
Quark mass dependence of two-flavor QCD

Michael Creutz

Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
(Received 3 November 2010; published 18 January 2011)

I explore the rich phase diagram of two-flavor QCD as a function of the quark masses. The theory

involves three parameters, including one that is CP violating. As the masses vary, regions of both first- and

second-order transitions are expected. For nondegenerate quarks, nonperturbative effects cease to be

universal, leaving individual quark mass ratios with a renormalization scheme dependence. This raises

complications in matching lattice results with perturbative schemes and demonstrates the tautology of

attacking the strong CP problem via a vanishing up-quark mass.
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I. INTRODUCTION

The standard theory of the strong interactions is based
on quarks interacting through non-Abelian gauge fields.
This system is remarkable in its paucity of parameters.
Once the overall scale is set, perhaps by working in units
where the proton mass is unity, the only remaining parame-
ters are the quark masses. In general these are complex
numbers, although field redefinitions allow removing all
phases but one, usually called the strong CP parameter �.
For a recent review, see Ref. [1]. Thus the number of
physical parameters for QCD is one more than the number
of quark species. As is well known, if � is nontrivial, the
theory violates CP symmetry. As CP appears to be a good
symmetry of hadronic physics, the strong CP puzzle asks
the question why should this parameter be so small
experimentally.

In this paper I restrict myself to two-flavor QCD and
explore the qualitative behavior as the most general mass
terms are varied. Using effective potential techniques,
I find a rich phase diagram with regions of both first- and
second-order phase transitions. I find that there can be
interesting long distance physics even when no individual
quark mass vanishes. I also delve more deeply into the old
argument [2] for a fundamental ambiguity in defining a
vanishing quark mass. These effects are inherently non-
perturbative and lead to unsettled issues for matching
lattice with perturbative results.

Of course, with QCD being an interacting quantum field
theory, nothing has been proven rigorously. To proceed
I assume that QCD exists as a field theory and confines
in the usual way. In addition I will work in the conventional
picture of spontaneous breaking of approximate chiral
symmetry as the explanation for the lightness of the pions.
I also assume the generation of the singlet pseudoscalar
meson mass is tied to the anomaly. For simplicity I work
with the two-flavor theory with only the u and d quarks,
assuming their masses are light enough that conventional
chiral expansions make sense. The generalization to more
flavors is straightforward, although there are some rather
fascinating further consequences [3].

I begin in Sec. II with a simple argument on how the
various quark masses indirectly influence each other.
The obscurity of these effects in a mass independent
regularization scheme has raised some controversy, which
I address in Sec. III. Section IV turns to the most general
mass term for the two-flavor theory. Here I discuss some of
the conventions needed for formulating this question.
Section V relates the mass parameters to the strong CP
problem and discusses the issues with pursuing a vanishing
lightest quark mass. Section VI uses an effective potential
argument to develop the qualitative phase diagram as a
function of the independent mass parameters. Finally, the
basic ideas are summarized in Sec. VII.

II. SPIN-FLIP QUARK SCATTERING

I begin with a reminder of some basic properties ex-
pected for massless two-flavor QCD. While the classical
theory is conformally invariant, it is commonly believed
that in the quantized theory confinement and dimensional
transmutation generate a nontrivial mass scale �qcd. This

scale is scheme dependent, but that will not enter the
qualitative discussion here. In particular, the theory should
contain massive stable nucleons. On the other hand, spon-
taneous chiral-symmetry breaking is expected to give rise
to three massless pions as Goldstone bosons. In addition,
the two-flavor analog of the �0 meson should acquire a
mass from the anomaly.
In this picture, the �0 and neutral pion involve distinct

combinations of quark-antiquark bound states. In the sim-
ple quark model the neutral pseudoscalars involve the
combinations

�0 � �u�5u� �d�5d (1)

�0 � �u�5uþ �d�5dþ glue: (2)

Here I include a gluonic contribution from mixing between
the �0 and glueball states. When the quarks are degenerate,
isospin forbids such mixing for the pion.
Projecting out helicity states for the quarks, qR;L ¼ ð1�

�5Þq=2, the pseudoscalars are combinations of left with
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right states, i.e. �qLqR � �qRqL. Thus, as shown schemati-
cally in Fig. 1, meson exchange will contribute to a hypo-
thetical quark-quark spin-flip scattering experiment. More
precisely, the four point function h �uRuL �dRdLi should not
vanish. (Scalar meson exchange will also contribute to this
process, but this is not important for the qualitative argu-
ment below.) Of course I assume that some sort of gauge
fixing has been done to eliminate a trivial vanishing of this
function from an integral over gauges.

It is important that the �0 and �0 are not degenerate.
This is due to the anomaly and the fact that the �0 is not a
Goldstone boson. At a more abstract level this �0-�

0
splitting is ascribed to topological structures in the gauge
field, but such details are not necessary for the discussion
here. Because the mesons are not degenerate, their contri-
butions to the above diagram cannot cancel. The conclu-
sion of this simple argument is that helicity-flip quark-
quark scattering is not suppressed as the mass goes to zero.

Now consider turning on a small d quark mass while
leaving the up quark massless. Formally this mass allows
one to connect the ingoing and outgoing down-quark lines
in Fig. 1 and thereby induce a mixing between the left- and
right-handed up quark. Such a process is sketched in Fig. 2.
Here I allow for additional gluon exchanges to compensate
for turning the pseudoscalar field into a traditional mass
term.

So the presence of a nonzero d quark mass will induce
an effective mass for the u quark, even if the latter initially
vanishes. As a consequence, nonperturbative effects will
renormalize mu=md. If this ratio is zero at some scale, it
cannot remain so for all scales. Only in the isospin limit are
quark mass ratios renormalization group invariant. As
lattice simulations include all perturbative and nonpertur-
bative effects, this phenomenon is automatically included
in such an approach.

Confinement plays a crucial role in what is effectively an
ambiguity in defining quark masses. Because quarks can-
not travel long distances in isolation, their masses cannot
be directly inferred from long distance propagators. This is
tied directly with the phase diagram discussed in Sec. VI,
where it is shown that no discernible physical structure is
seen when single quark mass vanishes.

This cross talk between the masses of different quark
species is a relatively straightforward consequence of the

chiral anomaly and has been discussed several times in the
past, usually in the context of gauge field topology and the
index theorem [2,4–6]. Despite the simplicity of the above
argument, the conclusion is frequently met with skepticism
from the perturbative community. In perturbation theory,
spin-flip processes are suppressed as the quark masses go
to zero. The above discussion shows that this lore need not
apply when anomalous processes come into play. In par-
ticular, mass renormalization cannot be flavor blind and the
concept of mass independent regularization is problematic.
Since the quark masses influence each other, there are
inherent ambiguities defining mu ¼ 0. This has conse-
quences for the strong CP problem, discussed further
below. Furthermore, since these effects involve quark
mass differences, a traditional perturbative regulator such

asMS is not complete whenmu � md. Because of this, the

practice of matching lattice calculations toMS is problem-
atic, a point that is sometimes ignored [7,8]. (Reference [7]
also suffers from an uncontrolled extrapolation in the
number of quark species [9].)

III. SPECIFIC CRITIQUES

Given the simplicity of the argument in the previous
section, it may seem surprising that it often receives severe
criticism. The first complaint sometimes made is that one
should work directly with bare quark masses. This ignores
the fact that the bare quark masses all vanish under renor-
malization. The renormalization group equation for a
quark mass reads

a
dmi

da
¼ �ðgÞmi ¼ �0g

2 þOðg4Þ; (3)

where the leading coefficient is well known, �0 ¼ 8
ð4�Þ2 . As

asymptotic freedom drives the bare coupling to zero, the
bare masses behave as

m� g�0=�0ð1þOðg2ÞÞ ! 0; (4)

where �0 (explicitly given later) is the first term in the �
function controlling the vanishing of the bare coupling in
the continuum limit. Since all bare quark masses are for-
mally zero, one must address these questions in terms of a
renormalization scheme at a finite cutoff.
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FIG. 1 (color online). Both pion and �0 exchange can contrib-
ute to spin-flip scattering between up and down quarks.
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FIG. 2 (color online). Through physical meson exchange, a
down-quark mass can induce an effective mass for the up quark.
The gluon exchanges can compensate for the pseudoscalar
nature of the meson fields.
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The second objection often made is that in a mass
independent regularization scheme, mass ratios are auto-
matically constant. Such an approach asks that the renor-
malization group function �ðgÞ in Eq. (3) be chosen to be
independent of the quark species and mass. This immedi-
ately implies the constancy of all quark mass ratios. As
only the first term in the perturbative expansion of �ðgÞ is
universal, a mass independent scheme is indeed an allowed
procedure. However, such a scheme obscures the off-
diagonal md effect on mu discussed above. In particular,
by forcing constancy of bare mass ratios, one will find that
the ratios of physical particle masses will vary as a function
of cutoff. This will be in a manner that cancels the flow
from the process in Sec. II. The fact that physical particle
mass ratios are not just a function of quark mass ratios is
shown explicitly in Sec. VI, where it is shown that in the
chiral limit the combination 1�m2

�0
=m2

�� is proportional

to ðmd�muÞ2
ðmdþmuÞ�qcd

.

From a nonperturbative point of view, having physical
mass ratios vary with cutoff seems rather peculiar; indeed,
the particle masses are physical quantities that would be
natural to hold fixed. And, even though a mass independent
approach is theoretically possible, there is no guarantee
that any given ratio mi

mj
will be universal between schemes.

Finally, the lattice approach itself is usually implemented
with physical particle masses as input. As such it is not a
mass independent regulator, making a perturbative match-
ing to lattice results rather subtle.

A third frequent complaint against the argument in
Sec. II is that one should simply do the matching at some
high energy, say 100 GeV, where ‘‘instanton’’ effects are
exponentially suppressed and irrelevant. This point of view
has several problems. First, the lattice simulations are not
done at miniscule scales and nonperturbative effects are
present and substantial. Furthermore, the exponential sup-
pression of topological effects is in the inverse coupling,
which runs logarithmically with the scale. As such, the
nonperturbative suppression is a power law in the scale and
straightforward to estimate.

Recall the renormalization group prediction for how the
�0 mass depends on the coupling in the continuum limit

m�0 / 1

a
e�1=ð2�0g

2Þg��1=�
2
0 : (5)

Here �0 ¼ 11�2nf=3

ð4�Þ2 , �1 ¼ 102�12nf
ð4�Þ4 , nf is the number of

quark flavors, and a is the cutoff scale, i.e. the lattice
spacing with such a renormalization scheme. While this
formula indeed shows the exponential suppression in 1=g2,
this is canceled by the inverse cutoff factor in just such a
way that the mass of this physical particle remains finite.
The ambiguity in the quark mass splitting is controlled by
the mass splitting m�0 �m�0

as well as being proportional

to md �mu. Considering md ¼ 5 MeV at a scale of

� ¼ 2 GeV, a rough estimate of the order of the u quark
mass shift is

�muð�Þ �
�
m�0 �m�0

�qcd

�
ðmd �muÞ ¼ Oð1 MeVÞ; (6)

a number comparable to typical phenomenological esti-
mates. Of course the result depends on scale, but that
dependence is only logarithmic and given by Eq. (4).
Additional flavors will reduce the size of this effect; with
the strange quark present, it should be proportional tomdms.
It is important to note that for a modest number of

flavors the exponent controlling the coupling constant
suppression in Eq. (5) differs substantially from the clas-
sical instanton action

8�2

ð11� 2nf=3Þg2 � 8�2

g2
: (7)

This difference arises because one should consider topo-
logical excitations above the quantum, not the classical,
vacuum. Zero modes of the Dirac operator are still respon-
sible for the bulk of the �0 mass, but naive semiclassical
arguments strongly underestimate their effect.

IV. GENERAL MASSES IN TWO-FLAVOR QCD

Given the confusion over the meaning of quark masses,
it is useful to explore the behavior of two-flavor QCD as
these quantities are varied. Here I review how the theory
depends on the three nontrivial mass parameters. These
include the possibility of explicit CP violation. The full
theory has a rather rich phase diagram, including both first-
and second-order phase transitions, some occurring when
none of the quark masses vanish.
For the following the quark fields c carry implicit

isospin, color, and flavor indices. I assume that the theory
in the massless limit has the flavored chiral symmetry
under

c ! ei�5����=2c �c ! �c ei�5����=2: (8)

Here �� represents the Pauli matrices generating isospin
rotations. The angles �� are arbitrary rotation parameters.
This, of course, is the chiral symmetry that is spontane-
ously broken to give the massless Goldstone pions.
I wish to construct the most general possible two-flavor

mass term to add to the massless Lagrangian. Such should
be a dimension-three quadratic form in the fermion fields
and should transform as a singlet under Lorentz transfor-
mations. For simplicity, I only consider quantities that are
charge neutral as well. This leaves four candidate fields,
giving the generalized form for consideration,

m1
�c c þm2

�c �3c þ im3
�c�5c þ im4

�c�5�3c : (9)

The first two terms are naturally interpreted as giving the
average quark mass and the quark mass difference, respec-
tively. The remaining two terms are less conventional.

QUARK MASS DEPENDENCE OF TWO-FLAVOR QCD PHYSICAL REVIEW D 83, 016005 (2011)

016005-3



The m3 term is connected with the CP violating parameter
of the theory. The final m4 term has been used in conjunc-
tion with the Wilson discretization of lattice fermions,
where it is referred to as a ‘‘twisted mass’’ [10,11]. Its
utility in that context is the ability to reduce lattice discre-
tization errors, but that is not the subject of this paper.

These four terms are not independent. Indeed, consider
the above flavored chiral rotation in the �3 direction,
c ! ei	�3�5c . Under this the terms transform as

�c c ! cosð	Þ �c c þ sinð	Þi �c�5�3c

�c �3c ! cosð	Þ �c �3c þ sinð	Þi �c�5c

i �c �3�5c ! cosð	Þi �c �3�5c � sinð	Þ �c c

i �c�5c ! cosð	Þi �c�5c � sinð	Þ �c �3c :

(10)

Such a rotation mixes m1 with m4 and m2 with m3. Using
this freedom, one can select any one of themi to vanish and
a second to be positive.

The most common choice is to set m4 ¼ 0 and usem1 as
controlling the average quark mass. Then m2 gives the
quark mass difference, and CP violation appears in m3.
This, however, is only a convention. The alternative
‘‘twisted mass’’ scheme [10,11] makes the choice m1 ¼ 0.
This uses m4 > 0 for the average quark mass, and m3

becomes the up-down mass difference. In this case m2

becomes the CP violating term. It is amusing to note that
an up-down quark mass difference in this formulation in-
volves the naively CP odd i �c�5c . The strong CP problem
has been rotated into the smallness of the �c �3c term,
which with the usual conventions is the mass difference.
But because of the flavored chiral symmetry, both sets of
conventions are physically equivalent.

For the following I make the arbitrary choice m4 ¼ 0,
although one should remember that this is only a conven-
tion and I could have chosen any of the four parameters in
Eq. (9) to vanish. With this choice two-flavor QCD, after
scale setting, depends on three mass parameters

m1
�c c þm2

�c �3c þ im3
�c�5c : (11)

It is the possible presence of m3 that represents the strong
CP problem. As all the parameters are independent and
transform differently under the symmetries of the problem,
there is no connection between the strong CP problem and
m1 or m2.

As is well known, the chiral anomaly is responsible for
the singlet rotation

c ! ei�5�=2c �c ! �c ei�5�=2 (12)

not being a valid symmetry, despite the fact that �5

naively anticommutes with the massless Dirac operator.
The anomaly is quite nicely summarized via Fujikawa’s
[12] approach where after the above rotation the fermion
measure in the path integral picks up a factor of

detðei�5�Þ ¼ expði�Tr�5Þ: (13)

Using the Dirac operator 6D itself as a regulator, define

Tr�5 ¼ lim
�!1

�5e
6D2=�2

: (14)

In any given gauge configuration only the zero eigenmodes
of 6D contribute, and by the index theorem this is connected
to the winding number of the gauge configuration. The
conclusion is that the above rotation changes the fermion
measure by an amount depending nontrivially on the gauge
field configuration.
Note that this anomalous rotation allows one to remove

any topological term from the gauge part of the action.
Naively this would have been yet another parameter for the
theory, but by including all three mass terms for the fer-
mions, this can be absorbed. For the following I consider
that any topological term has thus been rotated away. After
this one is left with the three mass parameters above, all of
which are independent and relevant to physics.
These parameters are a complete set for two-flavor

QCD; however, this choice differs somewhat from what
is often discussed. Formally one defines the more conven-
tional variables as

mu ¼ m1 þm2 þ im3 md ¼ m1 �m2 þ im3

ei� ¼ m2
1 �m2

2 �m2
3 þ 2im1m3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m4
1 þm4

2 þm4
3 þ 2m2

1m
2
3 þ 2m2

2m
2
3 � 2m2

1m
2
2

q :

(15)

Particularly for �, this is a rather complicated change of
variables. For nondegenerate quarks in the context of the
phase diagram discussed below, the variables fm1; m2; m3g
are more natural.

V. THE STRONG CP PROBLEM

The strong interactions preserve CP to high accuracy.
Thus only two of the three possible mass parameters seem
to be needed. With the above conventions, it is natural to
ask why is m3 so small?
It is the concept of unification that brings this question to

the fore. The weak interactions of course do violate CP.
Thus, if the electroweak and the strong interactions sepa-
rate at some high scale, why does not some remnant of this
breaking survive in the strong sector? How isCP recovered
for the nuclear force?
Several ‘‘solutions’’ to this puzzle have been proposed.

Perhaps the simplest is that there is no unification and the
strong interactions should be considered on their own with
the electroweak effects being only a small perturbation. A
second approach is to add an additional ‘‘axion’’ field to
make the CP phase a dynamical field that relaxes to zero
[13,14]. The coupling of this additional field is not deter-
mined a priori, and thus it need only be small enough to
have avoided detection in past experiments.
Another often-proposed solution involves having the

lightest quark mass vanish, making its phase irrelevant.
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Several years ago this was criticized because the definition
of an isolated quark mass is inherently ambiguous due to
confinement [2]. As this conclusion remains controversial,
I return to this topic and reexpress the problem in terms of
the above mass terms. I hope this language will clarify why
relating a vanishing up-quark mass to the strong CP prob-
lem is a tautology.

Why is a vanishing up-quark mass not a sensible ap-
proach? From the above, one can define the up-quark mass
as a complex number

mu � m1 þm2 þ im3: (16)

But the quantitiesm1,m2, andm3 are independent parame-
ters with different symmetry properties. With our conven-
tions, m1 represents an isosinglet mass contribution, m2 is
isovector in nature, and m3 is CP violating. And, as ex-
tensively discussed earlier, the combination m1 þm2 ¼ 0
is scale and scheme dependent. The strong CP problem
only requires small m3. So while it may be true formally
that

m1 þm2 þ im3 ¼ 0 ) m3 ¼ 0; (17)

this would depend on scale and one might well regard this
as ‘‘not even wrong.’’

VI. PHASE DIAGRAM FOR GENERAL
QUARK MASSES

As a function of the three mass parameters, QCD has a
rather intricate phase diagram. From simple chiral
Lagrangian arguments this diagram can be qualitatively
mapped out. Reference [15] studied this system in the
m2 ¼ 0 case; a first-order transition is expected along the
m3 axes at m1 ¼ 0. In conventional notation, this corre-
sponds to the strong CP parameter � taking the value �.
That paper, however, incorrectly speculated on the struc-
ture for nondegenerate quarks. In Ref. [16] the picture was
generalized to several degenerate flavors and the first-order
transition at� ¼ �was shown to be generic for all nf > 1.

Reference [17] studied the phase diagram for m3 ¼ 0 and
showed how the isospin breaking m2 term splits the chiral
transition into two second-order transitions separated by a
phase with spontaneous CP violation. These second-order
transitions occur where none of the quarks are massless.

The full phase diagram in terms of all mass parameters
can be deduced from a linear 
 model [18] analysis,
generalizing Ref. [15]. For this, define the composite fields


 ¼ �c c �0 ¼ i �c�5c

~� ¼ i �c�5 ~�c ~a0 ¼ �c ~� c :
(18)

In terms of these, a natural starting effective potential is

V ¼ �ð
2 þ ~�2 � v2Þ2 �m1
�m2a03 �m3�
0

þ �ð�02 þ ~a20Þ � �ð�0
þ ~a0 � ~�Þ2: (19)

Here � and � are ‘‘low energy constants’’ that bring in a
chirally symmetric coupling of ð
; ~�Þ with ð�0; ~a0Þ. As
discussed in Ref. [15], � gives mass to the �0 and ~amesons
while � splits their masses. The sign of the � term is
suggested so that m�0 <ma0 . The effect of the anomaly

is manifest in these terms.
The potential in Eq. (19) is a somewhat arbitrary model.

It is natural to ask if the results of this section are robust
under variations of this form. The crucial feature of the
potential is the nontrivial minima associated with chiral-
symmetry breaking. Something similar to the � term is
needed to give the �0 a nonvanishing mass. The � term is
somewhat arbitrary; Ref. [15] discusses how things would
change qualitatively if its sign were reversed The other
implicit assumption is that the masses are small enough
that they do not dramatically alter the underlying structure
of the potential. With these caveats, the final phase diagram
should be qualitatively correct for any similar potential.
This potential builds on the famous ‘‘Mexican hat’’ or

‘‘wine bottle’’ potential, in which the Goldstone pions are
associated with the flat directions running around at con-
stant 
2 þ ~�2 ¼ v2. The m2 and m3 terms do not directly
affect the 
 and � fields, but induce an expectation value
for a03 and�

0, respectively. This in turn results in the� and
� terms inducing a warping of the Mexican hat into two
separate minima, as sketched in Fig. 3. The direction of this
warping is determined by the relative size of m2 and m3;
m2 (m3) warps downward in �0 (
) direction. Turning on
m1, this selects one of the two minima as favored. Which
one depends on the sign ofm1. This selection gives rise to a
generic first-order transition at m1 ¼ 0.
In addition to this transition, there is an interesting

structure in the m1, m2 plane when m3 vanishes. In this
situation the quadratic warping is downward in the �0

direction, as sketched in Fig. 4. For large jm1j only 

will have an expectation, with sign determined by the
sign of m1. The pion will be massive, but the quark mass

V

π

σ

0

FIG. 3 (color online). The m2 and m3 terms warp the Mexican
hat potential into two separate minima. The direction of the
warping is determined by the relative size of these parameters.
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difference will give a neutral pion mass below that of the
charged pions. As m1 decreases in magnitude at fixed m2,
eventually the neutral pion becomes massless and con-
denses. This is sketched in Fig. 5. An order parameter for
the transition is the expectation value of the �0 field, with
the transition being in the class of the four-dimensional
Ising model.

In this simple model the ratio of the neutral to charged
pion masses can be estimated from a quadratic expansion
about the minimum of the potential. For m3 ¼ 0 and m1

above the transition line, this gives

m2
�0

m2
��

¼ 1� �vm2
2

2�2m1

þOðm2Þ: (20)

The second-order transition is located where this vanishes,
and thus occurs for m1 proportional to m2

2. Note that this
equation shows that a constant quark mass ratio does
not correspond to a constant meson mass ratio and vice
versa. This is the ambiguity discussed in Sec. II. This
model should not be trusted when the quark masses be-
come of order �qcd, but the Vafa-Witten theorem [19]

shows that the transition can only occur in a region where
the two flavors have opposite signs for their masses, i.e.
jm1j< jm2j.

Note that this transition occurs when bothmu andmd are
nonvanishing but of opposite sign. At the transition the

correlation length diverges. This is a simple example of
how it is possible to have significant long distance physics
without small Dirac eigenvalues. Complimentarily, there is
no structure at points where only one of the quark masses
vanishes. In this situation there is no long distance physics
despite the possible existence of small Dirac eigenvalues.
This is connected with the difficulty in defining a vanishing
quark mass as discussed in Sec. II.
Putting this all together gives the final phase diagram

sketched in Fig. 6. There are two intersecting first-order
surfaces, one at fm1 ¼ 0; m3 � 0g and the second at fm1 <
m2; m3 ¼ 0g. The latter ends at second-order curves that
touch the lines of vanishing quark mass only at the origin.
The transition at the origin itself is, of course, that of the
four-dimensional Oð4Þ 
 model. The octets defined by the
signs of the three mass terms are characterized by the signs
of the expectation values for the conjugate fields 
, �0, �

0.
The flavored chiral symmetry of Eq. (10) combined with
permutation symmetry for the two flavors shows that the
eight corresponding regions divide into two sets of four
with equivalent physics, the sets differing in the sign of CP
violating effects.
The first-order surfaces both occur where the formal

parameter � takes the value �. However, note that with
nondegenerate quarks there is also a finite � ¼ � region
with m2 near m1 where there is no transition. The absence
of any physical singularity at mu ¼ 0 when md � 0 lies at
the heart of the problem of defining a vanishing quark
mass.

m

m

m 3

2

1

m  = 0u

FIG. 6 (color online). The full phase diagram for two-flavor
QCD as a function of the three mass parameters. It consists of
two intersecting first-order surfaces with second-order edges
along curves satisfying m3 ¼ 0, jm1j< jm2j. There is no struc-
ture along the mu ¼ 0 line except when both quark masses
vanish.

V

π

σ

0

m =03

FIG. 4 (color online). When m3 ¼ 0, the warping of the ef-
fective potential is downward in the �0 direction. The sign of m1

cannot pick one of the minima uniquely, giving the possibility of
the �0 field spontaneously acquiring an expectation value.

m  <0 m  >01

m  =01

1

FIG. 5. In the m1, m2 plane, m
2
�0

can pass through zero, giving
rise to pion condensation at an Ising-like transition. Figure taken
from [15].
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VII. SUMMARY

Nonperturbative effects in QCD couple the renormaliza-
tion group flow for the masses of different fermion species.
This effect is absent in perturbation theory, but is automati-
cally included in lattice gauge simulations. This coupling
means that quark mass ratios are generally not constants
but depend on renormalization scale. This is true for van-
ishing as well as nonvanishing quark masses. One practical
consequence is that it is inappropriate to match lattice and
perturbative masses.

Taking into account the possibility of CP violation, the
general two-flavor theory depends on three mass parame-
ters. A simple effective Lagrangian approach reveals

an intricate phase diagram containing both first- and
second-order transitions as the mass parameters are varied.
This diagram displays no structure at mu ¼ 0 when
md � 0, suggesting that mu ¼ 0 is not an appropriate
solution to the strong CP problem.
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