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•
 

Introduction to Electroweak Symmetry Breaking
–

 

Review of the SU(2) x U(1) Electroweak theory
–

 

Constraints from Precision Measurements
–

 

Experimental Searches for the Higgs
•

 
Theoretical problems with the Standard Model

•
 

Beyond the SM 
–

 

Why are we sure there is physics BSM?
–

 

What do the LHC and Tevatron

 

tell us?
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Exciting times: Large Hadron
 

Collider
•

 
proton-proton 
collider

 
at CERN 

running now!
•

 
7 TeV

 
total energy

•
 

Total integrated 
luminosity ~2.5 fb-1

•
 

Typical energy of 
quarks and gluons 
1-2 TeV

If there is a SM Higgs 
boson, we expect it soon!
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What we know
•

 
The photon and gluon appear to be 
massless

•
 

The W and Z gauge bosons are heavy
–

 
MW

 

=80.399 
 

0.023 GeV
–

 
MZ =91.1875  

 
0.0021 GeV

•
 

There are 6 quarks
–

 
Mt

 

=172.9
 

0.9 GeV
–

 
Mt

 

>> all the other quark masses
•

 
There appear to be 3 distinct neutrinos 
with small but non-zero masses

•
 

The pattern of fermions appears to 
replicate itself 3 times
–

 
Why not more?
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Abelian
 

Higgs Model

•
 

Why are the W and Z boson masses non-zero?
•

 
U(1) gauge theory with single spin-1 gauge field, A

•
 

U(1) local gauge invariance:

•
 

Mass term for A would look like:

•
 

Mass term violates local gauge invariance
•

 
We understand why MA

 

= 0
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Gauge invariance is guiding principle
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Non-Abelian
 

Higgs Mechanism

•
 

Vector fields Aa


 

(x) and scalar fields i

 

(x) of SU(N) group

•
 

L is invariant under the non-Abelian
 

symmetry:

•
 

a

 

are group generators, a=1…N2-1 for SU(N)
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Non-Abelian
 

Higgs Mechanism, 2

•
 

a0 0
 Massive vector boson + Goldstone boson

•
 

a0

 

=0
 Massless

 
vector boson + massive scalar field
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Simplest, but not the only way, to 
give gauge bosons mass
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Standard Model Synopsis
•

 
Group:  SU(3) x SU(2) x U(1)

•
 

Gauge bosons:
–

 
SU(3): G

i, i=1…8
–

 
SU(2): W

i, i=1,2,3
–

 
U(1): B

•
 

Gauge couplings: gs

 

, g, g
•

 
Complex SU(2) Higgs doublet: 

ElectroweakQCD

Minimal Model
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SM Higgs Mechanism

•
 

Standard  Model includes complex Higgs SU(2) 
doublet

•
 

With SU(2) x U(1) invariant  scalar potential

•
 

If 2 < 0, then spontaneous symmetry breaking
•

 
Minimum of potential at:

–
 

Choice of minimum breaks gauge symmetry
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More on SM Higgs Mechanism

•
 

Couple 
 

to SU(2) x U(1) gauge bosons (Wi, i=1,2,3; B)

•
 

Gauge boson mass terms from:
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More on SM Higgs Mechanism

•
 

With massive gauge bosons:

•
 

Orthogonal combination to Z is massless
 

photon
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More on SM Higgs Mechanism

•
 

Weak mixing angle defined :

Z = -
 

sin W

 

B + cosW

 

W3

A =  cos
 

W

 

B +  sinW

 

W3

MW

 

=MZ

 

cos
 

W

2222
sincos

gg
g

gg
g

WW
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W, Z, Higgs Couplings

•
 

Lagrangian
 

in terms of massive gauge bosons and 
Higgs boson:

•
 

Higgs couples to gauge boson mass
•

 
Spontaneous symmetry breaking gives W/Z mass 

 longitudinal polarization

hZZgMhWWgML
W

Z
W 
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Muon
 

decay

•
 

Consider 
 

e
 

e

•
 

Fermi Theory:


e



e

• EW Theory:
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Higgs Parameters
•

 
GF

 

measured precisely

•
 

Higgs potential has 2 free parameters, 2, 

•
 

Trade 2, 
 

for v2, Mh2

–
 

Large Mh

 

strong Higgs self-coupling
–

 
A priori, Higgs mass can be anything
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What about fermion
 

masses?
•

 
Fermion

 
mass term:

•
 

Left-handed fermions are SU(2) doublets

•
 

Scalar couplings to fermions:

•
 

Effective Higgs-fermion
 

coupling

•
 

Mass term for down quark:
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Forbidden by 
SU(2)xU(1) gauge 
invariance
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Fermion
 

Masses, 2

•
 

Mu

 

from c

 

=i2

 

* (not allowed in SUSY)

•
 

For 3 generations, , =1,2,3 (flavor indices)
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* SUSY always has at least 2 Higgs doublets
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Fermion
 

masses, 3
•

 
Unitary matrices diagonalize

 
mass matrices

–
 

Yukawa couplings are diagonal in mass basis
–

 
No flavor changing effects in Higgs sector

–
 

Not necessarily true in models with extended 
Higgs sectors
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Review of Higgs Couplings

•
 

Higgs couples to fermion
 

mass
–

 
Largest coupling is to heaviest fermion

–
 

Top-Higgs coupling plays special role?
–

 
No Higgs coupling to neutrinos

•
 

Higgs couples to gauge boson masses

•
 

Only free parameter is Higgs mass!
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Basics of Radiative
 

Corrections
•

 
Four free parameters in gauge-Higgs sector (g, g’, , )
–

 
Conventionally chosen to be

•
 

=1/137.0359895(61)
•

 
GF

 

=1.16637(1) x 10-5

 

GeV
 

-2

•
 

MZ

 

=91.1875 
 

0.0021 GeV
•

 
Mh

–
 

Express everything else in terms of these parameters
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Inadequacy of Tree Level Calculations
•

 
Mixing angle is predicted quantity
–

 
On-shell definition cos2W

 

=MW
2/MZ2

–
 

Predict MW

–
 

Plug in numbers:   
•

 
MW

 

predicted =80.939 GeV
•

 
MW

 

experimental
 

=80.399  
 

0.023 GeV
–

 
Need to calculate beyond tree level
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Modification of tree level relations
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•
 

r is a physical quantity which incorporates 1-loop 
corrections

Extreme sensitivity of precision 
measurements to mt

* Lots of other corrections from gauge boson loops, etc
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MW

 

vs
 

mt

Masses inferred 
from precision 
measurements and 
Higgs searches*

Masses inferred 
from precision 
measurements

Higgs boson wants to be light
mt

 

(GeV)

M
W

 (G
eV

)

* Includes LHC searches
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Higgs Boson
•

 
Standard Model Higgs expected to be light

•
 

This assumes the Standard Model!
Mh

 

(GeV)

Includes 
LHC limits

2=4 gives 95% confidence level limit
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Higgs Limits

•
 

From Gfitter
 

(2011)
–

 
If you don’t include direct search limits for 
Higgs, 95% CL upper bound: Mh

 

< 169 GeV
–

 
If you include LEP, Tevatron, LHC limits,  
95% CL upper bound:  Mh

 

< 143 GeV
–

 
Test of consistency of Standard Model

Not hard to fit bounds with new physics

http://gfitter.desy.de/
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Higgs Branching Ratios

Mh

 

(GeV)
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More Branching Ratios
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Total Higgs Width
•

 
Small Mh

 

, Higgs is narrower 
than detector resolution

•
 

As Mh

 

becomes large, width 
also increases
–

 
No clear resonance

–
 

For Mh

 

1.4 TeV,
tot

 

Mh
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Higgs production at Hadron
 

Colliders

•
 

Many possible production mechanisms; 
Importance depends on: 
–

 
Size of production cross section

–
 

Size of branching ratios to observable channels
–

 
Size of background

•
 

Importance varies with Higgs mass
•

 
Need to see more than one channel to establish 
Higgs properties and verify that it is a Higgs boson



29

Production Mechanisms in Hadron
 

Colliders

•
 

Gluon fusion
–

 
Largest rate for all Mh

 

at LHC and Tevatron
–

 
Gluon-gluon initial state

–
 

Sensitive to top quark Yukawa t

Largest contribution is top loop

In Standard Model, b-quark loop contribution small

h

Counts number of heavy fermions
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Gluon Fusion
•

 
Lowest order cross section:
–

 
q

 

=4mq2/Mh2

–
 

Light Quarks:  F1/2

 

(mb

 

/Mh

 

)2log2(mb

 

/Mh

 

)
–

 
Heavy Quarks: F1/2
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•
 

Rapid approach to heavy quark limit: Counts number of 
heavy fermions

• NNLO corrections calculated in heavy top limit
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Gluon Fusion
•

 
Integrate parton

 
level cross section with gluon parton

 distribution functions:

–
 

S is hadronic
 

center of mass energy
•

 
Rate depends on R

 

, F

 

at O(s3)
–

 
R

 

, F

 

arbitrary renormalization/factorization scales
–

 
Numerically significant

•
 

Uncertainty from gluon parton
 

distribution functions
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Higher order corrections to ggh

Bands show .5Mh

 

< < 2 Mh

LO and NLO 

 

dependence 
bands don’t overlap



 

dependence used as estimate 
of theoretical uncertainty

Rates depend on 
renormalization scale, s

 

(R

 

), 
and factorization scale, g(F

 

)

LO

NLOK





Mh

 

(GeV)

These corrections are large!
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Vector Boson Fusion
•

 
W+W-

 

X is a real process:

•
 

Rate increases at large s:
 

(1/ MW2

 

)log(s/MW2)
•

 
Integral of cross section over final state phase space 
has contribution from W boson propagator:

•
 

Outgoing jets are mostly forward and can be tagged

 


 22222 ))cos1('2()( WW MEE
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k=W,Z momentum

Peaks at small 
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W(Z)-strahlung
•

 
W(Z)-strahlung

 
(qqWh, Zh) important at 

Tevatron
–

 
Same couplings as vector boson fusion

–
 

Rate proportional to weak coupling
•

 
Theoretically very clean channel
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Producing the Higgs at the Tevatron

NNLO or NLO rates

Mh

 

/2 < 

 

< Mh

 

/4

Tevatron
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Higgs at the Tevatron
•

 
Largest rate, ggh, h bb, is overwhelmed by 
background

(ggh)1 pb
 

<< (bb)
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Looking for the Higgs at the Tevatron

• High mass: Look for hWW*
Large ggh

 
production  rate

• Low Mass:  hbb, Huge QCD bb background 
Use associated production with W or Z
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Tevatron
 

Higgs Exclusion

Tevatron
 

Exclusion: [100 GeV
 

< Mh

 

< 109 GeV], 

[156 GeV
 

< Mh

 

< 177 GeV]

Limits normalized to Standard Model predictions
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Gluon fusion counts generations

•
 

4th

 
generation (b’,t’) increases rate by factor of 9

Look for gg→h
 

→W+W-

Excludes 124 GeV
 

< Mh

 

< 286 GeV
 

if heavy 4th

 

generation
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Production Mechanisms at the LHC

Bands show scale 
dependence

All important 
channels calculated 
to NLO or NNLO
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Do some numbers…

•
 

ATLAS and CMS have ~ 2.5 fb
 

-1

 

of data
•

 
For Mh

 

=120 GeV:
–

 
(gluon fusion)=17 pb

–
 

42,500 Higgs events
–

 
But we have to see them: 

•

 

Branching ratio h→

 

= 2 x 10-3  85 events
•

 

Branching ratio h→4 leptons = 8 x 10-5

 

(l=e,) 

 

3.4 events
•

 
For Mh

 

=180 GeV:
–

 
(gluon fusion)=7 pb

–
 

17,500
 

Higgs events
•

 

Branching ratio h→

 

= 1 x 10-4  1.75 events
•

 

Branching ratio h→4 leptons = 3 x 10-4

 

(l=e,)  5.2 events

Event numbers further reduced by detector efficiency….
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Search Channels at the LHC

•
 

ggh
–

 
Small BR (10-3

 

– 10-4)
–

 
Only measurable for Mh

 

< 140 GeV
•

 
Largest Background: QCD continuum production of 

•
 

Also from -jet production, with jet faking , or 
fragmenting to 0

•
 

Fit background from data

gghbb
 

has huge QCD background: Must use rare 
decay modes of h
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h→
Mh

 

=120 GeV; L=100 fb-1

Signal + 
background

Background 
subtracted

Monte Carlo predictions

Data
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Higgs Decays to Photons

•
 

Dominant contribution is W loops
•

 
Contribution from top is small
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h→

•
 

Sensitive to new physics in loops

Factor of 5-10 from SM sensitivity
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Golden Channel: h→ZZ→4 leptons

•
 

Reconstruct Higgs mass

•
 

Below Mh

 

130 GeV, rate is too small for discovery

Monte Carlo predictions

Data
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What about h→W+W-

 
?

•
 

Large rate (good)
•

 
Look for W→l
–

 
Can’t reconstruct mass peak

 (bad)
•

 
Background from qq→Z* 
→W+W-

 
(vector decay)

•
 

Signal from gg
 

→h →W+W-

 (scalar decay)
–

 
Angular distributions help Signal

W+W-

 

Background
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Limit from h→W+W-

•
 

CMS: 147 < Mh < 194 
GeV ruled out at 95% cl

•
 

SM Higgs boson 
expected

 
sensitivity 136 < 

Mh

 

< 200 GeV

Source of rumors, blog
 

posts, etc….
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Many Channels contribute to Limits

95% CL exclusion:

[146<Mh

 

<232 GeV, 256<Mh

 

<282, 296 < Mh

 

<466 GeV] ATLAS
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Higgs Limits from the LHC

[145<Mh

 

<216 Gev, 226<Mh

 

< 288,  310<Mh

 

<440 GeV] CMS

95% CL exclusion:
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Higgs Discovery

If the SM Higgs exists, we’ll know soon

s=7 TeV
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Is it a Higgs?
•

 
How do we know what we’ve found? 

•
 

Measure couplings to fermions & gauge bosons

•
 

Measure spin/parity

•
 

Measure self interactions
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Can we reconstruct the Higgs potential?

443
3

2
2

42
hvhhMV h  

• Fundamental test of model!

2

2

43 2
:

v
MSM h 

• We have no idea how to measure 4
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????????????

•
 

Within the next 1-2 years, we should know whether or 
not a SM-like Higgs exists

•
 

We can already put meaningful limits on many 
models

•
 

The fun is just beginning
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