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Figure 1: Because of the anomaly, spin-flip scattering of masslessidplawn quarks does not vanish.

1. Introduction

At the previous meeting in this serid$ [1] | discussed theifeding physics arising from the
interplay of the three ways chiral symmetry is broken in QTbese are (1) the spontaneous break-
ing responsible for the lightness of pions, (2) the breakihthe singlet axial (1) symmetry by
the anomaly, and (3) the explicit breaking of chiral symmély the quark masses. For simplicity,
that discussion was restricted to degenerate quarks. hieoge on to some interesting generaliza-
tions that occur when the quarks are no longer degeneratee 8ie number of parameters grows
with the number of flavors, | concentrate here on the two flé#fveory and consider what happens
when the quark masses are varied from their physical valAea.function of the these parameters
a rather intricate phase diagram emerges, displaying lrsthefid second order phase transitions.
Much of this talk is adapted from the more detailed treatménRefs. [R] and[[3].

To begin, let me remind you of the expected behavior of twaf&CD in the limit of mass-
less quarks. Because of confinement and dimensional traasomy this theory should possess
several massive states, including the proton, neutrorpratee, and glueballs. In addition, sponta-
neous chiral symmetry breaking should give rise to threeshaas pions as Goldstone bosons. In
this picture both the eta prime and the neutral pion are caitggof distinct mixtures afiu and
dd quarks. The eta prime, defined as the lightest isosingletdasealar, also has a contribution
from purely gluonic constituents. The latter are relatethiooanomaly and the fact that thg and
then’ are not degenerate.

In this theory, consider a hypothetical quark-quark sdatgeexperiment, as sketched in Fip. 1.
This represents spin flip scattering of an up quark againsivandjuark. Exchanges of both the
neutral pion and the eta prime can contribute to this proc&ecause these particles are non-
degenerate, their contributions cannot cancel. Thergfioesspin-flip four point function does not
vanish. Were it not for the anomaly, the two exchanges coagtel.

Now turn on a small down quark mass. Take the diagram in[Figqudiciose the down quark
lines into a loop with a mass insertion as shown in fig. 2. Phizides a mechanism for mixing
the left and right handed up quarke. the up quark develops an effective mass. Starting with a
vanishing up quark mass, the mass rat{%nbecomes renormalized by non-perturbative effects.
Except in the isospin limit, quark mass ratios will not beaemnalization group invariant. Since
lattice gauge simulations include all non-perturbativggits, this effect is automatically present
in such calculations.

This trivial observation is rather old and is often discasseterms of instanton physicg [4,[, 6,
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Figure 2: A small down quark mass induces an additive shift in the uglgoeass through pseudoscalar
meson exchange.

[]. Note that only the last of these references appears ifegess journal, more than twenty years
after the first. This is a consequence of an intense consinrfeom the perturbative community
based on the lore that spin flip processes are suppresses nmetssless limit.

This renormalization of quark mass ratios is an effect nenhsa conventional perturbative
schemes, such &S The consequences have therefore been quite controvevkiak renormal-
ization is not flavor blind, and a mass independent renomaitin scheme is problematic. The
MS scheme is not a complete regulator since it ignores suctpadn¥bative effects. The crucial
conclusion here is that when the up and down quarks are nenhdegfe, then attempts to match
masses obtained from lattice calculations with pertuvkatesults are inherently meaningless. |
am not criticizingMS as a perturbative regulator; rather, the lattice and peative calculations
involve different physics and should not be compared.

2. Specific critiques

The above observations raise frequent objections. At thplsst level, one might try to claim
that the concept om = 0 corresponds to the bare mass rather than some runningtgudrtie
problem with this is that the bare quark masses always vaiiish renormalization group tells us
that as one approaches the continuum limit

mo 0 g/ P (1+0(c})) (2.1)
with the known coefficients 11-2n;/3
Po=" ~am? (2.2)
_ 8
= @

The asymptotic freedom result that the bare couptingoes to zero in the continuum limit then
immediately implieamy — 0. To talk about quark masses as non-vanishing quantitissneces-
sary to define them using some finite scale.
A more sophisticated complaint is that one has the optiorséoaumass independent regular-
ization scheme. In the renormalization group equationHemhass
dm

aa = y(g)m (2.3)

only the leading perturbative term i(g) is scheme independent. If one requires tha) is
independent of any of the quark masses, then one autonhatitdihins

m_ constant (2.4)

m;
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Indeed, such a regularization is technically allowed, bhides the above off-diagonaiy effect
onm,. There is no guarantee that quark mass ratios are indepeofischeme, and the lattice,
as usually implemented, is itself not a mass independergnseh This makes it quite obscure
how to do a matching with lattice results. To be more specifieenm, is different frommy,
isospin is broken explicitly and the charged pion mass diffeom that of its neutral partner. A
straightforward effective Lagrangian analysis relatesrttio of pion masses to the quark masses

with the result 2 ,
Mo 4 (my — mg) )
! O((rm+md)/\ch (235)

As an immediate consequence, if one holds the quark masedstfiven the physical hadronic mass
ratios will be scale dependent. Conversely, if one holdshiddron mass ratios fixed, as usually
done in lattice simulations, then the quark mass ratios tmeistale dependent.

At this point advocates of the matching process frequentygest doing the comparison at
some high energy, say 100 GeV, where instantons are expalheatippressed and irrelevant. This
does not resolve the issue for several reasons. First tleelaimulations are not done at such small
scales and the instanton effects must be included. Furtrerrthe asymptotic freedom result

1/¢” ~ log(u) ~ log(1/a) (2.6)

shows that the exponential suppression jig°lis actually only a power law suppression in the
scale. One can easily estimate the size of these effectstf®menormalization group, which tells
us that

my 0 Se YRG0 2.7)

The uncertainty in the up quark mass is proportional to thassras well as being proportional to
my — my. Thus the expected order of the up quark mass shift at a staltew GeV is

(Myr—Mrg) (Mg—my)
/\ch

Amy () ~ = 0(1 MeV). (2.8)
This is a number comparable in size to the quoted lattice esd85 D[ 1D].

In this context it is important to note that the exponent in @), m,

ably smaller than the classical instanton act%ﬁ This emphasizes that the relevant topological
excitations need to be considered above the quantum, nolabsical vacuum. Calculations based
on the classical instanton solution strongly underestntase effects. The renormalization group
gives the correct suppression.

is consider-

3. General masses in two flavor QCD

I now arrive at the main topic of this talk, the most generabmparameters for two flavor
QCD. A mass term should be a dimension-three Hermitean gtiadorm in the quark fields. As
well it should be Lorentz invariant and electrically neutBased on these criteria, the most general
expression is

my PP +mp Py +imz Pysy +imy Praysy. (3.1)
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Conventionally one might refer to these four terms waihrepresenting the average quark mass,
the up-down mass difference, ang a possible CP violating term related to the Theta parameter.
Finally my represents what is sometimes called a “twisted mass.”
These four mass parameters are not independent. Consideoeetl chiral rotation of form
W — €9B%y. Under this the various quadratic forms transform as

gy — co90) QY + sin(0) Pty

Uy  — coyh) Uy 4 sin6) i@y (32)
gy  — cogB) Py — sin(0) iy '
Py — cogB) Py — sin(6) Ty

This rotation mixesn; <+ my andm, <+ mg. What is essentially a change of variables allows one
to select any one of thay; to vanish and a second to be positive.

The conventional choice is to takey = 0 and then usem > O for the average quark mass
andmy, for the quark mass difference. The CP odd term proportianattis related to the Theta
parameter and will be discussed further momentarily.

An alternative choice is to seleat; = 0 and usarm, > 0 as the average quark mass. Then
the quark mass difference moves to tng term andm, encodes the CP violation. This is the
choice used for “twisted mass” lattice simulations. Thenaty motivation lies with certain lattice
artifacts which depend on the twist. These are minimizeti thits choice [11[ 32].

It is important to recognize that the choice between thesierpis purely a convention and
the continuum physics is equivalent between them. For thewimg discussion | adopt the first
and more familiar approach with, = 0.

A crucial aspect of this theory is how the anomaly preventatians betweem @y and
ims@ Y. Such would follow from a hypothetical variable change

W — 9%y, (3.3)
This however is not a valid symmetrly J13] 14] 15, 16] becatiskdnges the fermion measure
dy — €9Tsdy. (3.4)
The issue, as nicely elucidated by FujikaWd [17], is thatrip eegulated theorys cannot remain

traceless. For example, consider a cufdfénd regulate the theory suppressing large eigenvalues
of the Dirac operatoD. The index theorem gives the result

TryseP”/N = v (3.5)

wherev is the winding number of the gauge field configuration undersateration. Thus the
above rotation will introduce a factor of e§pv) into the path integral and thereby change the
value of the QCD Theta parameter. Actually, the above madillows one to move any Theta
parameter from the gauge action into the mass terms. Foollogving, assume that this has been
done. After this, all three mass parameters are both rdievahindependent.



Quark masses in two-flavor QCD Michael Creutz

4. The strong CP problem

Experimentally the strong interactions preserve CP symymethigh accuracy. This would
not be the case iz were substantial. Indeed, only the two parametersand m, seem to be
needed. The strong CP problem asks whyysso small?

This issue arises because of the possible unification afictiens. The weak interactions are
known to violate CP; so, when the interactions separate @goas down in energy, why is it that
some residue of the CP violation doesn’t remain in a nonskang ms.

One trivial “solution” is that there is no unification. Oneutt consider the strong interactions
on their own and impose CP symmetry from the outset. In tiigupt the weak interactions only
come in as a small perturbation and do not directly affeciTtheta angle.

Another approach couples a new dynamical field directlyfig (. In this casemg becomes
a dynamical quantity and can relax naturally to zero. Thiglies a new particle corresponding to
this field, although its coupling is not determined and cdddgsmall. This is the “axion” approach.

It is sometimes proposed that the strong CP problem coulalbedby having the up quark
mass vanish. However the above formalism should clarify thig/is not a sensible approach. In
terms of the three mass variables, one could define the ug quass as

my = My + My + ims. (4.1)

The problem is thatm, mp, andmg are independent parameters with different symmetry proper
ties. The parametan, represents an isosinglet mass contribution wiiamultiplies an isovector
guantity. It is only the parameten; which is CP violating. And the discussion in the introduntio
showed thatm + m, = 0 is a scale and scheme dependent statement. So while it meyekhat
settingm, from Eq. {4.1) to zero would implyns = 0, this could be regarded as “not even wrong.”

The basic issue with forcing the up quark mass to zero istlvatdlves going to polar coordi-
nates with an unnatural origin. In a formal sense one canamirithe three mass parameters above
with the more conventional s¢m,, my,®} via the relations

my = My + Mp +img,
My = My — My +img,

g9 — M2 —mg—mg-+2imymg
/MG + 2mE g 4 2mgng —2mEmg

The mixing discussed in the introduction shows that thisahof parameters, includin®, is in
general scale and scheme dependent.

(4.2)

5. The phase diagram

Taking the mass parameters away from their physical valnesuers a rather rich phase
diagram. This follows from a simple linear sigma model agi&lyFor this, consider the composite
scalar fields

o0gy, mliPwTty, nOiPwy, &HOPTY. (5.1)
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Figure 3. The parametersy, andmg warp the Mexican hat downward in a direction determined fgjrth
relative size.

These provide a model for the two flavor chiral symmetry viatiective potential

V= A(0%+ T2 —V?)2—mo — Mpags — N
+a(n?+&)—B(no+d- 72

The first term, proportional td, is the conventional “wine bottle” or “Mexican hat” frequgn
used to describe spontaneous symmetry breaking. The pergaeand 3 can be thought of as
“low energy constants” that couple, 7t) with (n,dy). These combinations rotate similarly under
flavored chiral rotations; so, these constants preservettingl symmetry of the massless theory.
Here theo term serves to give a mass to theandady. The square appearing in tderm is inserted
so the basic potential still preserves parity. The sign isftérm is selected so that;, < my,.

The three mass terms break the chiral symmetry in slightfgréint ways. Them term serves
to tilt this potential and generally selects a unique mimmurhe effects of thern, andms terms
are more subtle since they do not directly couple tortlee o fields. Withm, (mg) present the field
ap3 (n) will be driven to have an expectation value. This will feeatk through theg8 term to give
a quadratic warping of the Mexican hat. This warping will mevdward in thergp (o) direction.
With both terms present, this warping will be in some intediate direction, as shown in Fiff. 3.
Whenm; is absent, this warping leaves two possible minima into fwhie vacuum can settle.
Turning on a smaliny, the resulting tilt will select one or the other as the truewam. This results
in a generic first order transition occuring when changes sign.

A special case occurs whems = 0 andm, # 0. Then the warping is downward in thg
direction andm; does not distinguish between the two minima, as sketchedgnffr In this
situation there will be some intermediate valuengfwhere a single minimum at large tilt splits
into two minima with an expectation value for the neutralmpfeeld. This is sketched in Fid] 5.
At this critical point one expects an Ising-like behaviorerel the square of the neutral pion mass
passes through zero and gives rise to a pion condensate.e Aot is CP odd, this represents a
spontaneous breaking of CP symmetry.

Note that this Ising-like transition aig = 0, |my| < |m| occurs with bothm, andmy non-
vanishing, although they are of opposite sign. This reprssa situation where there is a diverging

(5.2)
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Figure 4: At mgz = 0 the warping is orthogonal to the sigma direction and a smaterm does not select a
unigue minimum.

m1:0

X

m1<0 m1>0

Figure 5: As ny varies atmg = 0 there should be a point where a single minimum splits intm tw

correlation length and corresponding long distance pbBysacuring without the presence of any
small eigenvalues for the Dirac operator.

Conversely, the overall picture indicates no special bigihat m, = 0 whenmy # 0. In this
case there is no important long distance physics despiteabsbility of small Dirac eigenvalues.
These facts are the seed of many controversies, includmgdhnection between the strong CP
problem andm, = 0 [f4], the issue of whether topological susceptibility iskygical observable
(L], and the failure of the rooting process for staggereciens [19].

The final phase diagram as a function of the three mass pagesragipears in Fig] 6. There
are two intersecting first order surfaces, onémat = 0, mz # 0) and the second contained in the
region(my < mp, mg = 0). The second surface ends along a critical line. In conveatianguage,
these transitions all occur when the strong CP angle talkesatuer, but it is important to note
that there is a finite region wit® = 1T without any phase structuree. whenm, is only slightly
larger thanm,. Here the quark masses differ in sign, but one is much smtiléer the other in
magnitude.
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Figure 6: The full phase diagram as a function of the three mass paeaset

6. Summary

Non-perturbative effects can result in a mixing betweemtlagses for different quark species.
Because this effect is absent in perturbation theory, nappropriate to match lattice and pertur-
bative calculations of quark masses, particularly wheg #re non-degenerate.

The two flavor theory depends on three possible mass paneamétee of these is explicitly CP
violating; its apparent absence is the strong CP problenthése three parameters are varied from
their physical values, a rather rich phase diagram is enteoenh, displaying both first and second
order transitions. In this diagram there is no structurenat= 0 whenmy # 0. This is closely
connected with the result that, = 0 is not an appropriate solution to the strong CP problem.



Quark masses in two-flavor QCD Michael Creutz

References

[1] Michael Creutz. Anomalies and discrete chiral symnastiPoS QCD-TNT09:008, 2009.
[2] Michael Creutz. Quark mass dependence of two-flavor QRlys. Rey.D83:016005, 2011.

[3] Michael Creutz. Confinement, chiral symmetry, and thiéda. Acta Physica Slova¢c#1:1-127,
2011.

[4] Howard Georgi and lan N. McArthur. Instantons and theQuark Massunpublished
(HUTP-81/A011)1981.

[5] Tom Banks, Yosef Nir, and Nathan Seiberg. Missing (upssaccidental anomalous symmetries,
and the strong CP probleranpublished (hep-ph/94032Q3p94.

[6] Michael Creutz. CP symmetry and the strong interactiompublished (hep-th/0303254£2003.
[7]1 Michael Creutz. Ambiguities in the up quark magtys. Rev. Lett92:162003, 2004.

[8] A.Bazavov, D. Toussaint, C. Bernard, J. Laiho, C. De®aal. Nonperturbative QCD simulations
with 2+1 flavors of improved staggered quarkev.Mod.Phys82:1349-1417, 2010.

[9] T.Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, et alleEtromagnetic mass splittings of the low
lying hadrons and quark masses from 2+1 flavor lattice QCD»QFhys.Rey.D82:094508, 2010.

[10] S. Durr, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, &t laattice QCD at the physical point: light
guark masses?hys.Lett.B701:265—-268, 2011.

[11] R. Frezzotti and G.C. Rossi. Chirally improving Wilstarmions. 1. O(a) improvemeniHEP,
0408:007, 2004.

[12] Gernot Munster, Christian Schmidt, and Enno E. Sch@lziral perturbation theory for twisted mass
QCD. Nucl.Phys.Proc.Suppll40:320-322, 2005.

[13] Stephen L. Adler. Axial vector vertex in spinor eledymamics.Phys.Rey.177:2426—-2438, 1969.

[14] Stephen L. Adler and William A. Bardeen. Absence of legbrder corrections in the anomalous
axial vector divergence equatioRhys.Rey.182:1517-1536, 1969.

[15] J.S. Bell and R. Jackiw. A PCAC puzzle: pi0 to gamma garmrihe sigma modelNuovo Cim,
A60:47-61, 1969.

[16] Roman Jackiw. What good are quantum field theory inésf?i 1999. hep-th/9911071.

[17] Kazuo Fujikawa. Path integral measure for gauge iavarfiermion theoriesPhys.Rev.Lett42:1195,
1979.

[18] Michael Creutz. Anomalies, gauge field topology, angldttice. Annals Phys.326:911-925, 2011.
[19] Michael Creutz. Chiral anomalies and rooted staggéadions.Phys. Lett.B649:230-234, 2007.

10



