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Stellar Masses and Fates

dn/dm ~m=23° m=Mg,,./ M, Salpeter (1955)

Type Ta SN:

~ 3 - 8 M, progenitor ( ~ Gyr);

carbon-oxygen white dwarf in binary:;

gammas reveal (thermonuclear) explosion energy:;

B56Ni --> 56Co --> b6Fe with gammas (months)

Type IT SN:

~ 8 - 40 M_,, progenitor (< 0.1 Gyr)

iron white dwarf in core of star;

neutrinos reveal (gravitational) explosion energy;
hot and dense --> nu + nubar (seconds)
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Observational Scorecard

Gamma rays from SNIa:
Never seen from individual SNIa
Tight limits in three cases with COMPTEL
Diffuse background from SNIa not seen
COMPTEL did measure an MeV background

Neutrinos from SNIT:

Seen once, from SN 1987 A
But only ~ 20 events

Diffuse background from SNII not seen
Limits on MeV background from Super-K
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Supernova Energetics

G M: G M:
:g RNNS_S R st3x10536r‘9522x1059M€V
s

core

AE,

K.E. of explosion =107 AE,
E.M. radiation =107 AE,
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Supernova Neutrino Emission

proto newtyron star

newtyings phere

“coob'h%" by newtrine emission :

Pte —n+

+ - =<5 - =
e+e —3utl, utlu, Vet

ete.
diffusion ontid A = l/loc' From surface , then fScape
L4~ L I\ MeV

{ Ep > 16 MeV
& E'Vx> ~ 25 MgV

L w=lglo =L, & duration = (o
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Supernova Neutrino Detection

SN1987A:
~20 v,p — e'n events

SN2007??:
~10* CC events
~10° NC events

Supernova physics (models, black holes, progenitors...)

Particle physics (neutrino properties, new particles, ...)
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Gathering Supernova Neutrinos

Milky Way (D ~ 10 kpc):

Expect ~ 104 events in Super-Kamiokande
Frequency is ~ 3/century

Very obvious when it happens

Nearby (D < 10 Mpc):

Expect ~ 1 event in Hyper-Kamiokande
Frequency is ~ 1/year
Requires two-neutrino or optical coincidence

Distant (z < 1):

Expect ~ 5 events/year in Super-Kamiokande

No correlation to specific supernovae possible
Requires strong rejection of detector backgrounds
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Supernovae in the Milky Way
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Super-Kamiokande

e ,e,y
convert to Cerenkov light

22.5 kton fiducial mass
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Yields in Super-Kamiokande

~8000 vV +p—>e’ +n

=700 v+*°0O->v+y+X (E=5-10MeV)

=300 v+e > v+e (e is forward)
~100 v, +"0—>e +X (buried)

vV, + °0 > e+ X

With neutron tagging, we can separate reactions

Real chance to see CC reactions on 10
Haxton, PRD 36, 2283 (1987)

Other detectors worldwide smaller but important
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Supernovae in Nearby Galaxies
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Nearby Supernovae

Galaxy Known Supernovae
NGC 2403 3. 1954, 2002kg, 2004dj
NGC 5236 (M 83) 1923A, 19458, 19508,
1957D. 1968L, 1983N
NGC 6946 5.¢ 1917A, 1939C, 1948B. 1968D,
1969P, 1980K, 2002hh, 2004et
NGC 5457 (M 101) 1909A, 1951H, 1970G

Supernova .| Host Galaxy Discoverer
2002ap | 14.! M 74 : Yoji Hirose
2002bu | 15.5 | NGC 4242 Tim Puckett
2002hh | 16.5 | NGC 6946 - LOTOSS
2002kg NGC 2403 3. LOTOSS
2003gd | 13.: M 74 Robert Evans
2004am ' M 82 LOSS
2004d] NGC 2403 3.5 Koichi Itagaki
2004 et NGC 6946 - Stefano Moretti
2005af NGC 4945 : CEAMIG/REA
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More Than a Showball's Chance

P(>1); 12-38 MeV
P(>1); 18-30 MeV . ==~
P(>2): 15-35 MeV —
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Nearby Supernova Detection
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New Optical Survey

NO SWEAT: Neutrino-Oriented Supernova
Whole-EArth Telescope

Monitor 12 large nearby galaxies nightly for SNe
Avishay Gal-Yam, et al.

http://www.astro.caltech.edu/~avishay/nosweat.html

Early behavior of light curves
Possible identification of progenitors
Correlation with neutrino experiments
Correlation with LIGO

Correlation with gamma-ray satellites

Etc.
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DSNB, Take 1: First Good Limit
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Supernova Neutrino Background

10

| |

1

IIIIIIII

gL,

0.001
T
1 L1 IIIIII

10-1

T IIIIII|
| IlIllIl

10-2

rol')_l
O
[oR
=
T
=]
>
| S—
1))
4+
o
[0t
o
o
O
-
L
o
oF
3
2

Number Flux [em™ s™! MeV~!]

1 II[III|

0.0001

| |
| . | . |
2 3
, 10 20 30
redshift Neutrino Energy [MeV]

Fig. 2. Supernova rate evolution on the cosmological time seale. These lines are for
a A-dominated cosmology (£, = 0.3, = 0.7). The Hubble constant is taken to
be 70 km s~ Mpe1.

Fig. 3. Number flux of #.'s for the three supernova rate models, assuming
oscillation” case.

Ando, Sato, and Totani, Astropart. Phys. 18, 307 (2003)
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SK Data Limit

‘4.1 years of SK data
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Malek et al. (SK), PRL 90, 061101 (2003)
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DSNB Flux Limit

‘Predictions roughly agree on spectrum shape

*Main question is hormalization of

v, /cm2 /s, EV >19.3 MeV

2.2 Kaplinghat, Steigman, Walker, PRD 62, 043001 (2000)

<1.2 Malek et al. (SK), PRL 90, 061101 (2003)

0.4 Fukugita and Kawasaki, MNRAS 340, L7 (2003)
0.4 Ando, Sato, and Totani, Astropart. Phys. 18, 307 (2003)

1.0 Strigari, Kaplinghat, Steigman, Walker, JCAP 0403, 007 (2004)
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SK + Gadolinium: DSNB Detection
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Inverse Beta Decay

V,+p—>e +n

*Cross section is "large” and "spectral”

o = 0.095(E, ~1.3MeV)Z 10~ *ecm?
E =E -1.3MeV
e V
Corrections in Vogel and Beacom, PRD 60, 053003 (1999)

‘We must detect the neutron, but how?

John Beacom, The Ohio State University TASI in Elementary Particle Physics, Boulder, CO, June 2006




Gadolinium
Antineutrino
Detector

11,200 20" PMTs

Zealously
Outperforming
Old
Kamiokande,
Super!

Beacom and Vagins, PRL (2004)
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Neutron Capture

Capture on H: sigma = 0.3 barns
Egamma = 2.2 MeV

Capture on Gd: sigma = 49100 barns
E.omma = 8 MeV
(quuivalen‘r E. ~5 MeV)

=N, Gy + N Oy

Capture fraction = 90%
A=4cm,t=20pus

John Beacom, The Ohio State University TASI in Elementary Particle Physics, Boulder, CO, June 2006
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Neutron Backgrounds in SK

Don't want captures on Gd

to dilute the solar signal Solarv+e —>v+e

How many neutrons are in
SK anyway?

Event/day/kton/bin

| B&ckgrounds
*Spallation ~ 10°/day ~ 100/ day

but can be easily cut

*Reactor ~ 20/day (more likely a signall)

-152Gd decay 10%° alpha/day, P(alpha,n) on 170 is 10-1

*U/Th contamination in GdCl; must be controlled

John Beacom, The Ohio State University TASI in Elementary Particle Physics, Boulder, CO, June 2006




Spectrum With GADZOOKS!
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DSNB, Take 2: Astrophysics
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New Constraint on SFR

Lookback Time [Gyr]

[e-2dN -a£] (z) ™Sy

| ‘\.I\lll

Redshift z

Strigari, Beacom, Walker, Zhang, JCAP 0504, 017 (2005)
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Corresponding Supernova Rates

Lookback Time [Gyr]

Supernova Rates [yr-! Mpc-3]

-l 1 | | 1 l 1 1 | 1 I 1 1 | | I 1 | 1 |

0 0.5 1 1.5
Redshift z

Strigari, Beacom, Walker, Zhang, JCAP 0504, 017 (2005)
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Thermonuclear Supernovae

Explosion energy from production of 0.6 M, of 2®Ni

John Beacom, The Ohio State University TASI in Elementary Particle Physics, Boulder, CO, June 2006




Supernova Gamma Ray Background
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SN Gravity Wave Background
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Towards Higher Precision
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Cosmic SFR normalization depends on dust corrections,
stellar initial mass function, and SN neutrino emission --

with reasonable choices, they saturate the SK limit!

Hopkins, Beacom, astro-ph/0601463
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Corresponding SN Rates

4 5 6 7

1073
10~

-1 Mpc—a)
-1 Mpc—3)
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SN 1

107
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SNIT rate data are a lower limit on the SFR

DSNB flux is an upper /imit on the SFR

Hopkins, Beacom, astro-ph/0601463
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Cold Case File: 87A Spectrum
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dN/dE 1/[year 4 MeV 22.5 kton]

Supernova Emission Parameters
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Cold Case File: 87A Electron Nu

Dominant yield should
Il be the nearly isotropic
e WINJLE inverse beta decays
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Electron Neutrino DSNB

Mont Blanc

Mont Blanc Limit
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Beacom, Strigari, hep-ph/0508202 (PRC)

If there was a large electron neutrino flux in 87A
--> SNO can detect the electron neutrino DSNB

This flux can be enhanced (Lunardini, hep-ph/0601054)
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Conclusions

Understanding supernovae is essential for:

particle physics: SNII energy loss channels
heutrino properties

nuclear physics: production of the elements
neutron star equation of state

astrophysics:  cycle of stellar birth, life, death
constraints on new sources

cosmology: supernova distance indicators
dark matter decay, annihilation

There are very good chances for collecting new
supernova neutrinos within the next five years

John Beacom, The Ohio State University TASI in Elementary Particle Physics, Boulder, CO, June 2006




Further Reading

» Georg Raffelt's online talks:
http://wwwth.mppmu.mpg.de/members/raffelt/

» "Identifying the Neutrino Mass Spectrum from the Neutrino
Burst from a Supernova,” Dighe & Smirnov, PRD 62, 033007 (2000)

* "Neutrinos as Astrophysical Probes,” Cavanna, Costantini,
Palamara, Vissani, astro-ph/0311256

* Mark Vagins' talk at Neutrino 2004 (video)
http://neutrino2004.in2p3.fr/

* "APS Neutrino Study: Report of the Neutrino Astrophysics and
Cosmology Working Group,”' Barwick et al., astro-ph/0412544
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