
1 

The Higgs Frontier: The Way 
Forward 

S. Dawson 
Princeton 

April 26, 2013 

S. Dawson 



The Higgs Frontier 

•  What have we found ? 
–  Is it THE  Higgs? 

•  What’s next ? 
–  Are there more Higgs 

particles? 
–  Is there a next energy scale? 
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What are the important measurements/calculations 
to help us answer these questions? 

S. Dawson 

Please join the effort: snowmass2013.org 



Needed Something like a Higgs 
•  Electroweak symmetry breaking needs to explain: 

–  Non-zero mass of W and Z gauge bosons 
–  Non-zero mass of fermions 
–  Unitarity conservation at 1 TeV 

•  Precision electroweak data is consistent with SM  

3 

So the fact that the observed Higgs-like 
particle looks SM-like is no surprise 

S. Dawson 



The 6 billion dollar plot 

Self-consistency of the theory told us 
the Higgs couldn’t be too heavy 

Experimental 
measurements 
from Fermilab 

Theory predictions 

Inferred values of 
MW and Mt from 
other 
experiments 

Mtop (GeV) 

M
W
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) 
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After Discovery 
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A consistent picture 
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The SM as an effective low energy theory 
is an extremely good approximation 

S. Dawson 



Higgs Rates look SM-like 

S. Dawson 6 

What goes into denominators? 



Precision Calculations 

qqèWh at 8 TeV: +.3,-.6% scale uncertainty;
± 3.5% PDF+αs uncertainty 

ggèh at 8 TeV: ±7% scale uncertainty ± 7%; 
PDF+αs uncertainty (for mh=125 GeV) 

7 S. Dawson [LHC Higgs Cross Section Working Group, 1201.3084] 



H+jet @NNLO, H@NNNLO 

•  Will decrease errors from scale uncertainty and jet binning 

S. Dawson 8 
[Ball et al, 1303.3590; Boughezal et al, 1302.6216] 

Higgs+jet at √s=8 TeV 
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Uncertainties: Branching Ratios 

S. Dawson 9 

δΓ/Γ	


bb ±3% 
ττ	

 ±5.7% 
γγ	

 ±5% 
WW ±4% 
Γtot ±4% 

[LHC Higgs Cross Section Working Group, 1201.3084] 
  

Parametric uncertainties (mostly mb) and uncertainties 
from unknown higher order EW corrections 
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Theory Predictions 

Assumes no 
invisible width 



Uncertainties on BR Predictions 

•  Example: hèbb 
–  Error budget:  

•  Theory (missing higher order corrections: QCD ~.1%, 
EW~1-2%) 

•  Parametric errors from Δmb~1.1%, Δαs~1% 
–  Theory/parametric uncertainties roughly same size 

•  Improve experimental value of mb=4.49 ±.06 GeV 
•  Use PDG central value, compromise on errors 

–  Error on δΓbb matters for 300 fb-1 extraction of hbb 
coupling (~6.9% at CMS) [Olsen] and for ILC 
extractions (~2.7% at 250 GeV)[van Kooten] 

S. Dawson 10 [LHC Higgs Cross Section Working Group, 1201.3084] 
  



What we know 

•  ttH coupling exists 
–  Indirectly from ggèh, hèγγ	



•  WWh, ZZh couplings exist 
–  Rate appears to be SM-like 
–  hèZZ*è4 leptons 

11 S. Dawson 

CMS : �/�SM = µ =0.92± 0.28

ATLAS : �/�SM = µ =1.7+0.5
�0.4



What we know 

•  Higgs couples to fermions (2.8σ in τ+τ-) 
–  Fermion couplings are non-universal 
–  We see ττ, not µµ	
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No more fermiophobic models 
S. Dawson 

              Mh (GeV) 



What we know 

•  The Higgs sector is perturbative 

 
•  We can sensibly calculate to high scales 
•  Is Mh=125 GeV special? 

S. Dawson 13 
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Is Mh=125 GeV Special? 

S. Dawson 14 

Mh=125 GeV requires 
M(stop)~10 TeV or large At in 
the MSSM [Shih] 
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[Draper et al,1112.3068; 
Degrassi,  1205.6497]  

Quartic coupling evolves to 0.  
What does this mean? [Reese] 
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Multi- Prong Approach to Future 
•  Measure everything in sight 

–  There are a lot more Higgs channels to measure 
–  Corollary:  Calculate as precisely as possible 

•  Look for more Higgs candidates 
–  Look for non-standard Higgs production/decays 

•  Use effective field theory to limit deviations 
–  Look for new particles connected with EWSB 

•  Make connections  
–  Dark matter, intensity frontier 

15 S. Dawson 
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Explore NP-Higgs Connections 
•  Many possibilities: 

–  Supersymmetry (squarks in loop) 
–  Color octet scalars [Kribs] 
–  More scalars (neutral or charged) [Thomas] 
–  New operators involving Higgs particle 
–  New fermions (top partners) 
–  Higgs produced in NP particle decays[Haas, 

Kribs, Thomas] 

How far can Higgs 
production get from 
the SM prediction? 

S. Dawson 

What is the 
Higgs telling us? 



Example 1:  2HDMs 
•  Many models have extended Higgs sectors 

–  Two Higgs doublet models can be used as effective 
theories for many of these models 

–  5 Higgs bosons: h, H, A, H± 

–  4 types of 2HDM models which avoid tree level FCNCs 
–  Classified in terms of tan β=v2/v1, α, mh 

–  Predictive models (MSSM is special case) 

 
S. Dawson 17 
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More than one 2HDM 
•  Couplings to h: 

S. Dawson 18 
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Updated 2HDM fits 

S. Dawson 19 [Chen, Dawson, 1301.0309; Chen, Dawson, Sher] [Thomas] 

We are near  
SM couplings 
already! 

SM limit is 
cos(α-β)=0 



Decoupling Limit: Type II 2HDMs 
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Assume MH+, MA >> MZ 
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Higgs Couplings in the MSSM
(Decoupling Limit)

The world looks SM-Like 

This requires sub-
percent level 
measurements of 
Higgs couplings to 
distinguish the 2HDM 
model from the 
Standard Model 

èIf we don’t  see any new 
particles, this will be very hard! 
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Higgs Coupling Measurements 

•  Higgs coupling extracted from global fit 
–  Measure σ�BR 

S. Dawson 22 
[Janot, ICFA Higgs factor workshop, 
European Strategy Report] 
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Complementary Approach 
•  Look for new particles of 2HDM (H,A,H±) 

S. Dawson 23 
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New Decay Channels Possible 

S. Dawson 24 

At √s=7 TeV: 
σHH(SM)=2 fb 

MH (GeV) 

σ
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R
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•  Hèhh [Thomas] 
•  First limit on di-Higgs production from CMS multi-

lepton search 
95% Observed Exclusion 

HèhhèMulti-Leptons 

σ/σSM~4000 



Does Naturalness matter? 
The case for new TeV Scale particles 

•  Calculate top quark contribution in SM with a high scale 
cutoff, Λ	



 
•  Cancel with new particle contribution:  

–  Stop in SUSY models 
–  Top partner in composite/Little Higgs models 
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H

t

S. Dawson 

Logical proposition:  forget about naturalness 
and use dimensional regularization for δmH 
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•  If we accept naturalness as a fundamental 
requirement, then there must be new light particles 
at the TeV scale 

•  Example: top partners 

–  Quadratic contribution to Higgs mass cancels with SM 
•  This requirement fixes couplings 

–  New TThh vertex has implications for hh production 

Consequences of Naturalness 

26 S. Dawson 
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Example 2: Top Seesaw, Little Higgs, 
Composite Higgs….. 

•  Special cases of models with weak singlet vector like 
charge 2/3 quark, UL, which mixes with SM-like third 
generation qL~(uL,dL), uR, dR 

•  Generic mass matrix 

 
•  Physical top is mixture of (u, U) 
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S. Dawson 

T is charge 2/3 top partner 

2 parameters: MT, θL 



Top Mixing with Top Partner 
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As Higgs mass gets larger, allowed 
parameter space shrinks 

[Dawson, Furlan, 1205.4733] 
S. Dawson 
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Experimental Limit 
•  Assumes BR(T     bW)=1 
•  Here, additional suppression of (sinθL)4	
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Higgs Production and Top Partners 

•  Production suppressed (but not observably so) 

S. Dawson 30 
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physics will be observed by top 
partner production, not by 
measuring Higgs properties 

Top partner model, √s=7 TeV 



Higgs Production and Top Partners 

•  Tèth 
–  Branching ratio can be O(30%)  
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Recap: 2 Examples 
•  2HDMs, Top Partner models 

S. Dawson 32 

These models have parameter spaces restricted 
by experimental Higgs measurements 
 
Knowledge about NP from coupling constant 
measurements requires 1-10% percentage 
accuracy 
 
BUT…..all of these models have new particles 
not present in the SM 
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Reconstruct the Higgs potential 

•  Fundamental test of model 

•  λ3~ .13 is perturbative 

S. Dawson 
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Double Higgs Production 
•  Sensitive to hhh coupling, λhhh = 3Mh2/v 

–  SM has small rates:      At 14 TeV 

 

Contributions tend to cancel 

34 S. Dawson 
[Baglio et al, 1212.5581] 

qq̄ → ZHH

qq̄′ → WHH

qq′ → HHqq′

gg → HH

√
s = 14 TeV, MH = 125 GeV

σ(pp → HH +X)/σSM
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Needs high luminosity LHC: ~3σ 
observation with 3000 fb-1 and 
both experiments 

�(gg ! hh) = 34 fb
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Double Higgs Production 

•  If fermion masses arise from electroweak symmetry 
breaking, they have the form 

•  An effective theory could generate 

•  Measuring single and double Higgs production is 
window into source of EWSB 

•  Non-renormalizable ttHH coupling in composite models 
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Double Higgs Production from 
Colored Octet Scalars 

•  Single Higgs production can be SM-like, while 
double Higgs production greatly enhanced [Kribs] 

S. Dawson 36 [Kribs, Martin, 1207.4496] 

Huge enhancements 
of double Higgs rate 

Scalar octet mass (GeV) 

Single Higgs 
rate/σSM 

[Reese] Quartic coupling gets 
large in this class of models 



Double Higgs Production from Top 
Partners 

S. Dawson 37 
[Dawson, Furlan, Low, 1210.6663] 

Small sensitivity 
to top partners 
(no ttHH vertex) 

Parameters chosen to give SM (within 15%) single 
Higgs rate and to be consistent with precision EW 



Double Higgs Production in e+e- 

•  At √s=500 GeV, rate for Zhh is larger (σ~.22 fb) 

S. Dawson 38 

Including background 
and efficiencies at 
√s=500 GeV: 

δλ
/λ
	



��

�
= 53%

This improves at 
√s=1 TeV 



Measure ratios of BRs 

•  Avoids large theory uncertainty on σggF (necessary to claim 
new physics) 

•  Eventually get 5% measurement 
•  ATLAS current limit: 

S. Dawson 39 
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Effective Field Theories & Higgs  
•  Suppose we don’t find any new particles 

–  SM is a valid effective theory up to some scale 
–  Look at contributions from dimension-6 operators 
–  Higgs physics is the new precision EW physics 

S. Dawson 40 

[Thomas] 
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Conclusions 
•  We are in the era of precision Higgs physics 

–  Calculations + experiment 
–  Theory may be limiting factor in precision coupling extraction 

•  Higgs production is a window to high scale physics 
–  Need to look at big picture—new physics in the Higgs 

sector is typically associated with new particles (more 
Higgs particles, SUSY particles, top partners…) 

–  2 Higgs production can discriminate between models 
  

 

41 S. Dawson 

The SM is an extremely good effective theory 



Look at the Big Picture 

•  Higgs measurements and new physics searches 
are all part of the same exploration of physics 

S. Dawson 42 

Thanks to the organizers! 


