior in the quark masses for rooted staggered quarks
is qualitatively incompatible with continuum physics. The
chiral symmetry group with rooted fermions is of a higher
rank than desired. This gives rise to unphysical singularities
when any single quark mass vanishes. For the extra symme-
try to disappear as the lattice spacing is taken to zero re-
quires rather subtle cancellations which have not been demon-
strated. The approximation may still be reasonable for some
observables, most particularly those involving only flavor non-
singlet particles. But any predictions for which anomalies
are important are particularly suspect. This includes the η′
mass, but also more mundane quantities such as the light-
est baryon mass, which in the chiral limit is entirely non-
perturbative.
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