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Keith R. Dienes
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This is the written version of an introductory self-contained course on
string model-building and string phenomenology given at the 2006 TASI
summer school. No prior knowledge of string theory is assumed. The
goal is to provide a practical, “how-to” manual on string theory, string
model-building, and string phenomenology with a minimum of mathe-
matics. These notes cover the construction of bosonic strings, super-
strings, and heterotic strings prior to compactification. These notes also
develop the ten-dimensional free-fermionic construction. A final lecture
discusses general features of heterotic string models, Type I (open) string
models, and recent trends of string phenomenology. and general features
of low-energy string phenomenology.

6.0. Introduction

These lectures were delivered at the 2006 Theoretical Advanced Study In-

stitute (TASI), to an audience of graduate students whose interests were

primarily oriented towards high-energy phenomenology. Indeed, this school

had a stated focus on neutrino physics, and consequently my goal was to

present string theory in a way that ultimately might explain how a specific

particle such as a neutrino might ultimately emerge from string theory. Of

course, string theory contains a lot more than neutrino physics (and also,

in some ways, a lot less!), and in the course of these lectures I will not really

focus so much on neutrinos as on string theory as a whole. Nevertheless,

I will continue to keep neutrinos as a running theme throughout these lec-

tures as a way of reminding ourselves that our discussion of string theory

is ultimately aimed at understanding something real and observable, such

as an actual neutrino.
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The title of these lectures indicates that these lectures are meant to

serve as a practical introduction to string theory, string model-building, and

string phenomenology. Let me explain, in a rough sense, what each of these

words is meant to convey. We are all familiar with quantum field theory,

which is a language through which we might construct particular models

of physics (such as the Standard Model or the Minimal Supersymmetric

Standard Model). Such models then have certain physical characteristics,

certain phenomenologies. String theory, at least as I shall try to present it,

can likewise be considered as a language for discussing physics: in this sense

it replaces quantum field theory (a language based on point-particle physics)

with a new language suitable for theories whose fundamental objects are

the one-dimensional extended objects known as strings . However, from this

perspective, string theory is still only a language: it is still necessary to take

the next step and use this language to construct models that describe the

everyday world. Therefore, although I will attempt to give a self-contained

introduction to the language of string theory, these lectures will primarily

focus on the model-building aspects of string theory and on the resulting

phenomenologies that these models have. While there already exist many

excellent reviews of string theory, there are relatively few that focus on

its model-building and phenomenological aspects. These lecture notes will

therefore hopefully help to fill the gap, especially for those readers who

might care less for the formal aspects of string theory and more for their

phenomenological implications.

Finally, I should explain the word “practical” which also appears in the

title. The word “practical” refers to actual practice — the things that prac-

titioners actually need to know in order to build bona-fide string models

and/or comprehend their low-energy properties. Of course, string theory

is a rich and beautiful subject, with many mathematical aspects that are

compelling and ultimately essential for a deep understanding of the subject.

However, the goal of these lectures is simply to present the basic features

of string theory with a minimum of mathematics — as stated in the ab-

stract, I am seeking to provide a “how-to” manual which cuts the subject

to the bone and conveys only that information which will be important

for phenomenology. Therefore, in many places the omissions will be sub-

stantial. Certainly they do not do justice to the subject. However, these

lectures were designed for phenomenologically-oriented graduate students

whose desire (I hope) was to learn something of string theory without be-

ing deluged by mathematical formalism. It is with them in mind that I

designed these lectures to be as elementary as feasible, and to “get to the
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physics” as rapidly as possible. Therefore, I now issue the following

Warning: These lectures are meant to cover a consid-

erable amount of introductory material very rapidly and

without mathematical sophistication. The purpose is to

advance quickly to the model-building and phenomenolog-

ical aspects of string theory, while still conveying an in-

tuitive flavor of the essential issues. The target audience

consists of people who have had no prior exposure to string

theory, and who wish to understand the basic concepts

from a purely phenomenological perspective.

Hopefully, the students came away with a sense that string theory is a

real part of physics, one with direct relevance for the real world. Perhaps

the reader will too. If so, then these lectures will have served their purpose.

6.1. Lecture #1: Why strings? — an overview

Why should we be interested in string theory? In this lecture, we shall

review our present state of knowledge about the underlying constituents

of matter, and discuss how string theory has the potential to extend that

knowledge in a profoundly new direction. Since this lecture is meant only

as an overview, we shall keep the discussion at an extremely superficial

level and seek to present the intuitive flavor of string theory rather than

its substance. We shall deal with the substance in subsequent lectures.

6.1.1. From atoms to the Standard Model: A quick review

Certainly we do not need to understand string theory in order to appreci-

ate modern high-energy particle physics, or to understand or interpret the

results of collider experiments. Why then should one study string theory, a

subject whose connections to observable phenomena are usually considered

rather tenuous at best?

The primary reason, of course, is that the goal of high-energy physics

has always been to uncover the fundamental “elements” or building-blocks

of the natural world. These consist of both the fundamental particles that

make up the matter , and the fundamental forces that describe their inter-

actions . In this way, we hope to expose the underlying laws of physics in

their simplest forms.

But what is “fundamental”? Clearly, the answer depends on the energy



March 22, 2008 16:26 World Scientific Review Volume - 9in x 6in diennes

266 Keith R. Dienes

scale, or equivalently the inverse length scale, at which these constituents

are being probed. In order to establish our frame of reference, recall that

1 eV ≈ 1.6 × 10−19 Joules ≈ (10−7 meters)−1. At the eV scale, the fun-

damental objects are atoms, or nuclei plus electrons. But it turns out that

there are many different types of atoms or nuclei — indeed, they fill out

an entire periodic table, the complexity but regularity of which suggests a

deeper substructure. And indeed such a deeper substructure exists: at the

keV to MeV scale, the nuclei are no longer fundamental, but decompose

into new fundamental objects — protons and neutrons. Thus, at this en-

ergy scale, the fundamental objects are protons, neutrons, and electrons.

But once again, it is found that there are many different “types” of protons

and neutrons — collectively they are called hadrons , and include not only

the proton (p) and neutron (n), but also the pions (π), kaons (K), rho (ρ),

omega (Ω), and so forth. Indeed, the “periodic table of the elements” at

this energy scale is nothing but the Particle Properties Data Book! But

once again, the complexity and regularity of these “elementary” particles

suggests a deeper substructure, and indeed such a substructure is found,

this time at the GeV scale: the proton and neutron are just made of two

kinds of quarks , the so-called up and down quarks. Thus, at the GeV scale,

the fundamental objects are up quarks, down quarks, and electrons. But

once again complexity emerges: it turns out that there are many different

“types” (flavors) of quarks: up, down, strange, charm, top, and bottom.

Likewise, there are many different “types” of electrons (collectively called

leptons): the electron, the muon, the tau, and their associated neutrinos.

And indeed, once again there is a mysterious pattern, usually referred to

as a family or generational structure. This once again suggests a deeper

substructure.

Unfortunately, this is as far as we’ve come. Indeed, all of our present-day

knowledge down to this energy scale is gathered together into the so-called

Standard Model of particle physics. The primary features of the Standard

Model are as follows. The fundamental particles are the quarks and leptons.

They are all fermions, and are arranged into three generations of doublets:
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. (6.1.1)

The fundamental forces also come in three varieties. First, there is the

strong (or “color”) force, associated with the non-abelian Lie group SU(3).
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Its fine-structure constant is α3 ≈ 1/8 (as measured at energy scales of

approximately 100 GeV), and it is responsible for binding quarks together to

form hadrons and nuclei. As such, it is felt only by quarks. Its mediators or

carriers are called gluons . Second, there is the electroweak force, associated

with the non-abelian Lie group SU(2). Its fine-structure constant is α2 ≈
1/30 (indeed, weaker than the strong force!), and it is responsible for β-

decay. Unlike the strong force, it is felt by all of the fundamental particles.

Finally, there is the “hypercharge” force, associated with the abelian Lie

group U(1), with fine-structure constant α1 ≈ 1/59. Once again, this force

is felt by essentially all particles, both quarks and leptons. The carriers

of the latter two forces are the photon as well as the W± and Z particles.

Indeed, ordinary electromagnetism is a combination of the electroweak and

hypercharge forces, and is the survivor of electroweak symmetry breaking.

This breaking is induced by the one remaining particle of the Standard

Model, a boson called the Higgs particle. An excellent introduction to

the physics of the Standard Model can be found in the TASI lectures of

G. Altarelli (this volume).

6.1.2. Beyond the Standard Model: Two popular ideas

Is that all there is? Clearly, there are lots of reasons to believe in something

deeper! First, the Standard Model contains many arbitrary parameters,

such as the masses and “mixings” of fundamental particles. All of these

must ultimately be fit to data rather than explained. Second, there are

many conceptual questions. Why are there three generations? Why are

there three kinds of forces? Why do these forces have different strengths and

ranges? A fundamental theory should explain these features. Finally, there

is also another force which we have not yet mentioned: the gravitational

force. How do we incorporate the gravitational force into this framework?

In other words, how do we “quantize” gravity?

There is only one conclusion we can draw from this state of affairs. Just

as in each previous case, there must still be a deeper underlying principle.

It is important to stress that this is not simply an issue of academic interest.

Rather, it is one of practical importance, because the next generation of

particle accelerators are being built right now! (Two of the most prominent

that will be exploring physics beyond the Standard Model are Fermilab,

where upgrades to the TeVatron are being implemented, and CERN, where

construction of the Large Hadron Collider (LHC) is already underway.)

The pressing question, therefore, is: What do we expect to see at these
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machines? What will high-energy physics be focusing on over the next ten

to twenty years? It turns out that there are two very popular sets of ideas,

both of which are thoroughly reviewed in the TASI lectures of N. Polonsky.

6.1.2.1. Low-energy supersymmetry

The first idea is supersymmetry (SUSY). This refers to a new kind of sym-

metry in physics, one which relates bosons (particles with integer spin) to

fermions (particles with half-integer spin). Thus, for every known particle,

there is a predicted new particle, its so-called superpartner:

quarks ⇐⇒ squarks

leptons ⇐⇒ sleptons

gauge bosons ⇐⇒ gauginos . (6.1.2)

Clearly, this implies the existence of a lot of new particles and a lot of new

interactions! Why then go through all this trouble?

Well, it turns out that supersymmetry can provide a number of strik-

ing benefits. First, through supersymmetry, we can explain the relative

strengths of the forces (“gauge coupling unification”). Second, we can ex-

plain the origin of electroweak symmetry breaking. Third, supersymmetry

has a number of favorable cosmological implications (for example, super-

symmetry provides a natural set of dark-matter candidates). Finally, it

turns out that supersymmetry is the only known answer to certain difficult

theoretical puzzles in the Standard Model (chief among them the so-called

“gauge hierarchy problem”, i.e., the difficulty of explaining the lightness of

the Higgs particle, or equivalently to difficulty of explaining the stability of

the scale of electroweak symmetry breaking against radiative corrections).

In order to serve as an explanation of the gauge hierarchy problem, the

energy scale associated with supersymmetry must not be too much higher

than the scale of electroweak symmetry breaking. This is therefore called

“low-energy supersymmetry”, which refers to the common expectation that

superparticles should exist at or near the TeV-scale.

Supersymmetry is a beautiful theory, both phenomenologically and

mathematically. But it is not observed in nature. Therefore, supersym-

metry must be broken. The problem, however, is that supersymmetry

is very robust! It turns out to be quite hard to find mechanisms that

can easily (“spontaneously”) break supersymmetry at the expected energy

scales. Therefore, we are faced with a major unsolved problem: How do

we break supersymmetry? Indeed, we often have to resort to introducing
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SUSY-breaking by hand, which requires the introduction of many addi-

tional unknown parameters. This is quite unpleasant, not only from an

aesthetic point of view but also a phenomenological (predictive) point of

view. However, it is often possible to consider only a minimal supersym-

metric extension to the Standard Model (the so-called MSSM) where a

minimal number of supersymmetry-breaking parameters are chosen.

6.1.2.2. Grand unification

The second popular idea for physics beyond the Standard Model concerns

so-called Grand Unified Theories (GUTs). This refers to an attempt to

realize the different forces and particles in nature as different “faces” or

“aspects” of a single GUT force and a single GUT particle. An electro-

magnetic analogy here might be useful. Recall that the electric force is felt

or caused by static charges, and that the magnetic force is felt or caused

by moving charges. Are these therefore different forces? As we know, the

answer is most definitely “no”: we can Lorentz-boost from a rest frame to a

moving frame, whereupon the distinction between the electric and magnetic

forces melts away and these forces become intertwined. Thus, we conclude

that the electric and magnetic forces are merely different aspects of one

force, the “electromagnetic” force.

Is the same true for the strong, electroweak, and hypercharge forces? Is

there a single “strong-weak-hypercharge” GUT force?

At first glance, this doesn’t seem possible, because these different forces

have different strengths. Recall their fine-structure constants: α1 ≈ 1/59,

α2 ≈ 1/30, and α3 ≈ 1/8. However, also recall that in quantum field theory,

the strengths of forces ultimately depend on the energy scale through which

they are measured. To see why this is so, let us think of placing a positive

charge next to a dielectric. The positive charge draws some negative charge

from within the dielectric towards it, so that the dielectric medium partially

screens the positive charge. Therefore, in a rough sense, the less of the

dielectric we see (i.e., the more finely resolved our experimental apparatus

to probe the original positive charge), the stronger our original positive

charge seems to be. Thus, we see that at shorter distances (corresponding

to higher energies), our electric charges (and therefore the corresponding

electric forces) appear to be stronger. If this dielectric analogy serves as

a good model for the results of a true quantum field-theoretic calculation

(and in this case it does), we conclude that the electric force appears to

grow stronger with increasing energy.
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Of course, this is just a mechanical analogy. However, in the super-

symmetric Standard Model, it turns out that the quantum field-theoretic

vacuum itself indeed behaves like a dielectric for the hypercharge and weak

forces. However, for the strong force, it behaves as an anti-dielectric. Thus,

while the hypercharge and electroweak forces become stronger at higher

energies, the strong force becomes weaker at higher energies. (This latter

feature is the celebrated phenomenon of asymptotic freedom.) Together,

these observations imply that these three forces have a chance of unifying

at some energy scale if their strengths become equal, and indeed, carrying

out the appropriate calculations, one finds the results shown in Fig. 6.1.

We see from this figure that the forces appear to unify at the scale

MGUT ≈ 2 × 1016 GeV . (6.1.3)

This would then be the natural energy scale for grand unification. Note that

this unification also requires the existence of weak-scale supersymmetry in

the form of weak-scale superpartners. Without such superpartners, the

evolution of these fine-structure constants as a function of the energy scale

is different, and they fail to unify at any scale. This then serves as another

motivation for weak-scale supersymmetry.

GUTs would have numerous important effects on particle physics. First,

by their very nature, they would imply new interactions that can mix the

three fundamental forces. Second, this in turn implies that GUTs naturally

lead to new, rare decays of particles. The most famous example of this is

proton decay, the rate for which is experimentally known to be exceedingly

small (since the proton lifetime is τp >∼ 1032 years). Third, GUTs would

naturally explain the quantum numbers of all of the fundamental particles.

Along the way, GUTs would also explain charge quantization. GUTs might

also explain the origins of fermion mass. Finally, because they generally

lead to baryon-number violation, GUTs even have the potential to explain

the cosmological baryon/anti-baryon asymmetry. By combining GUTs with

supersymmetry in the context of SUSY GUTs, it might then be possible

to realize the attractive features of GUTs simultaneously with those of

supersymmetry in a single theory.

Both the SUSY idea and the GUT idea are very compelling. Certainly,

the SUSY idea (and indirectly the GUT idea, through measurements of

proton decay and other rare decays) will be the focus of experimental high-

energy physics over the next 20 years. But high-energy theorists also have

plenty of work to do — we must build theories in order to interpret the

data. But how do we build realistic SUSY theories? How do we build
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Fig. 6.1. One-loop evolution of the gauge couplings within the Minimal Supersymmetric
Standard Model (MSSM), assuming supersymmetric thresholds at the Z scale. Here
α1 ≡ (5/3)αY , where αY is the hypercharge coupling in the conventional normalization.
The relative width of each line reflects current experimental uncertainties.

realistic GUT theories? How do we incorporate gravity?

Clearly, the possibilities seem endless. And even the SUSY or GUT

ideas have not answered our most fundamental questions, such as why

there are three gauge forces, or why there are three generations. Therefore,

it is natural to hope that there is yet a deeper principle that can provide

some theoretical guidance. And that’s where string theory comes in.

6.1.3. So what is string theory?

The basic premise of string theory is very simple: all elementary particles

are really closed vibrating loops of energy called strings. The length scale

of these loops of energy is on the order of 10−35 meters (corresponding to

1019 GeV), so it is not possible to probe this stringy structure directly.

This idea has great power, because it provides a way to unify all of

the particles and forces in nature. Specifically, each different elementary

particle can be viewed as corresponding to a different vibrational mode

of the string. A pictorial representation of this idea is given in Fig. 6.2,
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where we are schematically associating higher vibrational string modes with

string loops containing more “wiggles”. From the point of view of a low-

energy observer who cannot make out this stringy structure, the different

excitations each appear to be point particles. However, to such an observer,

the states with more underlying “wiggles” appear to have higher spin. Thus,

in this way we find that string theory predicts not only spin-1/2 and spin-1

states (which can be associated with the fermions and gauge bosons of the

Standard Model respectively), but also a spin-2 state (which can naturally

be associated with the graviton). Thus, through string theory, we see that

the gauge interactions, particles, and also gravity are unified into a common

quantized description as corresponding to different excitation modes of a

single fundamental entity, the string itself.
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Fig. 6.2. The basic hypothesis of string theory is that the different elementary particles
correspond to the different vibrational modes of a single fundamental entity, a closed loop
of energy called a string. In this way one obtains not only spin-1/2 and spin-1 states
which can be associated with the matter and gauge bosons of the Standard Model, but
also a spin-2 state which can be identified with the graviton. Thus, string theory provides
a way of unifying the Standard Model with gravity.

Of course, this is not the end of the story. Just as a violin string has

an infinite number of harmonics, so too does a string give rise to an infi-

nite tower of states corresponding to higher and higher vibrational modes.

Since it takes more and more energy to excite these higher vibrational string

modes, such states are increasingly massive. Indeed, because the fundamen-

tal string scale is on the order of Mstring ≈ 1018 GeV, these string states
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are quantized in units of Mstring. The states which we have illustrated in

Fig. 6.2 are all massless with respect to Mstring, and correspond, in some

sense, to the ground states of the string. These are the so-called “observ-

able states”, and include not only the (supersymmetric) Standard Model

and (super)gravity, but also may include various additional states (often

called “hidden-sector states” which contain their own matter and gauge

particles). However, there also exists an infinite tower of massive states

with masses Mn ≈ √
nMstring, n ∈ ZZ

+. In most discussions of the phe-

nomenological properties of string theory, these massive states are ignored

(since they are so heavy), and one concentrates on the phenomenology of

the massless states. One then presumes that they accrue (relatively small)

masses through other means, such as through radiative corrections.

Nevertheless, the passage from point particles to strings has tremendous

consequences. Not only have we replaced the physics of zero-dimensional

objects (elementary point particles) with the physics of one-dimensional ob-

jects (strings), but we have also replaced the physics of the one-dimensional

worldlines that they sweep out with the physics of two-dimensional so-called

worldsheets. Likewise, we have replaced the physics of Feynman diagrams

with the physics of two-dimensional manifolds , so that a tree diagram cor-

responds to a genus-zero manifold (a sphere) and a one-loop diagram corre-

sponds to a genus-one manifold (a torus). These comparisons are illustrated

in Fig. 6.3. Note that the latter descriptions as spheres and tori correspond

to shrinking the external strings to points, essentially “pinching off” the

external legs. This is a valid description for reasons to be discussed in

Lecture #2.

This is clearly a new language for doing physics. However, as we have

seen, because string theory also includes gravity (which is exceedingly weak

compared with the other forces), its fundamental mass scale is very high.

Indeed, since the fundamental energy scale for gravity is the Planck mass

MPlanck ≡
√

~c

GN
≈ 1019 GeV ≈ (10−33 cm.)−1 , (6.1.4)

the string scale must also be very high. Indeed, to a first approximation, it

turns out that

Mstring ≈ gstringMPlanck (6.1.5)

where gstring is the string coupling constant, typically assumed to be ∼
O(1). Thus, we see that string theory is ultimately a theory of Planck-

scale physics.
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There are lots of “formal” reasons for being excited about string theory.

First, it turns out that string theory requires the existence of extra space-

time dimensions in order to be consistent, and consequently we now have

to consider physics in different numbers of dimensions as well as all sorts

of geometric questions pertaining to different possible “compactification”

scenarios. Second, string theory gives us a new perspective on the struc-

ture of spacetime itself. For example, string theory gives rise to many novel

Planck-scale effects. One of these is called T -duality: the physics of a closed

string in a spacetime one of whose dimensions is compactified on a circle of

radius R turns out to be equivalent to the physics of the same string in a

spacetime in which the radius is M2
string/R. Thus, T -duality interchanges

large radii and small radii, and suggests that our näıve view of spacetime

and its linear hierarchy of energy and length scales cannot ultimately be

correct. Third, string theory also provides new types of strong/weak cou-

pling dualities. These have proven useful for elucidating the strong-coupling

dynamics of not only string theory, but also field theory. Finally, there have

even been novel applications to black-hole physics. The most famous exam-

ple of this is the fact that various non-perturbative string structures called

D-branes have provided the first statistical (i.e., microscopic) derivation of

the Bekenstein-Hawking entropy formula S = A/4 that relates the entropy

S of a black hole to its surface area A. Indeed, the above list only begins to

scratch the surface of all of the many exciting recent formal developments

in string theory.

But we are phenomenologists, so it is natural to ask about the rest

of high-energy physics. How does string theory connect with the rest of

particle physics?

Some of the answers to this question have already been given above. We

have seen, in particular, that string theory is capable of reproducing the

Standard Model as its low-energy limit. Moreover, as we have also seen, the

Standard Model naturally emerges coupled with gravity. Furthermore, in

many cases this entire structure is also joined with supersymmetry. Finally,

this entire structure is also often joined with many properties of GUTs (such

as gauge coupling unification). All of this comes out of the low-energy limit

of string theory, in some sense automatically.

There are also many other benefits to considering the application of

string theory to particle physics. First, string theory provides us with new

kinds of symmetries (so-called “worldsheet symmetries”) which lead to pow-

erful new constraints on the resulting low-energy phenomenology. Second,
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in principle∗ string theory has no free parameters , which leads to a very

predictive theory. Third, string theory has no divergences — in some sense,

string theory is a completely finite theory in which many of the trouble-

some divergences associated with field theory are simply absent. Finally, it

turns out that string theory can even give rise to a new perspective on the

Standard Model itself, and often provides new and simpler ways to perform

calculations.

These last three points (absence of free parameters, absence of diver-

gences, and new ways to perform calculations) are truly remarkable. There-

fore, let us pause to explain in an intuitive way why these features arise.

First, let us explain why string theory has fewer free parameters. To do this,

let us consider a Feynman diagram for a typical tree-level decay A→ B+C,

as shown in Fig. 6.4(a). In field theory, such a process depends on many sep-

arate parameters ultimately associated with the separate propagators and

vertices. Specifically, even though the propagators are determined once the

masses and spins of the particles are specified, there still remains an inde-

pendent choice as to the form of the vertex interaction. Thus, in a given

field theory, there still remain many independent parameters to choose. In

string theory, by contrast, there is no sharp distinction between propaga-

tors and vertices; they melt into each other, and are essentially the same.

Thus, once the propagators are determined, the vertices are also intrinsi-

cally determined. This is one of the underlying reasons why string theory

contains fewer free parameters than field theory.

Next, let us discuss why string theory is more finite than field theory.

To do this, let us consider a typical one-loop Feynman diagram, as shown in

Fig. 6.4(b). In field theory, the virtual interactions occur at sharp spacetime

locations x and y. This is ultimately the origin of the ultraviolet (i.e., short-

∗In this connection, we hasten to emphasize the phrase “in principle”. Unfortunately,
our relative inability to understand the non-perturbative structure of string theory often
means that the pragmatic consequences of having no free parameters cannot be realized,
and in practice one is often forced to introduce many parameters to reflect our ignorance
of the underlying dynamics. This will be discussed in subsequent lectures. This situation
is rather analogous to one that arises in the MSSM: we do not know how supersymmetry
is broken, so we typically parametrize our ignorance through the introduction of various
supersymmetry-breaking parameters. Likewise, in string theory, there are analogous
questions which come under the heading of “vacuum selection”: we do not know how
the non-perturbative dynamics of string theory selects a particular vacuum state. Thus,
in order to proceed to make phenomenological predictions, we are often forced to assume

a certain vacuum state, or to parametrize the vacuum via the introduction of essentially
unfixed parameters. The important point, however, is that string theory is a complete
theory in that it should in principle, by virtue of its dynamics, uniquely fix the values
of all of its fundamental parameters.
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distance) divergence as x → y. In string theory, by contrast, we have seen

that there are no such sharp interaction points — essentially the interaction

is “smoothed out” by the presence of the string. Thus, there is no sense

in which the dangerous x → y limit exists, for there are no precise means

by which one can define such interaction locations x and y. It is in this

manner that string theory automatically removes ultraviolet divergences:

the string itself, through its extended geometry, acts as a (Planck-scale)

ultraviolet regulator.

Finally, let us discuss why string theory can often give us simpler ways

to perform calculations than in field theory. To do this, let us consider

the total tree-level amplitude for a typical process A + B → C + D, as

illustrated in Fig. 6.4(c). As we know, in field theory there are two separate

topologies of Feynman diagram that must be separately considered: the s-

channel diagram and the t-channel diagram. In general, at any given order,

there are many separate diagrams to evaluate, and one often finds that

great simplifications and cancellations occur only when these individual

contributions are added together. In string theory, by contrast, there is

only one corresponding diagram to evaluate at any given order. Thus, the

sorts of simplifications or cancellations that might occur in field theory are

automatically “built into” string theory from the very beginning. In some

sense, string theory manages to find a way to reorganize the field-theory

diagrams in a perturbative expansion in a useful and potentially profitable

way. Indeed, this observation has even led to the development of many new

techniques for evaluating complicated field-theoretic processes, particularly

in QCD where the number of diagrams and the number of terms in each

diagram can easily grow to otherwise unmanageable proportions.

We thus see that in a number of ways, string theory is a very useful lan-

guage in which we might consider thinking about particle physics. Indeed,

in various aspects (such as finiteness, fewer parameters, etc.) it is supe-

rior to field theory. But overall, the fundamental fact remains that if we

are thinking about strings, we are abandoning our usual four-dimensional

point of view of particle physics. Specifically, since each different particle

in spacetime is now interpreted as a different quantum mode excitation of

an underlying string, we see that four-dimensional (spacetime) physics is

now ultimately the consequence of two-dimensional (worldsheet) physics.

Thus, everything we ordinarily focus on in field theory (such as the four-

dimensional particle spectrum, the gauge symmetries, the couplings, etc.)

are now all ultimately determined or constrained by worldsheet symmetries.

And this brings us to string phenomenology.
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6.1.4. So what is string phenomenology?

In order to understand what string phenomenology is, we can draw a useful

analogy. Just as we are replacing the language of high-energy physics from

field theory to string theory, we likewise replace field-theory phenomenol-

ogy with string-theory phenomenology. The goals of string phenomenology

are of course the same as those of ordinary field-theory phenomenology:

both seek to reproduce, explain, and predict observable phenomena, and

both seek to suggest or constrain new physics at even higher energy scales.

Indeed, only the language in which we will carry out this procedure has

changed. Thus, in some sense, string phenomenology is the “art” of using

the new insights from string theory in order to understand, explain, and

predict what physics at the next energy scale is going to look like. Or, re-

calling that string theory is ultimately a theory of Planck-scale physics, we

can say that string phenomenology is the “interplay” or “meeting-ground”

between Planck-scale physics and GeV-scale physics.

It is important to understand that we are not abandoning field theory

completely. Nor would we want to. Field theory automatically incorporates

many desirable features such as causality, spin-statistics relations, and CPT

invariance (which in turn implies the existence of antiparticles). These are

all generic predictions of field theory, and are the underlying reasons why

field theory is the appropriate language for particle physics. However, since

string theory ultimately reduces to field theory in its low-energy limit, all of

these features will still be retained in string theory. Moreover, as we have

seen, string theory additionally predicts or explains gravity, supersymmetry,

and the absence of ultraviolet divergences. Furthermore, as we shall see,

string theory also automatically predicts the existence of gauge symmetry,

and even incorporates features such as gauge coupling unification. These

are all generic predictions of string theory. It is for these reasons to believe

that a change in language from field theory to string theory might be useful.

String theory will also provide us with new tools for model-building,

new mechanisms and new guiding principles. Let us give some examples.

In field theory, there are many well-known ideas that are part and parcel

of the model-building game: one must enforce ABJ anomaly cancellation

(to preserve gauge symmetries); one can employ the Higgs mechanism (to

generate spontaneous symmetry breaking and give masses to particles);

one has the GIM mechanism (to preserve flavor symmetries); and one has

supersymmetry (to cancel quadratic divergences). Likewise, in string theory

there are analogous sets of ideas, many of which are extensions of their field-
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theory counterparts. For example, one has the so-called “Green-Schwarz”

mechanism for anomaly cancellation (to preserve gauge symmetries); one

has string vacuum shifting via pseudo-anomalous U(1) gauge symmetries

(to generate spontaneous symmetry breaking and generate particle masses);

one has spacetime compactification (to generate gauge symmetries); one has

hidden string sectors (to break supersymmetry and impose selection rules);

and one has massive towers of string states (to enforce finiteness). Thus,

model-building proceeds, but with a different set of principles.

There is also a much more subtle effect of changing our language from

field theory to string theory. Ultimately, since four-dimensional physics is

now derived from an underlying two-dimensional (worldsheet) theory, string

phenomenology is ultimately much more constrained than field-theory phe-

nomenology. One given worldsheet symmetry, which might serve as an “in-

put”, can have various seemingly unrelated effects in the resulting spacetime

phenomenological “output”. Thus, string theory not only leads to unex-

pected connections or correlations between seemingly disparate spacetime

phenomena, but can also give rise to entirely new phenomenological sce-

narios that could not have been anticipated within field theory alone. We

will see many examples of this in the coming lectures.

Thus, we see that string phenomenology does many things and has many

goals:

• to provide a new framework for addressing and answering numerous

phenomenological questions;

• to provide a rigorous test of string theory as a theory of physics;

• to explore the interplay between worldsheet physics and space-

time physics (i.e., to ultimately determine which “patterns” of low-

energy phenomenology are allowed or consistent with being realized

as the low-energy limit of an underlying string theory); and

• to augment field theories of “low-energy” physics into the string

framework so as to give them the full benefits of the language of

string theory.

Because of these different roles, string phenomenology occupies a rather

central position in high-energy physics: it allows the transmission of ideas

from high-scale string theory to guide “low”-scale particle physics, and vice

versa. This situation is illustrated in Fig. 6.5. At the lowest energies (lower

left), string phenomenology has direct relevance for the Standard Model,

where it can potentially explain features such as the choice of the gauge

group, the number of generations, and numerous other parameters such as
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the masses and mixings of Standard-Model particles. At slightly higher

energies (lower right), we see that string phenomenology can also suggest

or constrain various extensions to the Standard Model, such as SUSY and

SUSY-breaking, grand unification, and hidden-sector physics. At the high-

est energies (upper left), string phenomenology is also concerned with the

more formal aspects of string theory: such important questions include

string vacuum selection, non-perturbative string dynamics, string duality,

and new mathematical structures and techniques. And string phenomenol-

ogy even has relevance outside the strict confines of particle physics. For

example, string theory should have a profound impact on cosmology (upper

right), where important stringy issues include the role of the dilaton, the

effects of many other light degrees of freedom (the so-called moduli), the

possibility of extra spacetime dimensions, the cosmological constant prob-

lem, and even more exotic ideas such as topology change. As illustrated

in Fig. 6.5, string phenomenology sits at the center of this web of ideas.

Exploring the connections between the different corners of this figure is,

therefore, the job of the string phenomenologist. Indeed, through string

phenomenology, one “uses” string theory in order to open a window into

the possibilities for physics beyond the Standard Model.

6.1.5. Plan of these lectures

For much of the past decade, string phenomenology has been practiced

assuming a particular type of underlying string theory, the so-called per-

turbative heterotic string. Therefore, this string will be the focal point of

most of these lectures. However, it turns out that the heterotic string is

built directly on the foundations of two other kinds of strings, the bosonic

string and Type II superstring. Indeed, in a sense to be made more pre-

cise in Lecture #5, one can view the heterotic string as the “sum” of the

bosonic string and the superstring string. Therefore, in these lectures, we

will have to start at the beginning by studying first the bosonic string, then

the Type II string, and finally the heterotic string. Indeed, this situation is

analogous to the way in which one often studies quantum field theory: first

one learns how to quantize the Klein-Gordon field, then the Dirac field, and

finally the gauge field. In a certain sense, the bosonic string is the analogue

of the Klein-Gordon field, while the Type II superstring is the analogue of

the Dirac field and the heterotic string is the analogue of the gauge field.

Of course, this analogy is only a pedagogical organizational one, since the

heterotic string itself will ultimately contain all of the phenomenological
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properties (e.g., scalars, fermions, and gauge symmetries) that we desire.

In Lecture #2, we will therefore give a brief introduction to the bosonic

string, stopping only long enough to develop the ideas and techniques we

will need for later applications. In Lectures #3 and #4, we will then

proceed to develop the Type II superstring, once again focusing on only

those aspects that will be useful for later applications. Finally, in Lecture

#5, we will arrive at our destination: the heterotic string. In Lecture #6 we

will construct some ten-dimensional heterotic string models, and in Lecture

#7 we will develop a useful set of rules for heterotic string model-building.

It is important to note, however, that all of string phenomenology is not

based on the heterotic string. Particularly over the past decade, there has

been a profound shift in our understanding of both string theory and its

phenomenological implications. One of the consequences of this so-called

“second superstring revolution” has been a new emphasis on yet another

class of strings, the Type I (open) strings. Within this class, so-called

intersecting D-brane models have shown great promise in yielding chiral,

Standard-Model-like spectra. Indeed, there has even emerged a new super-

structure which promises to relate all of these strings to each other: this

structure is called M-theory, and is deeply tied to many non-perturbative

aspects of string theory which are still being understood. Needless to say,

these recent developments have the potential to completely change the way

we think about string theory and string phenomenology. We will therefore

discuss some of these modern developments in the final Lecture #8. Nev-

ertheless, the bulk of these lectures will primarily be focused on the more

traditional aspects of string phenomenology that concern the weakly cou-

pled heterotic string. Indeed, this affords the best introduction to string

theory and string phenomenology, regardless of the future directions that

string theory and string phenomenology might ultimately take.

We also remind the reader that our goal here is to provide an intro-

duction to string theory that avoids mathematical complications wherever

possible, and which “gets to the physics” as rapidly as possible. Therefore,

in many places, we will simply assert a mathematical result to be true,

leaving its derivation to be found in various textbooks on the subject. For

this purpose, we recommend Volume I of the textbook Superstring Theory,

by M.B. Green, J.H. Schwarz, and E. Witten (henceforth to be referred to

as GSW†). In fact, our initial approach will be very similar to that of GSW,

†Not to be confused with another great GSW trio, namely Glashow, Salam, and Wein-
berg. One can only hope that someday string theory will be as well-established, both
theoretically and experimentally, as the GSW electroweak theory. This may sound a
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and we will continually refer back to this textbook as we proceed. Another

recommended textbook with a more modern mathematical perspective is

Introduction to String Theory, by J. Polchinski. Likewise, A First Course

in String Theory by B. Zwiebach is particularly useful for students who

may lack a full background in relativistic quantum field theory.

6.2. Lecture #2: Strings and their spectra: The bosonic

string

6.2.1. The action

We begin by studying the simplest string of all: the bosonic string. As we

discussed in Lecture #1, the physics of a string is ultimately described by

the shape it takes (e.g., its vibrational mode of oscillation) as it propagates

through an external spacetime and thereby sweeps out a two-dimensional

worldsheet. Therefore, we must first have a way of describing the shape

of this worldsheet. To this end, we parametrize the worldsheet by two

worldsheet coordinates (σ1, σ2) as illustrated in Fig. 6.6, and describe the

embedding of this worldsheet into the external spacetime by giving the

spacetime coordinates Xµ of any location (σ1, σ2) on the worldsheet. Thus,

the physics of the string is ultimately encapsulated in the embedding func-

tions Xµ(σ1, σ2), where µ = 0, 1, ..., D − 1. Here D is the total spacetime

dimension, which we shall keep arbitrary for now.

Given these embedding functions, we can attempt to write down an ap-

propriate action for the string. To do this, we first note that as we might

expect, strings have tension — i.e., strings generically have a non-zero en-

ergy per unit length. In other words, it takes energy to stretch a string and

to give the worldsheet a larger area. Thus, as the string propagates along

in spacetime, we expect on physical grounds that this string should choose

a configuration that minimizes the area of the worldsheet. This leads us

to identify the string action with the area of the corresponding worldsheet.

Indeed, this results in the so-called Nambu-Goto action, which involves a

non-trivial square root of theXµ coordinates. For certain calculational pur-

poses, however, this square root is often problematic. Fortunately, however,

there exists an alternative action, the so-called Polyakov action, which is

classically equivalent to the Nambu-Goto action but which does not involve

bit optimistic, but a possible new experimental direction for string theory and string
phenomenology will be discussed in Lecture #8 in the context of the brane world.
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fractional powers of the X coordinates. This action is given by

S = − 1

4πα′

∫

d2σ
√
hhαβ gµν ∂αX

µ∂βX
ν . (6.2.1)

Here gµν is the metric of the external spacetime, hαβ is the metric of

the worldsheet, the worldsheet derivative is given by ∂α ≡ ∂/∂σα, and

h ≡ dethαβ . In the prefactor, α′ is a dimensionful constant (called the

Regge slope) with units of (length)2. Since these units are equivalent to

length/energy, we see that α′ is an inverse tension, and indeed the string

tension T turns out to be related to α′ via T = (2πα′)−1. We shall discuss

the numerical value of α′ below. Note that the action (6.2.1) is manifestly

spacetime Lorentz-invariant.

Before proceeding further, it may be useful to draw an analogy be-

tween this action and the analogous action for a point particle propagating

through spacetime and sweeping out a worldline rather than a worldsheet.

The worldline can be parametrized by a single coordinate σ, which func-

tions as a proper time along the worldline. The point-particle action can

then be written in the form

Spoint particle = 1
2

∫

dσ
(

e−1 gµν∂σX
µ∂σX

ν − em̂2
)

(6.2.2)

where m̂ is the mass of the point particle and where e(σ) is an auxiliary field

(a so-called einbein). Solving for e(σ) through its equation of motion and

substituting back into (6.2.2) yields an action proportional to the length

of the worldline and involving a square root. Thus, we see that the string

action (6.2.1) is nothing but the generalization of the point-particle action

(6.2.2), where we have associated

e−1(σ) ⇐⇒ hαβ(σ1, σ2) , m̂ = 0 . (6.2.3)

In other words, the string action (6.2.1) is the two-dimensional generaliza-

tion of the action of a massless point particle, where the worldsheet metric

functions as an auxiliary field (a “zweibein”). This masslessness property

will be crucial shortly.

It is now possible to make some simplifications. Perhaps the most obvi-

ous is to restrict our attention to a flat spacetime and take gµν = ηµν . We

shall do this throughout these lectures. A much more subtle simplification,

however, is to simplify the worldsheet metric. Let us therefore pause to

discuss how this can be done.

One of the first things we realize is that the ultimate physics of the

string should not depend on the particular choice of coordinate system
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(σ1, σ2) on the string worldsheet. After all, on purely physical grounds,

we know that the particular choice of worldsheet coordinate system cannot

have a physical effect, for the same worldsheet geometry can ultimately be

described using an infinite variety of coordinate systems which differ from

each other through relative reparametrizations or rescalings. (Indeed, in

the point-particle case, we are likewise free to reparametrize our proper-

time variable along the particle worldline.) Therefore, the string action

should have a symmetry that makes it invariant under reparametrizations

and rescalings of the worldsheet coordinates. Note, in particular, that the

invariance under rescalings follows from the fact that we chose our string

action (6.2.1) to generalize that of a massless point particle. In other words,

we have taken m̂ = 0 in (6.2.3). While it is possible to add terms to the

action of the bosonic string which mimic the effects of possible mass terms

and which explicitly break the scale invariance of the bosonic string, we

shall not need to consider such theories in these lectures.

The symmetry that comprises both reparametrizations and rescalings of

the worldsheet coordinates is called conformal symmetry, and the bosonic

string action (6.2.1) is thus said to be “conformally invariant”. Clearly,

this symmetry must hold not only at the classical level, but also at the

quantum level, for we would not have a consistent theory if this symmetry

were broken by quantum anomalies. Conformal invariance of the action is

a very powerful physical tool which will play an important role throughout

these lectures, and indeed the mathematical structure underlying conformal

symmetry and its implications is a deep and beautiful subject which we

will not have time or space to discuss here. A recommended starting point

is Applied Conformal Field Theory (Proceedings of Les Houches, Session

XLIX, 1988), by P. Ginsparg. Therefore, in order to proceed, we will have

to make the first of many “great leaps”, and take certain results on faith.

Our first great leap will therefore be the following:

Great Leap #1: Conformal invariance of the string

action allows us to replace the string metric hαβ with the

two-dimensional Minkowski metric ηαβ without loss of gen-

erality.

This then results in the simplified bosonic string action

S = − 1

4πα′

∫

d2σ ∂αX
µ∂αXµ . (6.2.4)

Looking at the action (6.2.4), we see that it has two possible inter-
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pretations. The first interpretation is the one that we have already been

following: minimizing this action is classically equivalent to minimizing the

worldsheet area. This follows directly from the interpretation of Xµ(σ1, σ2)

as the spacetime coordinates of a given worldsheet position (σ1, σ2). Note

that this action is invariant under SO(D − 1, 1) Lorentz transformations

of the spacetime coordinates, with the index µ interpreted as a spacetime

vector index relative to the Lorentz group. We shall refer to this as the

spacetime interpretation.

There is, however, a completely different interpretation of (6.2.4): this

is the action of a two-dimensional quantum field theory where the two di-

mensions refer to the worldsheet coordinates and where the “fields” are

nothing but the functions Xµ(σ1, σ2), µ = 0, 1, ..., D − 1. Indeed, we see

that these spacetime coordinate functions are simply a collection of D dif-

ferent massless bosonic Klein-Gordon fields which happen to exhibit an

internal SO(D− 1, 1) rotation symmetry (analogous to a gauge symmetry)

between them. In such a case, the index µ is simply an internal symmetry

index which tells us that the Xµ fields transform as vectors with respect

to the internal SO(D− 1, 1) symmetry. We shall refer to this as the world-

sheet interpretation. Indeed, it is because this string action contains only

bosonic worldsheet fields that we call this the bosonic string. In such a

description, spacetime is not a fundamental concept but rather a “derived”

concept: it results from the interpretation of various worldsheet fields as

spacetime coordinates, and from the interpretation of an internal symmetry

as a spacetime Lorentz symmetry. It is indeed remarkable that such differ-

ent interpretations can be made of the same physics, and we shall often go

back and forth between these different worldsheet and spacetime points of

view.

Given these two descriptions of the action, we can also understand the

origin of the Regge slope parameter α′ on dimensional grounds. Let us first

take the worldsheet point of view, so that our length dimensions are de-

termined with respect to the coordinates (σ1, σ2). In such a case, we know

that the ordinary Klein-Gordon action does not require any dimensionful

prefactor, for
∫

d2σ(∂αX
µ)2 is indeed dimensionless when the Klein-Gordon

field Xµ is itself dimensionless. However, from the spacetime point of view,

we see that Xµ cannot be dimensionless, for we ultimately need to inter-

pret this field as a spacetime coordinate with units of length. Thus, we

are forced to compensate by inserting a dimensionful prefactor α′ in front

of the action. In other words, the need for the dimensionful prefactor α′

arises from the need to interpret our dimensionless (scale-free) worldsheet



March 22, 2008 16:26 World Scientific Review Volume - 9in x 6in diennes

String Theory, String Model-Building, and String Phenomenology — A Practical Introduction285

theory as a dimensionful (spacetime) theory. Or, to put it slightly differ-

ently, the parameter α′ is the dimensionful conversion factor that describes

the overall scale of the embedding of the dimensionless worldsheet physics

into the dimensionful spacetime. We shall see this phenomenon very often

throughout these lectures: the worldsheet physics is by itself scale-invariant

(since it generalizes the physics of a massless point particle with m̂ = 0),

and it is only in the conversion to dimensionful spacetime quantities that

the overall scale α′ plays a role. Thus, α′ sets the overall spacetime mass

scale of string theory, often called the string scale:

Mstring ≡ 1√
α′

. (6.2.5)

A priori, this mass scale is unfixed, but we shall see shortly how this scale

is ultimately determined.

Now that we have established the worldsheet picture and the space-

time picture, it is easy to see how they are related to each other: each

quantum excitation of the Klein-Gordon worldsheet fields Xµ corresponds

to a different particle in spacetime. Thus, the study of string theory can

be reduced to the study of a two-dimensional quantum field theory! For

example, particle scattering amplitudes in spacetime can be re-interpreted

as the correlation functions of our two-dimensional worldsheet fields, eval-

uated on various two-dimensional manifolds. Of course, as we have stated

above, this is not just any two-dimensional quantum field theory, for phys-

ical consistency also requires the presence of conformal symmetry. Thus,

from this point of view, string theory is the study of two-dimensional con-

formal field theories. In two dimensions, it turns out conformal symmetry

is extremely powerful, for it gives rise to an infinite number of conserved

currents. Indeed, two-dimensional conformal symmetry is often sufficiently

powerful to permit the exact evaluation for many scattering amplitudes.

In the case in question, the particular conformal field theory that con-

cerns us is that of D free massless bosonic fields Xµ, µ = 0, 1, ..., D − 1.

However, just as with any symmetry, there is always the danger of quantum

anomalies. Nevertheless, it is straightforward to show that

Great Leap #2: Conformal invariance of the string

action is preserved at the quantum level (i.e., all quantum

anomalies are cancelled) if and only if D = 26.

This is clearly a big result, and we will not have space to provide a

proper mathematical derivation of this fact. At the very least, however, we
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can give a guide as to the most useful way of thinking about this result.

Note that our D bosonic fields are identical to each other and essentially

decoupled from each other. Therefore, each contributes the same amount

to any potential anomaly. This amount is called the central charge, and the

central charge c of each bosonic field X will be denoted cX . It turns out

that cX = 1, and therefore the total central charge from the D bosonic

fields is cfields = D. However, it can be shown that there also exists

a “background” central charge (i.e., a background quantum anomaly) of

magnitude cbackground = −26. Thus, the total anomaly is cancelled only

if D = 26. Clearly, the most mysterious part of this discussion is the ori-

gin of this “background” central charge. In technical terms, it reflects the

contributions of the conformal ghosts that arose when we used the confor-

mal symmetry to set (or “gauge-fix”) the worldsheet metric hαβ → ηαβ .

However, all we will need to know for the future is that the value of the

“background” anomaly cbackground depends on only the particular symme-

try of the worldsheet action that we are dealing with. In the present case,

this worldsheet symmetry is simply conformal invariance, and the corre-

sponding background central charge corresponding to conformal invariance

is cbackground = −26. Therefore, we see that the total conformal anomaly

is cancelled only if D = 26. This is typically called the critical dimension

of the bosonic string.

We see, then, that string theory is able to determine the spacetime di-

mension as the result of an anomaly cancellation argument ! It is worth re-

flecting on how this happened by considering an analogous situation in field

theory, namely the cancellation of the triangle axial anomaly. We know that

this anomaly is cancelled only for very particular combinations of particle

representations (e.g., we require complete generations of Standard-Model

fields, with three colors of quark for every lepton). So we are used to the

idea that anomalies are extremely sensitive to the field content of the the-

ory. In string theory, however, we have seen that the analogous worldsheet

field content is parametrized by the spacetime dimension. More worldsheeet

fields correspond to more spacetime dimensions. Therefore, just as triangle

anomaly cancellation requires three colors, conformal anomaly cancellation

requires 26 dimensions.

Of course, our world does not consist of 26 flat spacetime dimensions,

and we shall ultimately need to find a way of reducing this to a four-

dimensional theory. For now, however, we can just think of the present

bosonic string as a 26-dimensional toy model.
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6.2.2. Quantizing the bosonic string

Let us now quantize this theory. Having already noted that the action

(6.2.4) is nothing but the action of a set of 26 Klein-Gordon fields Xµ, we

already know how to proceed: in the usual fashion, we introduce a Fourier-

expansion of the fields Xµ, and interpret the coefficients of this expansion

as creation and annihilation operators obeying canonical quantization rela-

tions.

Because we ultimately wish to interpret the fields Xµ as spacetime co-

ordinates, we must first impose the constraint

Xµ(σ1 + π, σ2) = Xµ(σ1, σ2) (6.2.6)

where we have chosen to normalize the length of the closed string as π. In

other words, the spacetime coordinates must be single-valued as we make

one complete circuit around the closed string. This is the first place where

we have essentially incorporated the requirement that we are dealing with

closed strings whose topology is that of a circle. Moreover, because of this

topology (and because of the linear nature of the wave equation resulting

from the action (6.2.4)), we know that we can also decompose any possible

quantum excitation of the wiggling string into a superposition of modes

that travel clockwise around the string (in the direction of, say, decreasing

σ1) and those that travel counter-clockwise (in the direction of increasing

σ1). These are respectively called left-movers and right-movers. We can

therefore decompose each of our Klein-Gordon fields into the form

Xµ(σ1, σ2) = Xµ
L(σ1 + σ2) + Xµ

R(σ1 − σ2) . (6.2.7)

The most general mode-expansion consistent with the boundary condition

(6.2.6) is then

Xµ(σ1, σ2) = xµ+ ℓ2pµσ2 +
i

2
ℓ
∑

n6=0

[

αµn
n
e−2in(σ1+σ2) +

α̃µn
n
e+2in(σ1−σ2)

]

,

(6.2.8)

which decomposes into

Xµ
L(σ1 + σ2) = 1

2x
µ +

ℓ2

2
pµ(σ1 + σ2) +

i

2
ℓ
∑

n6=0

αµn
n
e−2in(σ1+σ2)

Xµ
R(σ1 − σ2) = 1

2x
µ − ℓ2

2
pµ(σ1 − σ2) +

i

2
ℓ
∑

n6=0

α̃µn
n
e+2in(σ1−σ2) (6.2.9)

Here ℓ ≡
√

2α′ is a fundamental length that has been inserted on dimen-

sional grounds.
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It is easy to interpret the different terms in (6.2.8) and (6.2.9). Clearly

the final terms in each line represent the internal quantum vibrational oscil-

lations of the string, where αµn and α̃µn are the left-moving and right-moving

creation/annihilation operators corresponding to vibrational modes of a

given frequency n. We shall discuss these operators shortly. Note that

the contribution from the “zero-mode” has been separated out and written

explicitly in the form xµ ± 1
2ℓ

2(σ1 ± σ2) for the left- and right-movers re-

spectively. In the case when there are no quantum excitations (so that we

can ignore the final exponential terms), these “zero-modes” are all that re-

main of the mode-expansion, whereupon we see from (6.2.8) that the total

Xµ field takes the form Xµ = xµ + ℓ2pµσ2. Interpreting σ2 as the timelike

coordinate on the string worldsheet, we thus see that xµ is nothing but the

center-of-mass position of the string, and pµ its center-of-mass momentum.

Let us now consider the quantization rules that we must impose. The

first one (for the zero-modes) is easy: we simply impose the usual commu-

tation relation [xµ, pν ] = i~ηµν . We shall henceforth set ~ = 1. The excited

modes also have a similar commutation relation. First, note that because

the X fields are interpreted as spacetime coordinates, they are necessarily

real . This implies that we must identify αµ−n = (αµn)†, with a similar result

for the right-moving oscillator modes. In other words, the negative modes

create excitations, while the positive modes annihilate the same excitations.

Given this, we then can immediately write down the commutation relation

for the creation/annihilation operators:

[αµm, α
ν
n] = mδm+n η

µν , [α̃µm, α̃
ν
n] = mδm+n η

µν . (6.2.10)

Here we have introduced the notation δx = δx,0 ≡ 1 if x = 0, and ≡ 0 if

x 6= 0. Note that these are exactly the harmonic oscillator commutation

relations, except that we have rescaled each mode αn by its corresponding

frequency n in (6.2.9). Thus, an ≡ αn/
√
n obey the usual harmonic os-

cillator commutation relations. This rescaling has become conventional in

string theory, and we shall retain it here. Likewise, it is often conventional

to define the zero-mode αµ0 ≡ 1
2

√
α′pµ.

Given this mode-expansion, we can now construct the corresponding

number operators

n > 0 : Nn =
1

n
αµ−nαnµ , Ñn =

1

n
α̃µ−nα̃nµ (6.2.11)

which count the number of excitations of the nth frequency modes of the

string. Once again, this is completely analogous to the harmonic-oscillator
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creation/annihilation modes, after we take into account the rescaling αn ≡√
nan and the hermiticity condition α−n = α†

n.

Likewise, we can also write down the total energy of the system. To do

this, let us consider the different contributions to the total energy. First,

there is the energy associated with the internal quantum vibrational oscil-

lations of the string. As we might expect, this is given by

L
(osc)
0 ≡

∞
∑

n=1

nNn =
∞
∑

n=1

αµ−nαnµ

L̄
(osc)
0 ≡

∞
∑

n=1

nÑn =

∞
∑

n=1

α̃µ−nα̃nµ . (6.2.12)

For convenience, we are defining these energy operators in such a way that

they are dimensionless numbers (i.e., they are worldsheet energies). These

L0 operators are often called Virasoro generators , which are more generally

defined Lm ≡ ∑

n α
µ
m−nαnµ. These generators are nothing but the different

frequency modes of the total worldsheet stress-energy tensor, and together

they satisfy the so-called Virasoro algebra. We shall only consider L0 in

these lectures.

Next, there is the energy of the zero-modes, which correspond to the

net center-of-mass motion of the string. This is given by

L
(com)
0 ≡ αµ0α0µ =

α′

4
pµpµ

L̄
(com)
0 ≡ α̃µ0 α̃0µ =

α′

4
pµpµ . (6.2.13)

Note that factors of α′ must appear in order to counter-balance the fact

that the center-of-mass momentum pµ is a spacetime quantity, and hence

dimensionful.

Finally, there is the possibility of an overall non-zero vacuum energy

for both the left-movers and the right-movers. In other words, there is no

reason to assume that the vacuum state (the state without any excitations)

is exactly at zero energy. This is important, of course, since string theory

is ultimately a theory which will contain gravity, and it is precisely in the-

ories containing gravity that the overall zero of energy becomes important.

Indeed, mathematically, one can imagine that due to the commutation re-

lations (6.2.10), there can be an overall normal-ordering ambiguity in the

definitions in (6.2.12), and this overall normal-ordering constant would be

our “vacuum energy”.
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Thus, denoting the left- and right-moving vacuum energies as aL,R, we

have the total left- and right-moving energies

H ≡ L
(com)
0 + L

(osc)
0 + aL , H̄ ≡ L̄

(com)
0 + L̄

(osc)
0 + aR . (6.2.14)

These are the total worldsheet Hamiltonians.

Clearly, the important thing to do at this stage is to determine the

vacuum energies aL,R. Of course, the symmetry between left-movers and

right-movers requires aL = aR. Calculating this vacuum energy can be

done in numerous ways, each of which would take too much space for our

purposes. Once again, we refer the reader to Chapter 2 of GSW, where a

full calculation is given. Therefore, it is time for another

Great Leap #3: Conformal invariance of the string

action implies that aL = aR = −1.

Finally, in order to determine the total spacetime mass of a given string

state, we must have a mass-shell condition for the string. Rather than

provide a rigorous derivation (for which we again refer the curious reader

to GSW), we can instead give an intuitive argument which suggests the

proper answer. In a quantum field theory of point particles, the mass m̂ is

a parameter that appears in the Lagrangian through an explicit mass term

that might be generated in some separate manner, e.g., through the Higgs

mechanism. Since a point particle has no internal degrees of freedom beyond

those associated with its center-of-mass motion, such a mass parameter m̂

would then be directly identified with M , the resulting physical mass of the

particle. Such a physical mass M is the quantity satisfying the condition

pµpµ = −M2, or equivalently the condition L
(com)
0 = L̄

(com)
0 = −α′M2/4.

In the special case of a massless particle (for which m̂ = M = 0), this

mass-shell condition then takes the simple form L
(com)
0 = L̄

(com)
0 = 0.

A similar condition emerges in string theory. We have already seen that

our string action (6.2.1) generalizes that of a massless particle, which again

suggests that our effective Lagrangian mass parameter m̂ vanishes. Indeed,

as we have discussed, this is the root of the scale invariance of the string

action (6.2.1). However, unlike the point-particle case, a string does have

additional, purely internal degrees of freedom — these are the oscillations

of the string itself, whose additional energy contributions are represented

by L
(osc)
0 , L̄

(osc)
0 , and aL,R. Thus, even though m̂ = 0, the resulting string

state can still have a non-zero physical mass M in spacetime. Indeed,

just as the mass-shell condition for massless point particles is given by

L
(com)
0 = L̄

(com)
0 = 0, the mass-shell condition for our scale-invariant string
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is generalized to H = H̄ = 0. This then becomes our scale-invariant mass-

shell condition in string theory. Of course, spacetime Lorentz invariance

still allows us to identify the physical spacetime mass M of a given string

state via the relations L
(com)
0 = L̄

(com)
0 = −α′M2/4. Thus, the string

mass-shell conditions H = H̄ = 0 lead to the identifications
1

4
α′M2 = L

(osc)
0 − 1 ,

1

4
α′M2 = L̄

(osc)
0 − 1 . (6.2.15)

Note that these two conditions can also be written in the form

α′M2 = 2
(

L
(osc)
0 + L̄

(osc)
0 − 2

)

(6.2.16)

where we must obey the constraint

L
(osc)
0 = L̄

(osc)
0 . (6.2.17)

Interpreting the conditions (6.2.16) and (6.2.17) is easy. The condition

(6.2.16) simply tells us that the physical spacetime massM of a given string

state (and thus the square of its center-of-mass momentum) is generated

solely from its internal left- and right-moving vibrational excitations. The

condition (6.2.17), by contrast, tells us that the mass of the string must

come equally from left-moving and right-moving excitations. The latter

condition (6.2.17) is often referred to as the level-matching condition, since

it implies that a given string oscillator state is considered to be “on shell”

(or “physical”) only if the total excitation level of the left-movers matches

the total excitation level of the right-movers. This condition implies that

the string does not have an unbalanced “wobbling”, for if such a wobbling

existed, it could ultimately be used to determine a preferred coordinate

system on the worldsheet (thereby breaking conformal invariance). Indeed,

demanding invariance under shifts in the σ1 variable leads directly to the

condition (6.2.17). We remark, however, that states not satisfying (6.2.17)

are nevertheless important for understanding the “off-shell” or “virtual”

structure of string theory. Such “virtual” states contribute, for example,

within loop amplitudes. In these lectures, however, we shall focus on only

the so-called “tree-level” string spectrum for which the level-matching con-

straint (6.2.17) is imposed and the corresponding physical masses are given

by (6.2.16).

6.2.3. The spectrum of the bosonic string

Having discussed the quantization of the bosonic string, we can now ex-

amine its spectrum. The procedure is simple: we simply consider all pos-

sible combinations of left- and right-moving mode excitations of the string
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worldsheet, subject to the level-matching constraint (6.2.17), and then we

tensor these left- and right-moving states together to form the total re-

sulting string state. The spacetime mass of this string state is then given

by (6.2.16), and the properties of the state are deduced directly from the

underlying vibrational configuration of the string.

The simplest state, of course, is the string vacuum state

|0〉R ⊗ |0〉L (6.2.18)

in which the right- and left-moving vacuum states are tensored together.

This state trivially satisfies (6.2.17), which indicates that this state is indeed

part of the physical string spectrum. Unfortunately, we see from (6.2.16)

that this state has a negative squared mass — i.e., the spacetime mass

of this state is imaginary! This state is thus a tachyon. Making sense of

this string state is problematic, and is one of the reasons that we shall not

ultimately be interested in the bosonic string.

Let us continue, however. The first excited string state is

α̃µ−1|0〉R ⊗ αν−1|0〉L . (6.2.19)

This state has L
(osc)
0 = L̄

(osc)
0 = 1, and according to (6.2.16) is therefore

massless. As evident from its Lorentz index structure, this state transforms

under the spacetime Lorentz group as the tensor product of two spin-one

Lorentz vectors. We can therefore decompose this tensor product into a

spin-two state (the symmetric traceless component), a spin-one state (the

antisymmetric component), and a spin-zero state (the trace). Mathemat-

ically, this is equivalent to the tensor-product rule for Lorentz transverse

SO(24) vector representations:

V24 ⊗ V24 = 1 ⊕ 276 ⊕ 299 (6.2.20)

where V8 is the eight-dimensional vector representation, and where the 1

representation is the spin-zero state, the 276 representation is the spin-one

state, and the 299 representation is the spin-two state.

How can we interpret these states? A massless spin-two state must, by

Lorentz invariance, have equations of motion which are equivalent to the

Einstein field equations of general relativity. Thus, we are forced to iden-

tify the spin-two (traceless symmetric) component of the state (6.2.19) as

the graviton gµν , which is the spin-two mediator of the gravitational inter-

actions. The spin-one (antisymmetric) state within (6.2.19) is an antisym-

metric tensor field, often denoted Bµν , and the spin-zero (trace) component
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is the so-called dilaton, denoted φ. Together, (gµν , Bµν , φ) are called the

gravity multiplet.

By identifying (6.2.19) with the gravity multiplet, we see that string

theory becomes a theory that contains gravity! This in turn allows us to

determine the value of our previously unfixed mass scale α′. We shall now

sketch how this happens (with details available in GSW). It turns out that if

one calculates loop amplitudes in string theory, one finds that e−φ serves as

a loop expansion parameter (i.e., higher-loop amplitudes come multiplied

by more powers of e−φ). Given this observation, it is natural to identify the

string coupling constant as the vacuum expectation value of the dilaton:

gstring = e−〈φ〉 . (6.2.21)

This string coupling constant describes the strength of string interactions.

Given this definition, we then find that the graviton state couples to matter

with the expected gravitational strength only if we choose

α′ =
GNewton

g2
string

(6.2.22)

where GNewton is Newton’s constant. Substituting this result into (6.2.5),

we then find

Mstring = gstringMPlanck , (6.2.23)

where MPlanck ≡ 1/
√
GNewton. Thus, because it contains gravity, string

theory becomes a theory whose fundamental mass scale is related to the

Planck scale.

We can also construct more and more massive string states. Ultimately,

these fill out an infinite tower of string states. It is clear that such additional

states all have α′M2 > 0. Given the above value for α′, this implies that

these additional states all have Planck-scale masses. Such Planck-scale

excited states are therefore not of direct relevance for string phenomenology.

Let us note, however, one interesting fact about these states. For any given

spacetime mass level M , the string state with maximum spin is achieved

by exciting only the lowest vibrational modes αµ−1 and α̃µ−1. We thus find

that for a given spacetime mass M , the maximum spin Jmax that can be

realized is

α′M2 = 2Jmax − 4 . (6.2.24)

For example, we see that the maximum spin that can be realized for a

massless state is J = 2 (the graviton). The relation (6.2.24) was originally
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observed for hadron resonances, and historically gave rise to the so-called

“dual resonance models” (which eventually became modern string theory).

In such dual resonance models, the relation (6.2.24) describes a so-called

“Regge trajectory”, with α′ serving as the so-called “Regge slope”. It is for

this reason that in modern string theory, we continue to refer to α′ as the

Regge slope.

Before concluding, let us briefly mention one further important issue. In

ordinary four-dimensional quantum field theory, we know that a massless

spin-one state (e.g., a photon) näıvely has four distinct states (correspond-

ing to the four components of a vector field Aµ). However, the underlying

gauge invariance allows us to make a unitary gauge choice wherein only

two of these states (the two helicity states) are truly physical. The timelike

and longitudinal states decouple, leaving only the transverse components.

In the above description of the string spectrum, however, we have taken

a covariant approach analogous to the description of a photon as a four-

component vector. One might then wonder which of these states are truly

physical. This issue is an important one in string theory, and once again

we cannot here provide a proper proof. We shall therefore make recourse

to another

Great Leap #4: The physical string states are those

which are realized by exciting the oscillator modes of only

the transverse coordinates X i (i = 1, ..., 24).

Proving this statement requires showing that even after we have used con-

formal invariance to set the string worldsheet metric to ηαβ , there still

remains sufficient freedom to make a further “gauge” choice wherein we set

the oscillator modes of the timelike and longitudinal spacetime coordinates

to zero. This gauge choice, which is called light-cone gauge, is thus the

analogue of unitary gauge in quantum field theory, and essentially tells us

that only the 24 transverse coordinates correspond to physical degrees of

freedom in the string worldsheet action. An important by-product of this

fact is that every remaining string state has a non-negative norm. This

is non-trivial. For example, if our metric signature is chosen such that

η00 = −1, then the state αµ=0
−n |0〉 has a negative norm. However, one can

demonstrate that in light-cone gauge all resulting states are physical and

have non-negative norm.
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6.2.4. Summary

Let us quickly review those features of the bosonic string that we shall need

to bear in mind in subsequent lectures. We shall separate these features

into worldsheet features and spacetime features.

Worldsheet: The worldsheet fields consist of D copies of the left- and

right-moving spacetime coordinates Xµ
L and Xµ

R (the worldsheet bosons).

The fact that these X coordinates are periodic as we traverse the closed

string loop implies that they have integer modings αn and α̃n, where n ∈ ZZ.

The relevant worldsheet symmetry is conformal invariance, which tells us

that the number of these Xµ fields is D = 26 and also tells us that the

vacuum energy corresponding to these fields is aL = aR = −1. As we have

stated above, a useful way to think about these results is to imagine that

there is a “background” conformal anomaly cbackground = −26, and that

each Xµ field makes a contribution cX = 1. In general, the “background”

conformal anomaly is only a function of the relevant worldsheet symmetry

(in this case conformal invariance), and it will always remain true that

cX = 1. Thus, cancellation of the conformal anomaly requires D = 26.

A similar interpretation can also be given to the vacuum energy. When

calculating the vacuum energies, only the physical (i.e., transverse) fields

are relevant. It is a general result that each X field contributes aX = −1/24

to the vacuum energy. Therefore, we find aL = aR = 24aX = −1.

Spacetime: The above worldsheet theory leads to the following features

in spacetime. We find that the spacetime dimension (often called the critical

spacetime dimension) is 26. The spectrum consists of a spinless tachyon,

as well as a massless gravity multiplet consisting of the graviton gµν , the

antisymmetric tensor Bµν , and the dilaton φ. There is also an infinite tower

of massive (Planck-scale) string states.

Comments: Two remarkable things have happened. First, we have a

theory of quantized gravity! The graviton has emerged as the quantum

excitation of a closed string. This alone is very exciting, but also somewhat

mysterious. We started by assuming a closed string propagating through

an external, fixed, flat spacetime. But this string itself includes a graviton

mode, which implies a distortion in that background spacetime. This then

acts back to change the worldsheet theory. Thus, in some sense, the string

itself not only “creates” the spacetime in which it propagates, but is then

affected by this change in the spacetime geometry. This coupling or inter-

play between the string and its spacetime is not fully understood, and is

clearly at the heart of the many mysterious features of string theory as a
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theory of quantum gravity.

A second remarkable thing has also happened, although we have not

demonstrated it explicitly. As indicated in (6.2.21), a coupling constant

has been determined not as a free parameter, but rather dynamically as

the vacuum expectation of a string field. It is in this sense that string

theory contains no free parameters, and that all parameters such as coupling

constants are determined dynamically.

There are, however, a number of drawbacks to this bosonic string the-

ory. First, it contains a tachyonic state. We must somehow find a way

to eliminate this. Second, all string excitations are spacetime bosons (i.e.,

they have integer spin). We must find a way to obtain spacetime fermions.

Third, there are no massless spin-one states (which we would wish to as-

sociate with gauge fields). Thus, there are no gauge symmetries. It is

for these reasons that we shall go on to consider more complicated string

theories.

And finally, there is another major drawback that we need to be aware

of. Although it is compelling that the string coupling gstring is in principle

determined dynamically, as the vacuum expectation value of the dilaton

scalar field, in practice we do not understand how to calculate the poten-

tial of the dilaton field and thereby deduce its vacuum expectation value.

In the bosonic string we are considering here, the dilaton potential V (φ) is

actually divergent for all φ < ∞, and so this question cannot be meaning-

fully addressed. However, even in the more realistic string theories to be

discussed, this potential is either completely flat (as happens in a super-

symmetric context), or generally takes a shape that sends 〈φ〉 → ∞. This

is the famous dilaton runaway problem. Solving this problem is perhaps

one of the most important (unsolved) problems in string phenomenology.

How can we remedy these features? One possibility is prompted by the

appearance of the tachyon. In ordinary quantum field theory, the existence

of a tachyon (a state with a negative mass-squared) signals that the vacuum

has been misidentified (as in the Higgs mechanism); the theory then “rolls”

to a different vacuum configuration in which the tachyon is eliminated. So

it is natural to speculate that perhaps the bosonic string theory also “rolls”

to a new vacuum in such a way that the tachyon is no longer present and the

dilaton is stabilized. Perhaps fermions and gauge fields might also appear

in this new vacuum, as desired. However, as we have already indicated, it

is not known how the bosonic string behaves in this context. We do not

know if there exists a new (“stable”) vacuum to roll to, and if so, what

its properties might be. Of course, knowing the potential V (φ) would be
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extremely useful, yet as we indicated this potential is näıvely divergent

and therefore requires some knowledge of the non-perturbative structure of

string theory. So (at least for the time being) this option does not appear

promising.

A second possibility, then, is simply to abandon the bosonic string and

attempt to construct a new string theory altogether. And this is what we

shall now do.

6.3. Lecture #3: Neutrinos are fermions: The superstring

As we saw in the last lecture, the bosonic string has two glaring failures: it

contains a tachyon, and it does not give rise to spacetime fermions. Both

of these features are troubling, especially since the announced goal of these

lectures is to derive a neutrino from string theory, and we know that the

neutrino is a fermionic object. We therefore seek to construct a new string

theory which can give rise to excitations with half-integer spins.

6.3.1. The action

We have already seen that string theories are defined by their two-

dimensional worldsheet actions. Thus, in order to construct a new string

theory, we must construct a new worldsheet action. At the very least, this

action should contain that of the bosonic string, since we still wish to re-

tain the spacetime interpretatation that we had previously. Thus, our only

option is to introduce additional worldsheet fields into the action:

S = − 1

4πα′

∫

d2σ (∂αX
µ∂αXµ + ... ) . (6.3.1)

What new fields can we add? If our goal is to produce spacetime

fermions, a natural guess would be to add worldsheet fermions! These would

complement the worldsheet bosonic fields Xµ that are already present. For

the moment, let us denote such fermionic fields schematically as ψ. We

would then attempt to consider an action of the form

S = − 1

4πα′

∫

d2σ
(

∂αX
µ∂αXµ + ψ̄iρα∂αψ

)

. (6.3.2)

Here ψ(σ1, σ2) represents our two-dimensional fermionic fields, and ρα are

an appropriate set of two-dimensional Dirac matrices (the analogues of the

γµ matrices in four dimensions).

We then face a number of questions. First, how many ψ fields must we

add? Second, what kinds of worldsheet fermions should these be? Should
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they be Dirac fermions, or Majorana fermions, or Majorana-Weyl fermions?

Third, how should these two-dimensional spinors ψ transform under the

(internal) SO(D − 1, 1) spacetime Lorentz symmetry? We already know

that the Xµ fields, for example, transform as vectors under this symmetry.

Note that it is not obvious that the ψ fields should necessarily transform

as spinors under SO(D − 1, 1) and carry a spacetime spinor index. In

particular, all we know thus far is that the ψ fields transform as spinors un-

der worldsheet two-dimensional Lorentz transformations. This does not a

priori give us any information about their spacetime transformation prop-

erties.

There is also another potential worry that appears if we try to add

new worldsheet fields. We have already seen in the bosonic string that

worldsheet conformal invariance was sufficiently powerful a symmetry to

allow us to choose a light-cone gauge and thereby eliminate all negative-

norm states. However, the presence of new worldsheet fields implies the

existence of new quantum excitation modes in the resulting string spectrum,

and some of these new states may also have negative norm. Thus, conformal

symmetry may no longer be sufficient (and indeed would not be sufficient)

to allow us to eliminate these states as well.

It turns out that all of these questions have a common answer: we can

impose an extra symmetry beyond simple worldsheet conformal invariance.

Indeed, the extra symmetry that we shall impose is nothing but worldsheet

(i.e., two-dimensional) supersymmetry. Specifically, we shall require that

the ψ fields be the two-dimensional superpartners of the X fields, so that

the resulting action has a manifest worldsheet (two-dimensional) supersym-

metry.∗ This new theory will be called the superstring.

∗We remark that this is only one possible choice, and will ultimately lead us to the so-
called Ramond/Neveu-Schwarz (RNS) formalism. Another possible choice would be to
demand spacetime supersymmetry, and to imagine that the ψ fields are the Grassmann
coordinates θ of a super-spacetime. This possibility would then lead to the so-called
Green-Schwarz (GS) formalism. It turns out that these two formalisms are ultimately
equivalent, however, and both provide suitable descriptions of the resulting superstring
theory. This equivalence is possible because the RNS superstring ultimately also has
spacetime supersymmetry (as we shall discover below). In these lectures, however, we
shall restrict our attention to the RNS formulation in which the ψ fields are worldsheet

(rather than spacetime) superpartners of the Xµ fields. Aside from being more useful for
string phenomenology, the RNS formalism has the philosophical advantage that it treats
the string as the fundamental object, with the spacetime structure emerging as a derived

consequence. The RNS formalism thus reinforces one of the central themes of these
lectures, namely that we define a string theory by its worldsheet properties alone, and
then deduce the spacetime effects of these properties as consequences. The GS formalism,
on the other hand, has the benefit of being manifestly spacetime supersymmetric from
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It is important to stress that this supersymmetry that we will be dis-

cussing is not the spacetime supersymmetry that might be seen in the

next round of accelerator experiments. Instead, this is a worldsheet super-

symmetry which stems directly from the worldsheet interpretation of the

original Polyakov action (6.2.4), and which relates the worldsheet bosons

X to worldsheet fermions ψ via a worldsheet supercurrent J .

Imposing this worldsheet supersymmetry then answers all of the ques-

tions we previously raised. How many ψ fields? The answer is D, one

for each boson Xµ. What kind of ψ spinor? The answer is a Majo-

rana (two-component) spinor. How does the ψ field transform under the

SO(D− 1, 1) spacetime Lorentz symmetry? The answer is that the ψ field

must transform as a vector under the Lorentz symmetry, since the Xµ field

(for which it is the worldsheet superpartner) also transforms as a vector. In

other words, the worldsheet supersymmetry commutes with the spacetime

Lorentz symmetry, and thus does not change the Lorentz index structure.

Thus, the ψ fields transform as spacetime vectors, and carry a spacetime

vector index: ψµ(σ1, σ2).

This last point may initially seem confusing, so we reiterate: the ψ

fields are worldsheet fermions, but spacetime bosons! They transform as

spinors under worldsheet Lorentz transformations, but as vectors under the

spacetime Lorentz transformations.

Given this, we can now explicitly write down the superstring action:

S = − 1

4πα′

∫

d2σ
(

∂αX
µ∂αXµ − iψ̄µρ

α∂αψ
µ
)

. (6.3.3)

Our worldsheet fields are Xµ(σ1, σ2) and ψµ(σ1, σ2), and the µ index (with

µ = 0, 1, 2, ..., D−1) is a vector index with respect to the internal symmetry

SO(D − 1, 1). From the worldsheet perspective, each Xµ is a scalar field

(containing one component), while each ψµ is a two-component spinor. The

ρα are two-dimensional Dirac matrices satisfying the two-dimensional Clif-

ford algebra {ρα, ρβ} = −2ηαβ, and ψ̄ ≡ ψ†ρ0. One can then show that the

action (6.3.3) is invariant under the worldsheet supersymmetry transforma-

tions δXµ = ǭψµ, δψµ = −iραǫ∂αXµ, where ǫ is a constant anticommuting

spinor that parametrizes the “magnitude” of the supersymmetry transfor-

mation. The corresponding generator of this worldsheet supersymmetry

transformation is the worldsheet supercurrent Jα = 1
2ρ
βραψ

µ∂βXµ.

It is convenient to choose a particular Weyl (chiral) representation for

the very beginning.
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the two-dimensional ρα matrices:

ρ0 =

(

0 −i
i 0

)

, ρ1 =

(

0 i

i 0

)

=⇒ ρ0ρ1 =

(

1 0

0 −1

)

. (6.3.4)

Here the product ρ0ρ1 plays the role of the chirality operator (the analogue

of γ5 in four dimensions), and thus in this basis we can identify the upper

and lower components of the two-component Majorana spinor ψ as being

left-moving and right-moving respectively. Our worldsheet action (6.3.3)

then decomposes into the form

S = − 1

4πα′

∫

d2σ (∂αX
µ∂αXµ − ψµR∂−ψ

µ
R − ψµL∂+ψ

µ
L) (6.3.5)

where ∂± are derivatives with respect to the left- and right-moving world-

sheet coordinates σ1 ± σ2. The worldsheet content of this theory there-

fore consists of D left-moving worldsheet bosons XL, D right-moving

worldsheet bosons XR, D left-moving worldsheet Majorana-Weyl (one-

component) fermions ψL, and D right-moving worldsheet Majorana-Weyl

(one-component) fermions ψR. There are two worldsheet supercurrents in

this theory:

JL = ψµL ∂+X
µ
L , JR = ψµR ∂−X

µ
R . (6.3.6)

Note that our original goal in constructing the superstring had been to

obtain spacetime fermions. However, it may seem from the above that we

have failed in this regard, since we have only introduced new fields ψ which

themselves are spacetime vectors. How then are we to obtain spacetime

fermions? It turns out that this will happen in a surprising way.

Let us proceed to analyze this string following the same steps as we

used for the bosonic string. First, we see that our worldsheet symmetry

has been enlarged: rather than simply have conformal invariance, we now

have conformal invariance plus worldsheet supersymmetry. Together, this

is called superconformal invariance, which is a much larger symmetry than

conformal invariance alone.

This enlargement of the worldsheet symmetry changes many of the fea-

tures of the resulting string. The most profound is the value of the space-

time dimension D. Recall from our discussion of the bosonic string that as-

sociated with each worldsheet symmetry there is a particular “background”

conformal (central charge) anomaly, and that it is necessary to choose a suf-

ficient number of worldsheet fields so as to cancel this anomaly and ensure

that conformal invariance is maintained even at the quantum level. The

same argument applies here as well, except that
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Great Leap #5: The “background” conformal anomaly

associated with superconformal invariance is not c = −26

but rather c = −15. Likewise, the conformal anomaly

contribution from each worldsheet Majorana fermion is c =

1/2.

We can understand the origin of the “background” conformal anomaly c =

−15 as follows. Just as in the bosonic string, a certain contribution c =

−26 is attributable to the conformal ghosts resulting from conformal gauge

fixing. The new feature here is that we now have an additional contribution

+11 which is attributable to the worldsheet superpartners of these ghosts.

Together, this produces a background anomaly c = −15. What this means

is that we must choose the number D of worldsheet bosons and fermions

such that this “background” anomaly is cancelled. We have already seen

that the anomaly contribution from each worldsheet boson Xµ is cX = 1.

Since the anomaly contribution from each Majorana fermion is cψ = 1/2,

we must satisfy

D (1 + 1
2 ) − 15 = 0 =⇒ D = 10 . (6.3.7)

Thus, we see that the critical dimension of the superstring is D = 10 rather

than D = 26. Moreover, just as for the bosonic string, the superconformal

symmetry of the superstring worldsheet action again allows us to choose a

light-cone gauge in which only eight transverse bosons and eight transverse

fermions represent the truly physical propagating worldsheet fields.

6.3.2. Quantizing the superstring

Let us now quantize the superstring, just as we did for the bosonic string.

The boundary conditions (6.2.6) for the Xµ fields remain valid even for the

superstring, since the Xµ continue to have the interpretation of spacetime

coordinates. Therefore the mode-expansions (6.2.9) continue to apply.

The only new feature, then, is the mode-expansion for the fermionic

fields ψµ. However, unlike the bosonic fields Xµ which must be periodic

because of their interpretation as spacetime coordinates, these fermionic

fields ψµ do not have any immediate interpretation in spacetime. Therefore,

the only boundary conditions that might be imposed on these fields are

those that are required directly from the symmetries of the action. In

particular, we must choose boundary conditions for the ψµ fields so as to

maintain the single-valuedness of the action as we traverse the closed string

(i.e., as σ1 → σ1 +π), and so as to maintain the worldsheet supersymmetry
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of the action (whose algebra includes a requirement that the supercurrent

square to the Hamiltonian, i.e., J · J ∼ H). It turns out that are only

two choices of boundary conditions that satisfy these requirements. One

possibility is that the ψµ fields are periodic under σ1 → σ1 + π:

Ramond: ψµ(σ1 + π, σ2) = + ψµ(σ1, σ2) . (6.3.8)

Such periodic boundary conditions are typically called “Ramond” (R)

boundary conditions, after P. Ramond (who introduced these fermionic

boundary conditions in 1971). The second possibility is that the ψµ fields

are anti-periodic under σ1 → σ1 + π:

Neveu-Schwarz: ψµ(σ1 + π, σ2) = − ψµ(σ1, σ2) . (6.3.9)

Such periodic boundary conditions are typically called “Neveu-Schwarz”

(NS) boundary conditions, after A. Neveu and J. Schwarz (who introduced

these fermionic boundary conditions in 1971). As we shall see in Lecture

#4, both of these boundary conditions are ultimately required for the self-

consistency of the superstring.

In the case of periodic (Ramond) boundary conditions, the mode-

expansion of the ψµ field resembles that of the Xµ field:

Ramond: ψµL(σ1 + σ2) =
∑

n∈ZZ

bµn e
−2in(σ1+σ2)

ψµR(σ1 − σ2) =
∑

n∈ZZ

b̃µn e
+2in(σ1−σ2) . (6.3.10)

Here bµn, b̃
µ
n are the (fermionic) creation and annihilation operators, satisfy-

ing the anti-commutation relations

{bµm, bνn} = ηµνδm+n (6.3.11)

where we recall the hermiticity condition bµ−n = (bµn)
†. The same relations

hold for the right-moving modes as well. This hermiticity condition follows

from the fact that the ψ fields are Majorana (i.e., real) fields. Note that

unlike the bosonic mode-expansion (6.2.9), we have joined the zero-modes

together with the excited modes in (6.3.10).† There is also no “center-of-

mass” term in the mode-expansion (a fermionic analogue of xµ) because the

ψ fields are Grassmann variables and thus lack a classical limit. Finally,

also note that unlike the bosonic αµn modes, which are rescaled relative to

†We are cheating slightly here, since the treatment of Ramond zero-modes for Majorana
worldsheet fermions is actually quite subtle. In some sense, each Majorana fermion has
only “half” a zero-mode. We will provide a rigorous discussion of this fact in Lecture #5.
In the meantime, it will suffice to ignore this subtlety.
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the usual harmonic oscillator modes by powers of the mode frequency n,

the fermionic bµn modes are defined without this rescaling and hence satisfy

the usual harmonic-oscillator commutation relations (6.3.11) directly. This

too is traditional in string theory.

In the case of anti-periodic (Neveu-Schwarz) boundary conditions, the

mode-expansion of the ψµ field involves half-integer rather than integer

modes:

Neveu-Schwarz: ψµL(σ1 + σ2) =
∑

r∈ZZ+1/2

bµr e
−2ir(σ1+σ2)

ψµR(σ1 − σ2) =
∑

r∈ZZ+1/2

b̃µr e
+2ir(σ1−σ2) .(6.3.12)

Once again, bµr , b̃
µ
r are the (fermionic) creation and annihilation operators,

satisfying the anti-commutation relations

{bµr , bνs} = ηµνδr+s (6.3.13)

where we have the hermiticity condition bµ−r = (bµr )
†.

The expressions for the total energy of a given string configuration

now receive contributions from not only the bosonic oscillator modes, as

in (6.2.12), but also the fermionic oscillator modes. These new contribu-

tions are given by

R: L
(osc)
0 =

∞
∑

n=0

n bµ−nbnµ

NS: L
(osc)
0 =

∞
∑

r=1/2

r bµ−rbrµ , (6.3.14)

with similar expressions for the right-movers.

Finally, we must consider the vacuum energies aL and aR for the su-

perstring. Recall that for the bosonic string, each of the 24 transverse Xµ

fields contributed aX = −1/24, yielding a total of aL = aR = −1. This

contribution from each bosonic field remains the same for the superstring,

so we continue to have aX = −1/24. It therefore only remains to determine

the vacuum-energy contributions from the worldsheet Majorana fermions,

and it is found that

Great Leap #6: Each Ramond fermion contributes

vacuum energy aψ = +1/24, whereas each Neveu-Schwarz

fermion contributes vacuum energy aψ = −1/48.
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We thus see that like the bosons, the Neveu-Schwarz fermions contribute

negative vacuum energies, while Ramond fermions contribute positive vac-

uum energies.

Given these mode-expansions and commutation relations, it is instruc-

tive to consider the Fock space of an individual Ramond (R) or Neveu-

Schwarz (NS) fermion. It turns out to be simplest to consider the Fock

space of an individual (left- or right-moving) NS fermion first. The two

lowest-lying states are

vacuum: |0〉 L
(osc)
0 = 0

first-excited state: b−1/2|0〉 L
(osc)
0 = 1/2 . (6.3.15)

Note that relative to the vacuum, all further excited states are reached

through only half-integer excitations. Also note that the vacuum of the NS

Fock space is unique, just like that of the bosons Xµ. What this means is

that from the spacetime perspective, the vacuum is spinless (and hence a

spacetime bosonic state), and that all subsequent excitations of the vacuum

are also spacetime bosons. Recall, in this connection, that the fermion mode

operators b are only fermionic from the worldsheet perspective; they are still

bosonic operators (just like the fields ψµ themselves) relative to spacetime

Lorentz symmetries.

Let us now consider the corresponding Fock space for the Ramond

fermions with periodic boundary conditions. Once again, we have a tower

of states

vacuum: |0〉 L
(osc)
0 = 0

first-excited state: b−1|0〉 L
(osc)
0 = 1 (6.3.16)

which now continues upwards through integer, rather than half-integer,

steps. However, in this case it is important to observe that we also have a

zero-mode in the theory. The existence of this zero-mode means that it is

possible to excite this zero-mode without increasing the overall energy of

the state. We therefore have the additional tower of states

vacuum: b†0|0〉 L
(osc)
0 = 0

first-excited state: b−1b
†
0|0〉 L

(osc)
0 = 1 . (6.3.17)

(Note that b0 and b†0 are equivalant.) In other words, combining (6.3.16)

and (6.3.17), we see that the Ramond vacuum consists of two degenerate

states ,

|0〉 and b†0|0〉 , (6.3.18)
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and that all further excitations maintain this two-fold degeneracy.

How can we interpret this two-fold degeneracy of the Ramond vacuum?

It may seem, at first, that both of the states in (6.3.18) cannot be considered

as the true vacuum, because the second state in (6.3.18) appears to be

realized as a zero-mode excitation of the first. However, let us define the

first state in (6.3.18) as |V0〉 and let us also define |V1〉 ≡
√

2b†0|0〉, which is

a rescaling of the second state in (6.3.18). Then using (6.3.11), it is easy to

show that

|V1〉 =
√

2b†0|V0〉 , |V0〉 =
√

2b†0|V1〉 . (6.3.19)

Thus, we see that neither state in (6.3.18) is more fundamental than the

other, and there exists an unbroken symmetry between them — they are

realized as zero-mode excitations of each other. The interpretation of this

fact is that the true Ramond vacuum state is a two-component object,

a spacetime spinor! It then follows that all of the excited states in the

Ramond spectrum are also spacetime spinors, since they are realized as

non-zero-mode excitations of a spinorial ground state.

Of course, the above discussion is only suggestive, since we have not

proven that these two vacuum states actually form a Lorentz spinor rep-

resentation with respect to the spacetime Lorentz algebra. However, it is

easy to see that this is indeed the case. Observe from (6.3.11) that the zero-

modes satisfy the algebra {bµ0 , bν0} = ηµν . Thus, if we define Γµ ≡
√

2ibµ0 ,

then we see that {Γµ,Γν} = −2ηµν , which is nothing but the spacetime

Clifford algebra. In other words, the zero-modes act as spinorial gamma-

matrices. This implies that all states built upon such a vacuum state will

transform in spinor representations of the spacetime Lorentz symmetry

group SO(D − 1, 1), and hence will be spacetime fermions.

This is a remarkable result. Even though we have introduced worldsheet

ψµ fields which are spacetime bosons and which carry a spacetime Lorentz

vector index, the algebra of zero-modes in the case of Ramond boundary

conditions has managed to change these vector indices into spinor indices

and thereby produce spacetime fermions. Of course, this is completely

analogous to what happens in the usual four-dimensional Dirac equation,

where the γµ matrices are matrices in a spinor space but nevertheless carry

vector indices. Thus, we see that by choosing Ramond boundary conditions

for worldsheet fermions, string theory affords us with the same possibility.

We therefore now see that string theory can indeed give rise to spacetime

fermions: while excitations of worldsheet Neveu-Schwarz fermions give rise

to spacetime bosons, excitations of worldsheet Ramond fermions give rise
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to spacetime fermions.

6.4. Lecture #4: Some famous superstrings

The next step is to determine the spectrum of the full superstring, just as

we did for the bosonic string. However, the presence of two possibilities

(Neveu-Schwarz and Ramond) for the modings of the fermions introduces

several new complications relative to the bosonic string, and enables us to

make different choices for what kind of superstring we wish to construct.

These different choices are typically called different “string models”, and so

we are finally in a position to begin to discuss string model-building. That

is the subject of the present lecture.

6.4.1. String sectors

Recall from the previous lecture that in light-cone gauge, the worldsheet

field content of the ten-dimensional superstring consists of eight right-

moving bosons XR, eight right-moving Majorana-Weyl (one-component)

fermions ψR, and a similar set of left-moving fields XL and ψL. The bosons

XL and XR must have periodic (integer) modings because of their inter-

pretation as spacetime coordinates, but their worldsheet fermionic super-

partners ψL and ψR can have either Ramond (periodic, integer) or Neveu-

Schwarz (anti-periodic, half-integer) modings. The question then imme-

diately arises: What rules govern the possible self-consistent choices of

fermion modings? A priori , the appearance of 16 distinct fermions would

seem to lead to 216 different choices.

It is easy to see that not all possibilities are allowed, however. One quick

way to see this is to realize that if some of the right-moving fermions had

different periodicities than other right-moving fermions, then these different

periodicities would necessarily break spacetime Lorentz invariance because

these fermions carry a spacetime vector index µ. A similar situation would

also hold for the left-moving fermions. This would then imply that all of

the right-moving fermions should have the same periodicity as each other,

and that all of the left-moving fermions should have the same periodicity

as each other (though not necessarily the same as that of the right-moving

fermions). However, this argument is not really satisfactory because we

do not necessarily wish to preserve the full ten-dimensional Lorentz in-

variance (or even its eight-dimensional transverse subgroup); after all, our

sole phenomenological requirement is that four -dimensional Lorentz invari-
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ance must be maintained. Moreover, it goes against the spirit of string

theory (as we have been presenting it) that we should demand a certain

phenomenological property of the resulting spacetime physics when formu-

lating our worldsheet theory. In string theory the spacetime physics is a

consequence of the worldsheet physics, and we would ultimately like to base

our worldsheet choices directly on worldsheet symmetries.

Fortunately, it is easy to find a worldsheet argument that leads to the

same constraint. Recall that the worldsheet symmetry that we must main-

tain is superconformal invariance. The worldsheet supersymmetry that

makes up superconformal invariance is generated by the two worldsheet

supercurrents given in (6.3.6). Because these two supercurrents are also

worldsheet fermionic, they may also be either periodic or anti-periodic as

we traverse the closed string. Indeed, each individual term ψµ∂Xµ in these

supercurrents will have the periodicity property of the fermion ψµ. How-

ever, in order for each of these supercurrents JR and JL to have a unique,

well-defined periodicity as we traverse the closed string, we see that it is

necessary that all right-moving fermions have the same periodicity as each

other, and that all left-moving fermions have the same periodicity as each

other. This is required in order to preserve worldsheet supersymmetry.

Thus, we have our first constraints on fermion modings:

• All right-moving fermions ψµR must have the same periodicity as

each other, either Ramond or Neveu-Schwarz.

• All left-moving fermions ψµL must have the same periodicity as each

other, either Ramond or Neveu-Schwarz.

Note that there is no requirement that the right- and left-moving periodic-

ities be the same.

# ψi=1,...,8
R ψi=1,...,8

L aR aL
1 NS NS −1/2 −1/2

2 R R 0 0

3 R NS 0 −1/2

4 NS R −1/2 0

Given these constraints, we see that we are left with four distinct pe-

riodicity choices for our sixteen Majorana-Weyl worldsheet fermions, as

shown in Table 6.1. Each individual choice is called a sector or spin struc-

ture of the superstring, so we see that the ten-dimensional superstring has
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four possible sectors. For future convenience, these sectors have been num-

bered in Table 6.1. We have also indicated the corresponding right- and

left-moving vacuum energies of these sectors. Recall from the previous lec-

ture (in particular, Great Leap #6) that the vacuum-energy contribution of

each Ramond fermion is +1/24, while that of each Neveu-Schwarz fermion

is −1/48 and that of each worldsheet boson is −1/24. Therefore, generally

assuming nNS Neveu-Schwarz fermions and nR Ramond fermions, we can

add these individual contributions to find

a = − 1

24

(

8 − nR + 1
2nNS

)

= − nNS

16
. (6.4.1)

The second equality results from setting nR = 8 − nNS. Of course, as

discussed above, in the ten-dimensional superstring we are restricted to the

cases nNS = 0, 8 for both the right- and left-moving fermions.

6.4.2. Modular invariance and GSO projections

The next question that arises is whether we are free to pick any one of these

sectors to construct our superstring theory, or whether we must consider

all of them together, superposing the spectrum from each sector separately

in order to construct the full superstring spectrum. What rules govern the

choices of sectors?

Ultimately, it turns out that a special form of conformal invariance

known as modular invariance will give us the answer. In keeping with the

spirit of these lectures, we will not be able to provide a proper mathematical

discussion of modular invariance. (Indeed, doing so would require a pre-

liminary discussion of string partition functions and the modular group.)

However, we can discuss the relevance and implications of modular invari-

ance at a conceptual level.

Recall from Lecture #2 that our string actions always have a certain

symmetry known as conformal invariance, which reflects the fact that the

action should be invariant under local reparametrizations and rescalings

of the coordinates (σ1, σ2) that parametrize the string worldsheet. For

tree-level string interactions, demanding this local symmetry is sufficient to

ensure that the resulting physics is indeed invariant under arbitrary coor-

dinate reparametrizations. This is because any tree-level string interaction

has the topology of a sphere (a genus-zero surface, with no handles), and on

a sphere it can be shown that any possible net coordinate reparametrization

can be generated or “built up” in small steps as the cumulative effect of

small, local coordinate reparametrizations. Geometrically, this is equivalent
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to saying that any closed loop on the surface of a sphere can be continuously

shrunk to a point, as illustrated in Fig. 6.7(a), by sliding the loop along the

surface of the sphere towards one side. Thus, demanding invariance under

local coordinate reparametrizations (i.e., conformal invariance) by itself is

sufficient to guarantee consistency for tree-level string amplitudes.

However, this situation changes drastically if we now consider one-loop

amplitudes. As discussed in Lecture #1, these amplitudes have the world-

sheet topology of a torus (a genus-one surface), and we see from Fig. 6.7(b)

that on a torus there exist two types of closed loops that cannot be contin-

uously shrunk to a point. Such loops are said to be non-contractible, which

is indeed the defining property of such higher-genus surfaces. The presence

of these non-contractible loops means that for torus diagrams, there exist

possible coordinate reparametrizations that cannot be built up from local

coordinate reparametrizations alone. Indeed, these reparametrizations non-

trivially involve “large”, discrete mappings around these non-contractible

loops. Thus, we see that demanding conformal invariance alone is not suf-

ficient to ensure that one-loop string amplitudes are truly invariant under

worldsheet coordinate reparametrizations: we must also demand an invari-

ance under these “large” discrete mappings around these non-contractible

loops. This additional global invariance is called “modular invariance”, and

just like conformal invariance, it too stems from our need to maintain the

overall invariance of the string under reparametrizations and rescalings of

the worldsheet coordinates.

One might wonder, at this stage, why we are suddenly worrying about

modular invariance, whereas we did not need to consider modular invari-

ance in Lecture #2 when we discussed the bosonic string. The truth of the

matter is that we must always consider modular invariance in addition to

conformal invariance, regardless of the type of (closed) string we are dis-

cussing. However, in the simple case of the 26-dimensional bosonic string,

it turns out that all amplitudes are trivially modular-invariant, so we did

not need to make recourse to modular invariance in order to distinguish

between different possibilities. However, for the superstring (and partic-

ularly for the heterotic string to be discussed later), the possible sector

choices become quite numerous, and it turns out that modular invariance

is the powerful tool by which we are able to narrow down the self-consistent

possibilities.

What, then, are the effects of modular invariance? It turns out that

at the level of string model-building, modular invariance has two primary

effects:
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• it forces us to consider only certain selected sets or combinations

of underlying sectors, and

• it produces new constraints (beyond the level-matching constraint

L0 = L̄0) that govern which Fock-space excitations are allowed in

each sector.

These new constraints are called GSO constraints, after F. Gliozzi,

J. Scherk, and D. Olive who first imposed some of these constraints in 1977.

The important point is that these conditions stem directly from modular

invariance, and thus they follow from the worldsheet physics of the string

and do not represent any additional arbitrary input. We will provide many

explicit examples of such combinations and constraints shortly.

In order to construct a fully consistent string model, therefore, our pro-

cedure is as follows. First, we must determine which are the allowed sectors

that need to be considered as part of our set. For each of these sectors in

our allowed set, we then determine the corresponding Fock space of physical

states by applying not only the usual level-matching constraint, but also

the GSO constraints appropriate for that sector. In this way each under-

lying sector then gives rise to a different Fock space of states, and the full

Hilbert space of states for the full string theory (i.e., for the resulting string

“model”) is nothing but the direct sum of these different Fock spaces cor-

responding to each of the underlying sectors in the specified set. This then

yields a fully self-consistent (and in particular, modular-invariant) theory.

This is an important point, so it is worth repeating: the full Hilbert

space of string states is given by the direct sum of the different Fock

spaces corresponding to different underlying boundary conditions for world-

sheet fields. In order to better understand this fact, an analogy with QCD

may be useful. Recall that Yang-Mills quantum field theory contains non-

perturbative instanton solutions, and therefore one can imagine doing quan-

tum field theory in an n-instanton background |n〉. Of course, as we know,

the full vacuum state of QCD is not composed of any one of these |n〉
vacua by itself, but rather by an appropriately weighted combination of

these vacua:

|θ〉 =
∑

n

einθ |n〉 . (6.4.2)

This is the famous θ-vacuum of QCD. The situation that we now face in

string theory is somewhat analogous. The fact that the string worldsheet

fermions can have different boundary conditions (thereby giving rise to dif-

ferent sectors) is in some sense analogous to the fact that QCD can have
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different instanton backgrounds. Indeed, each underlying string sector is

analogous to a different n-instanton vacuum state |n〉, and the different

“combinations of sectors” that we are now being forced to consider are

analogous to the different QCD θ-vacua. In this sense, then, each different

“string model” that we will be constructing can be viewed as a different

θ-vacuum of string theory! Of course, this analogy with the QCD θ-vacuum

can take us only so far. One important difference is that whereas the θ-

vacuum necessarily involves all of the |n〉 states regardless of the value of

θ, in string theory our “vacuum” may consist of more complicated combi-

nations of sectors which may or may not include all possible sectors. In

fact, the more sectors that are included in our “combination of sectors”,

the more GSO constraints there are for each sector. But the important

lesson that emerges from all of this is that no single sector by itself forms a

consistent string vacuum; rather, we must select an appropriate combina-

tion of sectors and add together their corresponding Fock spaces in order

to produce the fully self-consistent string model.

In Lecture #7, we shall provide an explicit set of rules which will en-

able us to quickly determine the appropriate sector combinations and GSO

constraints that can be chosen in order to yield self-consistent theories.

For the time being, however, we shall defer a discussion of these rules and

proceed directly with the construction of actual string models in order to

deduce their physical properties. Therefore, even though we shall simply

assert certain sector combinations and GSO projections to be required by

modular invariance, we stress that all of these features can (and ultimately

will) be derived using the rules to be presented in Lecture #7.

6.4.3. Ten-dimensional superstring models

In the case of the ten-dimensional superstring, we have already seen that

the four possible sectors are listed in Table 6.1. It then only remains to

determine the particular sector combinations and GSO constraints that are

required by modular invariance. In this case, it turns out that there are

only two possible combinations or sets of sectors that can be considered:

• we consider the contributions from only Sectors #1 and #2, or

• we consider the contributions from all Sectors #1 through #4.

Moreover, for each of the above cases, it turns out that there are two

possible choices of GSO projections that may be imposed in each sector.

Thus, combining all of these possibilities, we see that there are four distinct
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possible superstring “models” that can be constructed in ten dimensions.

We shall therefore now turn to a construction of these models.

6.4.3.1. The Type 0 strings

Let us begin by considering the first option, taking our set of sectors to

consist only of Sectors #1 and #2. For each of these sectors, we need to

determine the appropriate GSO constraints that must be applied in addi-

tion to the usual level-matching constraint. In order to write down these

GSO constraints, let us first recall that for a given left-moving worldsheet

fermion (with either Ramond or Neveu-Schwarz boundary conditions), the

corresponding number operator is defined by

R : N (i) =

∞
∑

n=0

bi−nbni

NS : N (i) =

∞
∑

r=1/2

bi−rbri . (6.4.3)

Here the index i = 1, ..., 8 labels the individual fermion. For right-moving

fermions, the analogous number operators N̄ (i) are constructed using the

right-moving mode operators b̃n, b̃r. Let us also define NL and NR respec-

tively as the total left- and right-moving number operators, i.e.,

NL ≡
8

∑

i=1

N (i) , NR ≡
8

∑

i=1

N̄ (i) . (6.4.4)

Note that these number operators are defined to include only the contri-

butions of the worldsheet fermions , and in particular do not include the

contributions of the worldsheet bosons. It then turns out (and we shall

see in Lecture #7) that if we choose our set of sectors to consist only of

Sectors #1 and #2, then the appropriate GSO constraints in each sector

are as follows:

Sector #1: NL −NR = even

Sector #2: NL −NR =

{

odd

even

}

. (6.4.5)

In the second line, we have used a brace notation to indicate a further

choice: we can choose to impose either the ‘odd’ constraint, or the ‘even’

constraint. As we shall see, this is a residual choice that is not fixed by

modular invariance (or by any other worldsheet symmetry), leading to two
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equally valid possibilities. Thus, we see that if we choose our set of sectors

to consist of only Sectors #1 and #2, then this leads to two different string

models depending on our subsequent choice of which GSO constraint we

choose to impose in (6.4.5).

Let us now determine the spectra of these two models, beginning with

the states that arise from Sector #1. Note that in this sector, both models

have the same states (because both models have the same GSO constraint

for Sector #1). As with the bosonic string, our procedure is to consider

all possible excitations of the worldsheet fields (in this case, the worldsheet

fermions as well as the worldsheet bosons). These excitations are subject

to the level-matching constraint L0 = L̄0 (which ensures that the total

bosonic and fermionic worldsheet energy is distributed equally between

left- and right-moving excitations) and the GSO constraintNL−NR = even

(which is a constraint on the worldsheet number operators of the worldsheet

fermions only). In general, the mass-shell condition for the superstring is

α′M2 = 2 (L0 + L̄0 + aL + aR) (6.4.6)

where aL and aR are the individual left- and right-moving vacuum energies,

and where L0 and L̄0 include the contributions from not only the worldsheet

bosons, but also the worldsheet fermions. Note from Table 6.1 that the left-

and right-moving vacuum energies in Sector #1 are aL = aR = −1/2.

We see that the tachyonic vacuum state |0〉R ⊗ |0〉L satisfies both con-

straints, and thus it remains in the spectrum. However, unlike the tachyon

in the bosonic string (which has spacetime mass α′M2 = −4), we see

from (6.4.6) that the tachyonic state in the superstring has spacetime mass

α′M2 = −2. This is the result of the smaller (less negative) vacuum energy

of the superstring compared to that of the bosonic string.

Because the vacuum energies in Sector #1 are aL = aR = −1/2, we see

that massless states cannot be obtained by exciting the quantum modes of

worldsheet bosons, for each of these excitations would add a full unit of

energy. Instead, massless states can be obtained only by adding a half-unit

of energy. Fortunately, this is possible in Sector #1 because in this sec-

tor, all worldsheet fermions have Neveu-Schwarz boundary conditions and

therefore have half-integer modings. The first excited states in Sector #1

are therefore

b̃µ−1/2|0〉R ⊗ bν−1/2|0〉L . (6.4.7)

Note that these states satisfy both the level-matching constraint (since

L0 = L̄0 = 1/2) as well as the GSO constraint (since NL = NR = 1).
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The interpretation of these states is precisely the same as in the bosonic

string: these states give us the gravity multiplet, consisting of the graviton

gµν , dilaton φ, and anti-symmetric tensor Bµν . Mathematically, this is

equivalent to the tensor-product rule for Lorentz transverse SO(8) vector

representations:

V8 ⊗ V8 = 1 ⊕ 28 ⊕ 35 (6.4.8)

where V8 is the eight-dimensional vector representation, and where the

1 representation is the spin-zero state, the 28 representation is the spin-

one state, and the 35 representation is the spin-two state. It is indeed a

general principle that all weakly coupled closed strings contain at least these

massless states, and this is a useful cross-check of the GSO constraints.

Let us now turn to the states from Sector #2. Before concerning our-

selves with the implication of the GSO constraints in (6.4.5), let us first

understand the general structure of the states from this sector. In this sec-

tor, the vacuum energy (according to Table 6.1) is (aR, aL) = (0, 0), so we

see immediately that this sector contains no tachyons. Indeed, the ground

state is already massless, so all that will concern us here is the nature of

this ground state. As we discussed at the end of Lecture #3, the left- and

right-moving ground states in this sector are each spacetime spinors since

all worldsheet fermions in this sector have Ramond boundary conditions.

Because the nature of these spinors will be important to us, let us pause to

review some properties of these spinors.

Since we are considering these ten-dimensional strings in light-cone

gauge, the Lorentz group that concerns us here is the transverse (“little”)

Lorentz group SO(8). In general, the groups SO(2n) share a number of

properties. Their smallest representations, of course, are simply the iden-

tity representations. These are singlets, which will be denoted 1. The next

representations are the vector representations, which are (2n)-dimensional,

and which will be denoted V2n. Along with these are the spinor repre-

sentations, which are (2n−1)-dimensional. In general, there are two types

of spinor representations, S and C, the so-called “spinor” and “conjugate

spinor” representations. In the special case of SO(8), the vector, spinor,

and conjugate spinor representations are all eight-dimensional, and will be

denoted V8, S8, and C8 respectively. The distinction between S8 and C8

is one of spacetime chirality, but the choice of which is to be associated

with a given physical chirality is a matter of convention.

The ground state of Sector #2 has the structure

{b̃µ0} |0〉R ⊗ {bν0} |0〉L (6.4.9)
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where the notation {bµ0} (and similarly for the right-movers) indicates that

each of the individual Ramond zero-modes can be either excited or not

excited.

How can we interpret (6.4.9) physically? This issue is actually quite sub-

tle, and we shall not have the space to give a proper discussion. Moreover,

as we have already indicated, we are not giving a fully rigorous treatment

of Ramond zero-modes in these lectures, since our aim is to focus more on

the physics than the formalism. However, it is possible to understand the

appropriate physical interpretation intuitively. First, let us count the num-

ber of states in (6.4.9). A priori , it would seem that we have 216 individual

states, since each Ramond fermion zero-mode can either be excited or not

excited. However, this is not correct because (as we shall discuss more

completely in Lecture #5, and as we have already hinted in the footnote in

Sect. 3.2), one should really count only one zero-mode per pair of Ramond

Majorana-Weyl fermions. Thus, we can imagine that there are only four

independent zero-modes for the right-movers, and four for the left-movers.

Therefore, (6.4.9) consists of only 28 = 128 states.

All combinations of these zero-mode excitations already satisfy the level-

matching constraint (since L0 = L̄0 = 0). Imposing either of the GSO

constraints for Sector #2 in (6.4.5) then reduces the number of allowed

states by a factor of two. Specifically, if we impose the constraint NL −
NR = odd, then we can choose only an even number of right-moving zero-

mode excitations together with an odd number of left-moving zero-mode

excitations, or an odd number of right-moving excitations together with an

even number of left-moving excitations. Choosing the constraintNL−NR =

even has the opposite effect, pairing even numbers of excitations for left-

and right-movers with each other, and likewise pairing odd numbers with

each other.

Interpreting these results is therefore quite simple. As we discussed

at the end of Lecture #3, the left-moving states and right-moving states

are spacetime spinors, and we have already seen that there are two possible

spinors, S8 and C8. At this stage, the names assigned to each are arbitrary,

so we shall now establish the following convention: spinors realized by an

even number of zero-mode excitations will be identified with C8, and those

realized by an odd number of zero-mode excitations will be identified with

S8. Of course, only the relative difference between these two spinors is

physically significant (having the interpretation of spacetime chirality).

Given these definitions, we see that if we choose the first GSO constraint
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NL −NR = odd, the 128 states in (6.4.9) decompose into
(

C̄8 ⊗ S8

)

⊕
(

S̄8 ⊗ C8

)

, (6.4.10)

whereas if we choose the second GSO constraint NL − NR = even, these

states instead decompose into
(

C̄8 ⊗ C8

)

⊕
(

S̄8 ⊗ S8

)

. (6.4.11)

If we wish to further decompose these states into representations of the

Lorentz group, we can use the SO(8) tensor-product relations

S8 ⊗ S8 = 1⊕ 28⊕ 35′

C8 ⊗ C8 = 1⊕ 28⊕ 35′′

S8 ⊗ C8 = V8 ⊕ 56 . (6.4.12)

Here the 28 representation is the anti-symmetric component of the spinor

tensor product (spin-one), while the 35′ and 35′′ representations are the

symmetric components of the spinor tensor product (also spin-one). (These

latter representations are not to be confused with the spin-two 35 graviton

representation in (6.4.8).) Likewise, the 56 is a certain vectorial (spin-one)

higher-dimensional representation.∗ However, for our present purposes it

will be sufficient to think of these states in the tensor-product forms (6.4.10)

and (6.4.11). Note that in each case, the tensor product of two spacetime

fermionic (spinor) states produces a spacetime bosonic state. Thus, just as

in Sector #1, the states emerging in Sector #2 are spacetime bosons.

Thus, summarizing, we see that the spectra of our two resulting super-

string models are as follows. First, from Sector #1, we have the tachyonic

state |0〉R ⊗ |0〉L. In the notation of SO(8) Lorentz representations, this

state may be denoted 1̄ ⊗ 1; this tachyon is a Lorentz singlet. Next, we

have the massless gravity multiplet. In the notation of SO(8) Lorentz rep-

resentations, this state takes the form V̄8 ⊗ V8. Finally, from Sector #2,

we have massless states whose form depends on the particular choice of the

GSO projection. In the first case, we have the states given in (6.4.10), while
∗For the mathematically inclined reader, we can succinctly describe all of these states as
follows. Recall that a given representation is called a p-form if it can be realized as the
totally anti-symmetric combination within the tensor product of p different vector indices
of SO(8), with resulting dimension 8×7×6× ...×(9−p)/p!. Using this language, we see
that singlet states are zero-forms, the 28 representations are two-forms, and the 35

′ and
35

′′ representations are “self-dual” four-forms. (The self-duality condition eliminates
exactly half of the degrees of freedom in the four-form.) Likewise, the V8 state is a
one-form, and the 56 representation is a three-form. These different forms (and the
so-called D-branes whose existence they imply) are important when considering the
non-perturbative structure of these string theories.
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in the second case, we have the states given in (6.4.11). There are then, as

usual, an infinite tower of massive (Planck-scale) states above these.

The string model produced by the first GSO projection is called the

Type 0A string model, and the second is called the Type 0B string model.

Collectively, these are sometimes simply called the Type 0 strings. As

we see, both of these strings are tachyonic, and moreover they contain

only bosonic states. Furthermore, as is evident from (6.4.10) and (6.4.11),

both of these strings are non-chiral. In other words, they are invariant

under the transposition S8 ↔ C8 for the left- and right-movers. These

string theories were first constructed by N. Seiberg and E. Witten in 1985.

Although not relevant for phenomenology, they are currently proving to

have an important role in understanding certain non-perturbative aspects

of non-supersymmetric string theory.

6.4.3.2. The Type II strings

Let us now turn to the second choice outlined at the beginning of Sect. 4.3,

namely the case in which we consider the contributions from all of the

sectors in Table 6.1. This will result in the so-called Type II strings. As

we discussed at the end of Sect. 4.2, it is a general property that the larger

the set of sectors that we consider, the more GSO constraints there are

that must be imposed in each sector. Thus, the introduction of new sectors

generally leads to new GSO constraints in each of the sectors (old and

new), and likewise the introduction of new GSO constraints in a given

sector requires the introduction of entire new sectors to compensate.

It turns out (and we shall see explicitly in Lecture #7) that if we consider

the full set of sectors in Table 6.1, then the appropriate GSO constraints

in each sector are given as follows:

Sector #1: NL −NR = odd , NR = odd

Sector #2: NL −NR =

{

odd

even

}

, NR = odd

Sector #3: NL −NR = even , NR = odd

Sector #4: NL −NR =

{

odd

even

}

, NR = odd . (6.4.13)

Note that in each case where a choice is possible, these choices are corre-

lated: we simultaneously choose either the top lines within all braces, or

the bottom lines. Thus, once again there are two sets of GSO conditions

that can be imposed, resulting in two distinct string models.
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Before proceeding further, it is useful to note the pattern of these GSO

projections. In the case of the Type 0 strings, we considered only Sec-

tors #1 and #2; as shown in Table 6.1, these were the sectors for which

the right-moving fermions were always identical to the left-moving fermions

and shared the same boundary conditions. The corresponding GSO projec-

tions in (6.4.5) likewise did not distinguish between right- and left-moving

fermions. (In this context, note that the GSO projections in (6.4.5) can

equivalently be written with minus signs replaced by plus signs.) Thus, in

some sense, the Type 0 strings are symmetric under exchange of left- and

right-movers. However, for the Type II strings, we have now introduced two

additional sectors (Sectors #3 and #4) whose structure explicitly breaks

this symmetry between left- and right-movers. No longer does each sec-

tor individually exhibit this left/right symmetry. As we see from (6.4.13),

the effect of this breaking is to introduce additional GSO conditions which

mirror this broken symmetry by becoming sensitive to right- or left-moving

number operators by themselves. The technical word for this breaking of

symmetry is “twisting” or “orbifolding”, for by including Sectors #3 and

#4, we see that we have twisted the left-movers relative to the right-movers

by allowing them to have oppositely moded boundary conditions. Thus, the

Type II strings that will result can be viewed as twisted (or orbifolded) ver-

sions of the Type 0 strings. This twisting procedure ultimately serves as

the means by which more and more complicated (and more and more phe-

nomenologically realistic) string models may be constructed, and will be

discussed more fully in Lecture #7.

Given the GSO constraints in (6.4.13), we can proceed to determine the

resulting spectrum just as we did for the Type 0 strings. Let us begin with

Sector #1 (this is often called the “NS-NS sector”). Because the boundary

conditions of the worldsheet fermions are the same in this sector as they

were for the Type 0 strings, the possible states that arise are the same as

they were for the Type 0 strings, and consist of the tachyon |0〉R ⊗ |0〉L as

well as the gravity multiplet (6.4.7). The only difference is that we must now

impose the additional GSO constraint NR = odd. It is immediately clear

that the effect of this new GSO constraint is that the tachyon is projected out

of the spectrum, while the gravity multiplet is retained. Thus, by “twisting”

the Type 0 strings in just this way, we have succeeded in curing one of the

major problems of the bosonic and Type 0 strings, namely the appearance

of tachyons. Moreover, we have done this without eliminating the desirable

gravity multiplet.

Let us now consider the states from Sector #2 (this is often called the
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“Ramond-Ramond” sector). Once again, if we impose only the first GSO

constraint in (6.4.13), we obtain the states in either (6.4.10) or (6.4.11). Im-

posing the additional GSO constraint in (6.4.13) then enables us to project

out half of these states, so that we retain only the states

S̄8 ⊗
{

C8

S8

}

. (6.4.14)

These states are spacetime bosons.

Finally, let us consider the states that arise in the new Sectors #3 and

#4. In Sector #4, the vacuum energy is (aR, aL) = (−1/2, 0). Therefore,

in order to have level-matching (L0 = L̄0), we see that we are immediately

forced to excite a half-unit of energy for the right-movers while not increas-

ing the energy of the left-movers. This is the only way to produce a massless

state. This also ensures that this sector does not give rise to tachyons. For-

tunately, since the right-moving fermions have Neveu-Schwarz boundary

conditions in this sector, these fermions have half-integer modings, and

thus by exciting their lowest modes we can indeed introduce a half-unit

of energy. The left-moving fermions have Ramond boundary conditions in

this sector, and hence their ground state is the Ramond zero-mode state.

The massless states in Sector #4 therefore take the form

b̃µ−1/2 |0〉R ⊗ {bν0} |0〉L . (6.4.15)

At this stage, of course, these states satisfy only the level-matching con-

straint. Imposing the GSO constraints then leaves us with the state in

which we excite only an even (or odd) number of left-moving Ramond zero

modes.

How can we interpret this state? First, we notice that this state is a

spacetime fermion because it results from tensoring a right-moving Neveu-

Schwarz state with a left-moving Ramond state. Thus, we now have a

string theory that contains spacetime fermions! This is yet another benefit

of performing the “twist” that takes us from the Type 0 strings to the

Type II strings. However, let us examine this state a bit more closely.

Clearly, it has the Lorentz structure

V8 ⊗
{

C8

S8

}

(6.4.16)

where we have retained the spinor-labelling conventions that we employed

for the Type 0 strings. The relevant tensor-product decompositions in this
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case are given by

V8 ⊗ C8 = S8 ⊕ 56′

V8 ⊗ S8 = C8 ⊕ 56′′ (6.4.17)

where the S8 and C8 representations are spin-1/2 and where the 56′ and

56′′ representations are spin-3/2. Thus, we see that the Type II strings

contain a massless, spin-3/2 object! Just as a massless spin-two object

satisfies the Einstein field equations and must be interpreted as the graviton,

a massless spin-3/2 object must be interpreted as a gravitino — i.e., a

superpartner of the graviton. This implies that this string not only gives rise

to spacetime bosons and fermions, but actually gives rise a spectrum which

exhibits spacetime supersymmetry! This is yet another phenomenologically

compelling feature.

Finally, let us now consider Sector #3. This sector has vacuum energies

(aR, aL) = (0,−1/2), so now we must excite right-moving zero-modes and

left-moving bµ−1/2 modes. This then leads to states of the form

{b̃µ0} |0〉R ⊗ bν−1/2 |0〉L , (6.4.18)

and imposing the GSO projections results in states with the Lorentz struc-

ture S̄8 ⊗ V8. Once again, this also contains a gravitino!

So what do we have in the end? The first choice of GSO projections re-

sults in the so-called Type IIA string, while the second choice results in the

Type IIB string. Both of these strings are tachyon-free, and their spectra

contain both bosons and fermions. Moreover, these strings exhibit space-

time supersymmetry. This is most easily seen in the following suggestive

way. Let us collect together the states from all four sectors, retaining our

Lorentz-structure tensor-product notation:

V̄8 ⊗ V8 , S̄8 ⊗
{

C8

S8

}

, V̄8 ⊗
{

C8

S8

}

, S̄8 ⊗ V8 . (6.4.19)

Together, this collection of states can be written in the factorized form

(

V̄8 ⊕ S̄8

)

⊗
(

V8 ⊕
{

C8

S8

})

. (6.4.20)

We thus see that there are two spacetime supersymmetries exhibited in this

massless spectrum: the first exchanges V̄8 ↔ S̄8 amongst the right-movers,

while the second exchanges

V8 ↔
{

C8

S8

}

(6.4.21)
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amongst the left-movers. Thus, the massless spectrum exhibits N = 2

supersymmetry. This is, of course, consistent with the appearance of two

gravitinos in the massless spectrum (one from Sector #3 and one from

Sector #4). Another way to understand this N = 2 supersymmetry is to

realize that the first supersymmetry relates the bosonic states in Sector #1

to the fermionic states in Sector #3 (and the bosons in Sector #2 to the

fermions in Sector #4), while the second supersymmetry relates the bosons

in Sector #1 to the fermions in Sector #4 (and the bosons in Sector #2 to

the fermions in Sector #3). In either case, we thus see that we have two

independent spacetime supersymmetries.

It is important to note that we did not demand spacetime supersymme-

try when constructing the superstring. We merely introduced worldsheet

supersymmetry, and found that spacetime supersymmetry emerged nat-

urally as the result of certain GSO projections. This further illustrates

the fact that in string theory, spacetime properties such as supersymmetry

emerge only as the consequences of deeper, more fundamental worldsheet

symmetries. Another important point is that the same “twist” which elim-

inated the tachyon has introduced spacetime supersymmetry. While this

is certainly an interesting phenomenon that arises for ten-dimensional su-

perstrings, it is certainly not a general property that the elimination of the

tachyon requires spacetime supersymmetry. In particular, we shall see in

Lecture #6 that it is possible to construct string theories whose tree-level

spectra lack spacetime supersymmetry but nevertheless are tachyon-free.

One might question whether we have really demonstrated the existence

of N = 2 supersymmetry, since we have examined only the massless spec-

trum. However, it can be shown that any unitary theory which contains a

massless spin-3/2 state necessarily exhibits supersymmetry, and hence must

be supersymmetric at all mass levels (i.e., for all massive, excited states as

well). Of course, this is still not a proof, since we do not a priori know (and

would therefore need to verify) that string theory is a consistent theory in

this sense. However, it is possible to construct (two) explicit spacetime su-

percurrent operators and to demonstrate that they commute with the full

(massless and massive) spectrum of the string. Another approach (as indi-

cated in the footnote in Sect. 3.1) is to develop an alternative formulation

of the superstring in which spacetime (rather than worldsheet) supersym-

metry is manifest at the level of the string action, and to demonstrate the

equivalence of the two formulations. Indeed, both approaches have been

successfully carried out, thereby demonstrating that the Type II spectrum

is indeed N = 2 supersymmetric. It is for this reason that these strings are
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referred to as Type II strings.

One important distinction between these two strings is their chirality.

The Type IIA string, as we see, contains two supersymmetries of oppo-

site chiralities, interchanging V̄8 ↔ S̄8 for the right-movers and V8 ↔ C8

for the left-movers. Equivalently, the two gravitinos associated with these

supersymmetries are of opposite chiralities (because the 56′ and 56′′ rep-

resentations in (6.4.17) are of opposite chiralities). Because it contains su-

persymmetries of both chiralities, this string is ultimately non-chiral, and

its low-energy (field-theoretic) limit consists of so-called Type IIA super-

gravity (whose discovery predates that of the Type IIA string). It is for

this reason that this string is called the Type IIA string. The Type IIB

string, by contrast, contains two supersymmetries (or two gravitinos) of the

same chirality, exchanging V̄8 ↔ S̄8 and V8 ↔ S8 respectively. Thus, this

string theory is chiral , and has a low-energy field-theoretic limit consisting

of Type IIB supergravity.

We conclude, then, that by introducing a twist relative to the Type 0

strings, we have constructed a set of strings (the Type IIA and Type IIB

strings) that exhibit a number of compelling features: they are tachyon-

free, they contain both bosons and fermions in their spacetime spectra, they

contain gravity, and they are spacetime N = 2 supersymmetric. Despite

this success, however, there is still something that we lack: we do not, as

yet, have gauge symmetries. Specifically, there are no gauge bosons (such as

photons, gluons, or W and Z particles). Likewise, there are no states which

carry gauge charges. Therefore, once again, we shall need to construct a

new kind of string.

6.5. Lecture #5: Neutrinos have gauge charges: The het-

erotic string

6.5.1. Motivation and alternative approaches

Thus far in these lectures, we have shown how string theory can give rise

to quantized gravity, spacetime bosons and fermions, spacetime supersym-

metry, and tachyon-free spectra. There is, however, one important phe-

nomenological feature that is still missing: gauge symmetry. In other words,

we wish to have massless gauge bosons, i.e., spacetime vectors that trans-

form in the adjoint representation of some internal symmetry group. As a

side issue, we would also like to find a way of breaking N = 2 supersym-

metry to N = 1 supersymmetry (if our goal is to reproduce the MSSM) or
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even to N = 0 supersymmetry (if our goal is to reproduce the Standard

Model).

It is worth considering why such gauge-boson states fail to appear for

the ten-dimensional Type II strings discussed in the previous lecture. The

problem is the following. In order to produce worldsheet bosons, we are

restricted to considering only the NS-NS or Ramond-Ramond sectors (Sec-

tors #1 and #2 in Table 6.1). In the NS-NS sector (Sector #1), the

vacuum energy is (aR, aL) = (−1/2,−1/2), so we must excite the half-

energy fermionic mode oscillators b̃µ−1/2, b
µ
−1/2 for the both the left- and

right-movers. This produces a state with two vector indices rather than

one, and as we see from the vector-vector tensor-product decomposition in

(6.4.8), this does not contain a vectorial state. In the Ramond-Ramond

sector (Sector #2), by contrast, the vacuum energy is (aR, aL) = (0, 0),

which implies that our massless states comprise the tensor product of two

Ramond spinors as in (6.4.10) for the Type IIA string, or as in (6.4.11)

for the Type IIB string. In the case of the Type IIB string, we see from

(6.4.12) that the tensor product S̄8 ⊗ S8 does not contain a vector state

V8. Thus, the Type IIB string contains no massless vectors. In the case of

the Type IIA string, we observe from (6.4.17) that indeed S̄8 ⊗ C8 ⊃ V8,

and thus the Type IIA string does contain a massless vector. (This state

is often called a “Ramond-Ramond gauge boson”.) However, the U(1)

“gauge” symmetry associated with this state is too small to contain the

Standard-Model gauge group, and moreover it can be shown that no states

in the perturbative spectrum of the Type IIA string spectrum can carry

this Ramond-Ramond charge.∗

In each case, the fundamental obstruction that we face is that we need

to generate representations of a gauge group (i.e., an internal symmetry

group) that is different from the Lorentz group. Until now, all of our

worldsheet fields (such as Xµ
L,R and ψµL,R) have carried Lorentz indices

associated with the SO(D − 1, 1) Lorentz symmetry. In order to produce

a separate gauge symmetry, we therefore need fields which do not carry a

Lorentz index but which carry a purely internal index. (Note that these

fields cannot carry a Lorentz index because we ultimately want our gauge

symmetries to commute with the Lorentz symmetries.)

∗Despite this fact, Ramond-Ramond charge plays a crucial role in recent developments
concerning string duality. While none of the states in the perturbative Type IIA string
spectrum carry Ramond-Ramond charge, these strings also contain non-trivial solitonic

states (so-called D-branes) which do carry Ramond-Ramond charge. We shall briefly
discuss D-branes in Lecture #8.
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How can we do this? One idea is to compactify the Type II strings that

we constructed in the previous lecture. Although this approach ultimately

fails for phenomenological reasons, it will be instructive to briefly explain

this idea. Recall that for the superstring, the critical dimension D = 10

emerges as the result of an anomaly cancellation argument: each world-

sheet boson X contributes cX = 1, each Majorana fermion ψµ contributes

cψ = 1/2, and thus ten copies of each are necessary in order to cancel the

“background” central charge associated with the worldsheet superconfor-

mal symmetry. But, even though we require ten bosons and ten fermions,

there is no reason why we must endow all of them with Lorentz vector

indices µ. Since we are ultimately interested in four-dimensional string

theories, one natural idea is to consider these ten bosons and ten fermions

in two groups, four with indices µ = 0, 1, 2, 3, and the remaining six with

purely internal indices i = 1, ..., 6. This internal symmetry could then be

interpreted as a gauge symmetry.

This idea is in fact reminiscent of the original Kaluza-Klein idea whereby

gauge symmetries are realized from higher-dimensional gravitational theo-

ries upon compactification. Moreover, this idea does succeed in producing

gauge bosons (and gauge symmetries) in dimensions D < 10. However,

the problem is that this idea fails to produce enough gauge symmetry.

Specifically, although we obtain gauge symmetries that are large enough to

contain the Standard Model gauge symmetry SU(3) × SU(2) × U(1), we

cannot obtain massless representations that simultaneously transform as

triplets of SU(3) and doublets of SU(2). Such “quark” representations are

required phenomenologically. Thus, even though this compactification idea

is interesting as a way of generating certain amounts of gauge symmetry, it

cannot be used in order to save the superstring.

What we require, then, is a different way of introducing worldsheet

fields without Lorentz vector indices. Since we will (temporarily) abandon

the idea of removing Lorentz indices from our ten worldsheet bosons and

fermions, what this means is that we require a way of obtaining even more

worldsheet fields in ten dimensions. In other words, if we want bigger

gauge symmetries in D = 4, then we require more than six extra fields with

internal indices i, which in turn means that we already want extra fields

even in the original ten-dimensional interpretation.

But how can we introduce extra worldsheet fields without violating our

previous conformal anomaly cancellation arguments? Just adding extra

fields will reintroduce the conformal anomaly at the quantum level.
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6.5.2. The heterotic string: Constructing the action

The idea, of course, is to abandon the Type II string and proceed to con-

struct a new kind of string that can accomplish the goal. This string is

called the heterotic string, and it is this string that will be our focus for the

remainder of these lectures. This string was first introduced by D. Gross,

J. Harvey, E. Martinec, and R. Rohm in 1985, and for more than a decade

dominated (and still continues to play a pivotal role in) discussions of string

phenomenology.

Let us begin by recalling the action of the bosonic string:

Sbosonic = − 1

4πα′

∫

d2σ
{

(∂−X
µ
R)2 + (∂+X

µ
L)2

}

. (6.5.1)

Here the worldsheet symmetry is simply conformal invariance, which re-

quires that we take µ = 0, 1, ..., 25 in order to cancel the conformal anomaly.

Clearly, this action contains lots of worldsheet fields. However, we saw in

Lecture #2 that this string does not give rise to spacetime fermions.

Next, we considered the superstring, whose action is given by:

Ssuper = − 1

4πα′

∫

d2σ
{

(∂−X
µ
R)2 − ψµR∂−ψRµ + (∂+X

µ
L)2 − ψµL∂+ψLµ

}

.

(6.5.2)

Here the worldsheet symmetry is superconformal invariance, which requires

that we take µ = 0, 1, ..., 9 in order to cancel the superconformal anomaly.

Unlike the bosonic string, this string gives rise to spacetime fermions. But

as we have just explained, this string does not contain enough worldsheet

fields to give rise to appropriate gauge symmetries.

Clearly, each of these strings has an advantage lacked by the other. The

natural solution, then, is to attempt to “weld” them together, to “cross-

breed” them in such a way as to retain the desirable attributes of each. But

how can this be done?

The fundamental observation is that we are always dealing with closed

strings, and for closed strings, we have seen that the left- and right-moving

modes are essentially independent of each other and form separate theories.

Indeed, only the level-matching constraint L0 = L̄0 serves to relate these

two halves to each other, but even this constraint applies at the level of the

physical Fock space rather than the level of the action. Therefore, since

these two halves are essentially independent, a natural idea is to construct

a new hybrid string whose left-moving half is the left-moving half of the

bosonic string, but whose right-moving half is the right-moving half of the

superstring. As we shall see, this fundamental idea is just what we need.
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The resulting string is therefore called a heterotic string, where the prefex

hetero- indicates the joining of two different things.

Given this idea, let us now see how the action for the heterotic string

can be constructed. We shall do this in three successive attempts. Our first

attempt would be to write an action of the form

S = − 1

4πα′

∫

d2σ
{

(∂−X
µ
R)2 − ψµR∂−ψRµ + (∂+X

µ
L)2

}

. (6.5.3)

In this case, the worldsheet symmetry would be conformal invariance for

the left-movers, but superconformal invariance for the right-movers.

But what is the spacetime dimension of such a string? If we consider

the right-moving sector, then just as in the superstring we would require

D = 10, so that µ = 0, 1, ..., 9. But given this, how do we interpret the left-

moving side of the heterotic string? On the left-moving side, cancellation of

the conformal (rather than superconformal) anomaly requires that we still

retain 26 XL fields! But if only ten of these fields are spacetime coordinates,

then the remaining sixteen must be mere internal scalar fields. In other

words, rather than carry the µ index (which would imply that these X fields

would transform as vectors under the spacetime Lorentz group SO(9, 1)),

these sixteen extra fields must instead carry a purely internal index i =

1, ..., 16. So our second attempt at writing a heterotic string action would

result in an action of the form

S = − 1

4πα′

∫

d2σ
{

(∂−X
µ
R)2 − ψµR∂−ψRµ + (∂+X

µ
L)2 + (∂+X

i
L)2

}

(6.5.4)

where we have explicitly separated the left-moving bosons into two groups,

with µ = 0, 1, ..., 9 and i = 1, ..., 16.

But there still remains a subtlety. We cannot simply decide to remove

the µ index from the X fields and make no other changes, because these

X i fields would continue to have a mode-expansion of the form (6.2.9) with

the µ index replaced by an internal index i. While the interpretation of

the oscillation exponential terms in (6.2.9) is not problematic, how would

we interpret the “zero-mode” terms xi + ℓ2pi(σ1 + σ2)? In the case of the

spacetime coordinate fields Xµ, recall that these “zero-mode” quantities xi

and pi are interpreted as the center-of-mass position and momentum of the

string. But for purely internal fields X i, this interpretation is problematic.

To clarify this difficulty, let us consider the worldsheet energy L
(com)
0 associ-

ated with these degrees of freedom, as in (6.2.13). Just as in the case of the

spacetime coordinatesXµ, these worldsheet energies for the X i fields would

a priori take continuous values, thereby leading to a continuous spectrum
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even in D = 10. A continuous spectrum, of course, indicates nothing but

the appearance of extra spacetime dimensions, so even though we may have

replaced the index µ with the index i, we have not really solved the funda-

mental problem that there are too many uncompactified degrees of freedom

amongst the left-movers.

Therefore, we still must find a way to replace this continuous spectrum

with a discrete one. Because the following discussion is slightly technical

and outside the main line of the development of the heterotic string action,

we shall separate it from the main flow of the text. The reader uninterested

in the following details can skip them completely and proceed directly to

the resumption of the main text.

In order to eliminate this continuous spectrum, we must

compactify these extra sixteen dimensions. This is anal-

ogous to discretizing the continuous spectrum of a free

particle (plane wave) by localizing it in a box. In the

present case, we can choose to compactify each of these

extra spacetime “coordinates” X i on a circle of radius Ri.

What this means, operationally, is that we make the fol-

lowing topological identification in spacetime:

X i ⇐⇒ X i + 2πRi . (6.5.5)

For simplicity (and as we shall see, without loss of gener-

ality), we shall take Ri = R for all i. Thus, rather than

demand simple periodicity of the X i “coordinates” as in

(6.2.6) as we traverse the closed string worldsheet, we must

allow for the more general possibility

X i(σ1 +π, σ2) = X i(σ1, σ2)+2πniR , ni ∈ ZZ (6.5.6)

where the integer ni is called the “winding number”. The

interpretation of this condition is that as we traverse the

closed string once on the worldsheet (i.e., as σ1 → σ1 +π),

the spacetime “coordinate” field X i traverses the compact-

ified spacetime circle ni times. In other words, the closed

string “winds” around the ith compactified spacetime cir-

cle ni times. Because of this compactification, we see that

the momentum pi is now quantized (as we would expect

for any particle in a periodic box of length R), and is re-

stricted to take the values pi = mi/R, mi ∈ ZZ. Indeed,

working out the most general mode-expansion consistent
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with (6.5.6), we find that a given such coordinate X i takes

the form

X(σ1, σ2) = x+ 2nRσ1 + ℓ2
m

R
σ2 + oscillators , (6.5.7)

where ℓ ≡
√

2α′ is our fundamental length scale and

where ‘oscillators’ generically denotes the higher frequency

modes. This decomposes into left- and right-moving com-

ponents

XL,R(σ1±σ2) = 1
2x+

(

α′m

R
± nR

)

(σ2±σ1)+oscillators .

(6.5.8)

Comparing (6.5.8) with (6.2.9) enables us to identify the

left- and right-moving compactified momenta

pL,R ≡ m

R
± nR

α′
. (6.5.9)

We would then simply keep XL in our heterotic theory.

Let us pause here to note an interesting phenomenon:

this mode-expansion is invariant under the simultaneous

exchange R ↔ α′/R, m ↔ n. This is a so-called T-

duality. What this means is that unlike point particles,

strings cannot distinguish between extremely large space-

time compactification radii and extremely small spacetime

compactification radii. Indeed, although the usual momen-

tum m/R is extremely small in the first case and extremely

large in the second, we see from the above mode-expansions

that there is another contribution to the momentum, a

“winding-mode momentum” nR/α′, which compensates

by growing large in the first case and small in the sec-

ond. Since there is no physical way of distinguishing be-

tween these two types of momenta, the string spectrum is

ultimately invariant under this T -duality symmetry. This

duality underlies many of the unexpected physical proper-

ties of strings relative to point particles, and has important

(and still not well-understood) implications for string cos-

mology. More importantly, however, this duality dramat-

ically illustrates the breakdown of the traditional (field-

theoretic) view of the linearly ordered progression of length

scales and energy scales as we approach the string scale.
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Having succeeded in avoiding the consequences of a

continuous momentum pi, our final question is the size of

the radius R. It would certainly be aesthetically undesir-

able if we were forced to incorporate a new, fundamental,

unfixed parameter R into our string theory. Fortunately,

it turns out that in D = 10, there are only a very re-

stricted set of possibilities that lead to consistent theories,

and these restrictions imply that we can restrict our at-

tention to the simple case R = ℓ =
√

2α′ without loss of

generality. Thus, we see that R can be taken to be at the

string scale, and hence essentially unobservable to “low-

energy” measurements.

In order to see what is special about this radius, recall

that the conformal anomaly contribution for each world-

sheet boson is cX = 1, while the conformal anomaly con-

tribution for each worldsheet Majorana (real) fermion is

cψ = 1/2. This suggests that the spectrum of a single

compactified boson X might somehow be related to the

spectrum of two Majorana fermions ψ1, ψ2, and this is in-

deed the case. Such a relation is typically referred to as a

“boson-fermion equivalence” (which is possible in two di-

mensions because the usual spin-statistics distinction be-

tween bosons and fermions does not apply in two dimen-

sions). In general, the spectrum of a compactified boson is

identical to the spectrum of two Majorana fermions which

are coupled to each other in a radius-dependent manner,

and R =
√

2α′ is the only value of the radius for which

this coupling vanishes. Thus, if X is compactified on a

circle of radius R =
√

2α′, then the spectrum of quantum

excitations of X is identical to the spectrum of quantum

excitations of two free Majorana fermions ψ1, ψ2 (or equiv-

alently those of one complex fermion Ψ ≡ ψ1 + iψ2).
† In

†We are again cheating slightly here. The rigorous statement is that we must compactify
the X boson on a so-called ZZ2 orbifold with this radius in order for the spectrum of X
to be identical to that of two free Majorana fermions. The equivalence between these
bosonic and fermionic systems can be demonstrated explicitly at the level of their full
underlying left/right two-dimensional conformal field theories. By contrast, compactify-
ing X on a circle of this radius yields the spectrum of a single complex fermion, and the
full left/right conformal field theory corresponding to a single complex fermion actually
differs from that corresponding to two real fermions. These distinctions between circles
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fact, at a mathematical level, it turns out that this equiv-

alence takes the form of an actual equality between the

product ψ1ψ2 and the partial derivative ∂X . Note, how-

ever, that while this specific radius is special from the point

of view of boson/fermion equivalence, this is not the self-

dual radius with respect to the T -duality transformation

R ↔ α′/R.

The upshot, then, is that in the action (6.5.4), we are free to replace

the worldsheet bosons X i (i = 1, ..., 16) with complex worldsheet fermions

Ψi (i = 1, ..., 16). For ten-dimensional heterotic strings, we shall see that

this replacement can be made without loss of generality. This replacement

suffices to make the center-of-mass “momenta” associated with theX i fields

discrete rather than continuous, as we require. Given this, the final action

for the heterotic string takes the form:

Sheterotic = − 1

4πα′

∫

d2σ
{

(∂+X
µ
L)2 − Ψ̄i

L∂+Ψi
L + (∂−X

µ
R)2 − ψµR∂−ψRµ

}

(6.5.10)

where ψR are Majorana-Weyl (real) right-moving worldsheet fermions,

where ΨL are complex Weyl left-moving fermions, and where µ = 0, 1, ..., 9

and i = 1, ..., 16.

6.5.3. Quantizing the heterotic string

The next step, then, is to quantize the worldsheet fields of the heterotic

string. The quantization of the bosonic fields Xµ and worldsheet Majorana

fermions ψµR was discussed in previous lectures, and does not change in

this new setting. The only new feature, then, are the mode-expansion and

quantization rules for the complex fermions Ψi
L.

Once again, there are two possible mode expansions for the left-moving

complex fermions Ψ, depending on whether we choose Neveu-Schwarz (anti-

periodic) or Ramond (periodic) boundary conditions.‡ In the case of anti-

periodic boundary conditions, recall that our mode-expansion (6.3.12) for

and orbifolds, and likewise between a single complex fermion and two real fermions, will
not be relevant for what follows.
‡Because there is no worldsheet supersymmetry that relates these left-moving fermions
to corresponding left-moving bosons Xµ, more general boundary conditions may actually
be imposed in this case. However, for heterotic strings in ten dimensions, it turns out that
we can restrict our attention to periodic or anti-periodic boundary conditions without
loss of generality. Fermions with generalized worldsheet boundary conditions will be
discussed further in Lecture #7.
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left-moving real (Majorana) fermions can be written in the form

ψ(σ1 + σ2) =

∞
∑

r=1/2

[

bre
−ir(σ1+σ2) + b†re

+ir(σ1+σ2)
]

(6.5.11)

where we recall the hermiticity condition b−r = b†r. Thus, for a left-moving

complex fermion, our analogous mode-expansion takes the form

Ψ(σ1 + σ2) =
∞
∑

r=1/2

[

bre
−ir(σ1+σ2) + d†re

+ir(σ1+σ2)
]

(6.5.12)

which of course implies

Ψ†(σ1 + σ2) =

∞
∑

r=1/2

[

b†re
+ir(σ1+σ2) + dre

−ir(σ1+σ2)
]

. (6.5.13)

For r > 0, br destroys fermionic excitations and b†r creates them, while

dr destroys anti-fermionic excitations and d†r creates them. Thus, as ex-

pected, the only new feature is the presence of twice as many mode degrees

of freedom, one set associated with fermionic excitations and the other

with their anti-fermionic counterparts. These modes satisfy the usual anti-

commutation relations

{b†r, bs} = {d†r, ds} = δrs . (6.5.14)

The corresponding number operator and worldsheet energy contributions

are then given by

N =

∞
∑

r=1/2

(

b†rbr − d†rdr
)

L0 =

∞
∑

r=1/2

r
(

b†rbr + d†rdr
)

. (6.5.15)

Note that the anti-particle excitations subtract from the number operator

yet add to the total energy. Finally, as expected, the vacuum energy con-

tribution from each complex Neveu-Schwarz fermion is twice that for each

real Neveu-Schwarz fermion: aΨ = 2aψ = −1/24.

The Ramond case, of course, is more subtle because of the zero-mode.
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It turns out that the complex-fermion mode-expansion is given by

Ψ(σ1 + σ2) =

∞
∑

n=1

[

bne
−in(σ1+σ2) + d†ne

+in(σ1+σ2)
]

+ b0

Ψ†(σ1 + σ2) =

∞
∑

n=1

[

b†ne
+in(σ1+σ2) + dne

−in(σ1+σ2)
]

+ b†0 ,(6.5.16)

with the anti-commutation relations

{b†m, bn} = {d†m, dn} = δmn . (6.5.17)

In (6.5.16), we have explicitly separated out the zero-mode from the higher-

frequency modes. The number operator and worldsheet energy conributions

are given by

N =
∞
∑

r=1/2

(

b†rbr − d†rdr
)

+ b†0b0

L0 =

∞
∑

r=1/2

r
(

b†rbr + d†rdr
)

. (6.5.18)

Note that there is no worldsheet energy contribution from the zero-modes.

Finally, the vacuum energy contribution from each complex Ramond

fermion is twice that for each real Ramond fermion: aΨ = 2aψ = +1/12.

One might wonder, at first, why there is no anti-particle zero-mode

d0. However, such an anti-particle zero-mode d0 would be equivalent to

the particle zero-mode b0. The easiest way to see this is to realize that

ultimately (6.5.16) represents a Fourier-decomposition of the Ψ(σ1+σ2) into

different harmonic frequencies (exponentials). By its very nature, the zero-

mode is the constant term in such a decomposition (since it corresponds to

zero frequency), and this constant term is nothing but b0. However, there

can only be one degree of freedom associated with a given constant term.

Having an additional zero-mode d0 would thus represent a redundant (non-

independent) degree of freedom. Of course, whether we associate b0 or d0

with the constant term is purely a matter of convention.

Given this observation, we are finally in a position to explain our count-

ing of zero-mode states in Lectures #3 and #4. Since there is only one

zero-mode degree of freedom for each complex worldsheet fermion, there

can really be only “half” a zero-mode for each real worldsheet fermion.

This explains the footnote in Sect. 3.2, and also explains why (in the para-

graph following (6.4.9)) we counted only one zero-mode excitation per pair

of Majorana fermions. This also explains why, ultimately, the treatment of
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the Ramond zero-mode for a real worldsheet fermion is rather subtle: es-

sentially we must take a “square root” of the complex Ramond zero-mode

b0. There does exist a consistent method for taking this square root, but

this is beyond the scope of these lectures. For our purposes, it will sim-

ply be sufficient to recall that there is only one zero-mode state for each

complex worldsheet fermion, or for each pair of real worldsheet fermions.

6.6. Lecture #6: Some famous heterotic strings

Our next step is to construct actual heterotic string models , just as we did

for the superstring. This will be the subject of the present lecture.

6.6.1. General overview

Before plunging into details, it is worthwhile to consider the general fea-

tures that will govern the construction of our heterotic string models. Re-

call from the previous lecture that the worldsheet fields of the heterotic

string in light-cone gauge consist of eight right-moving worldsheet bosons

Xµ
R, eight left-moving worldsheet bosons Xµ

L, eight right-moving Majorana

(real) worldsheet fermions ψµR, and sixteen left-moving complex worldsheet

fermions Ψi
L (i = 1, ..., 16).

The role of the right-moving fermions ψµR is the same as in the su-

perstring: if they have Neveu-Schwarz modings, the corresponding states

are spacetime bosons, and if they Ramond modings, the corresponding

states are spacetime fermions. Indeed, by properly stitching these sectors

together, it may also be possible to obtain spacetime supersymmetry (as

in the superstring). Note that unlike the superstring, however, these bo-

son/fermion identifications hold regardless of the modings of the left-moving

complex fermions Ψi
L. This is because only the right-moving fermions carry

spacetime Lorentz indices µ, and hence only these fermions determine the

representations of the spacetime Lorentz algebra.

The role of the left-moving complex fermions Ψi
L is analogous. Be-

cause they carry internal indices rather than spacetime Lorentz indices,

the symmetries they carry are also internal, and as we shall see, they can

be interpreted as gauge symmetries. Indeed, these Ψi
L fields are precisely

the internal fields we were hoping to obtain in Sect. 5.1. When they have

Neveu-Schwarz modings, these fermions provide “vectorial” (scalar, vector,

tensor) representations of the internal gauge symmetry. When they have

Ramond modings, by contrast, they provide “spinorial” representations of
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the internal gauge symmetry. Thus, we expect a rich gauge representation

structure in these models as well.

As with the superstring, different models can be constructed depending

on how the different modings are joined together to form our set of underly-

ing sectors, and how the corresponding GSO constraints are implemented.

We shall construct explicit models below. But it is already apparent that

the heterotic string contains all the ingredients we require for successful phe-

nomenology. By choosing certain combinations of right-moving fermionic

modings with left-moving fermionic modings, we can control which gauge-

group representations are bosonic and which are fermionic. Moreover, by

choosing the relative modings amongst the left-moving complex fermions,

we can even control the gauge group that is ultimately produced.

6.6.2. Sectors and GSO constraints

Just as in the superstring, we begin the process of model-building by choos-

ing an appropriate set of underlying sectors and corresponding GSO con-

straints. Moreover, just as in the superstring, we know that preservation

of the right-moving worldsheet supersymmetry (or equivalently spacetime

Lorentz invariance) requires that we choose our eight right-moving fermions

ψµR to all have the same boundary condition in each sector. This implies

that we can, if we wish, combine these right-moving fermions to form four

complex right-moving fermions which we can denote Ψµ
R. (We retain the

index µ to remind ourselves that these fields carry indices with respect to

the spacetime Lorentz algebra, even though strictly speaking only the real

fields ψµR carry such vectorial indices.) However, unlike the superstring,

there is no longer any such restriction on the boundary conditions of the

left-moving fermions Ψµ
L. Thus, there remains substantial freedom in choos-

ing the boundary conditions of these left-moving fermions. Ultimately this

choice becomes the choice of the gauge group for the particular model in

question.

In the next lecture, we shall provide a detailed discussion of the rules

by which one can choose these boundary conditions and determine their

associated GSO constraints. Therefore, for the time being, we shall simply

restrict our attention to the sectors listed in Table 6.2. Note that the

corresponding vacuum energies are also listed in Table 6.2. In order to

compute these energies, we can continue to use the middle expression in

(6.4.1) where we recall that nR and nNS count the number of real worldsheet

fermions. Thus, for complex fermions, these numbers are doubled.
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# ψi=1,...,8
R Ψi=1,...,8

L Ψi=9,...,16
L aR aL

1 NS NS −1/2 −1

2 R R 0 +1

3 NS R −1/2 +1

4 R NS 0 −1

5 NS NS R −1/2 0

6 NS R NS −1/2 0

7 R NS R 0 0

8 R R NS 0 0

Before proceeding further, we can immediately deduce some physical

properties of the string states that would emerge in each sector. First, we

see that Sector #1 is the only sector from which tachyons can possibly

emerge. This is because the level-matching constraints prevent tachyons

in any other sector (i.e., there is no other sector which for which both aL
and aR are negative). Second, we observe that Sectors #2 and #3 cannot

give rise to massless states. This again follows from the level-matching

constraints, and implies that (for phenomenological purposes) we will not

need to consider the states arising in these sectors. Finally, we observe that

Sectors #1,3,5,6 give rise to spacetime bosons, while Sectors #2,4,7,8 give

rise to spacetime fermions.

In some sense, Sectors #1–4 are the direct analogues of the four possible

sectors in Table 6.1 for the superstring. Thus, the heterotic models that

result from these sectors will be the analogues of the Type 0 and Type II

superstring models. However, the additional Sectors #5–8 represent new

sectors that arise only for heterotic strings. We hasten to add that these

sectors are not unique, and others could equally well have been chosen. We

will discuss these possibilities in the next lecture.

The next issue we face is to determine which combinations of sectors

form self-consistent sets. It turns out (following the rules to be discussed

in Lecture #7) that there are three different possibilities:

• Case A: we consider Sectors #1 and #2 by themselves;

• Case B: we consider Sectors #1 through #4 by themselves; or

• Case C: we consider all Sectors #1 through #8.

For each of these cases, there is then a different set of GSO constraints for

each sector. As we have seen in our discussion of the superstring, the more

sectors we have in our model, the more GSO constraints there are in each
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sector. In particular, each time the number of sectors doubles, the number

of GSO constraints in each sector increases by one. For completeness,

Table 6.3 lists the GSO constraints that apply in each sector for each of

these three cases.

Once again, observe the pattern of the GSO constraints. In Case A, we

have only Sectors #1 and #2, for which all right-moving and left-moving

boundary conditions are identical. Thus, the GSO constraints that apply

in Case A combine NL and NR together. (Recall that since NL,R ∈ ZZ,

we can just as easily write the GSO constraint for Case A as NL +NR =

odd.) When we move from Case A to Case B, we introduce two new sectors

(Sectors #3 and #4 in Table 6.2) which “twist” the boundary conditions of

the right-movers relative to those of the left-movers. This has the effect of

introducing a new GSO constraint in each sector, one which distinguishes

separately between NL and NR. Finally, when we move from Case B to

Case C, we introduce four new sectors (Sectors #5 through #8) which

introduce an additional “twist” that distinguishes between the first eight

left-moving fermions Ψi=1,...,8
L and the second eight left-moving fermions

Ψi=9,...,16
L . The corresponding new GSO constraint in each sector is then one

which is sensitive only to (8)NL ≡
∑8
i=1N

(i). This suggests (and we shall

see explicitly in Lecture #7) that the set of sectors is deeply correlated with

the set of GSO constraints that are applied in each sector: each new “twist”

introduces both a new set of sectors and a new GSO constraint in each

sector. The fact that we are considering only Ramond or Neveu-Schwarz

boundary conditions for our left-moving complex fermions Ψi
L means that

each successive twist doubles the number of sectors and introduces one

new GSO constraint in each sector. These are called ZZ2 twists. If we

were to consider more general “multi-periodic” boundary conditions for

the left-moving fermions (which is possible because they are not related to

the left-moving worldsheet bosons by worldsheet supersymmetry), then we

could introduce so-called “higher-order” twists that would result in more

complicated GSO constraints. However, it turns out that in ten dimensions,

we lose no generality by restricting our attention to such ZZ2 twists.

6.6.3. Four ten-dimensional heterotic string models

It is apparent from Table 6.3 that Case A and Case B each correspond

to one heterotic string model, while Case C corresponds to two separate

heterotic string models. Thus, the GSO constraints in Table 6.3 together

give rise to four distinct heterotic string models. In the remainder of this
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lecture, we shall work out the physical properties of these four models.

6.6.3.1. The non-supersymmetric SO(32) string

Let us begin by considering Case A, which consists of only Sectors #1 and

#2. Only Sector #1 (the so-called “NS-NS sector”) can contain massless

states. As indicated in Table 6.1, the vacuum energy in this sector is

(aR, aL) = (−1/2,−1). Thus, at the bare minimum, the level-matching

constraint L0 = L̄0 forces us to excite at least a half-unit of energy on

the left-moving side. This can be accomplished by exciting any of the

left-moving half-unit fermionic modes, since in this sector the left-moving

fermions all have Neveu-Schwarz boundary conditions and thus contain

half-integer modings. This produces the 32 possible states

|0〉R ⊗ bi−1/2|0〉L and |0〉R ⊗ di−1/2|0〉L . (6.6.1)

Note that these states also satisfy the single applicable GSO constraint

NL−NR = odd, so they remain in the spectrum. From (6.4.6), we see that

these states are tachyonic with α′M2 = −2.

Further states are realized by exciting higher worldsheet modes. Be-

cause our worldsheet modes are quantized in minimum half-integer steps,

we see that the next excited states in this model are massless. These states

come in two varieties:

b̃µ−1/2|0〉R ⊗ αν−1|0〉L (6.6.2)

and

b̃µ−1/2|0〉R ⊗























bi−1/2 b
j
−1/2 |0〉L

bi−1/2 d
j
−1/2 |0〉L

di−1/2 b
j
−1/2 |0〉L

di−1/2 d
j
−1/2 |0〉L

. (6.6.3)

In (6.6.2), we have excited the lowest mode of the left-moving worldsheet

boson Xµ
L, whereas in (6.6.3) we have excited two of the lowest modes of

the left-moving fermions Ψi,j
L . Note that it is possible to excite both the

particle and anti-particle modes from the same fermion Ψi, and thus there

is no restriction that i 6= j. Also note that all of these states in (6.6.2) and

(6.6.3) satisfy the GSO constraint NL − NR = odd. While NR = 1 in all

cases, we have NL = 0 in (6.6.2) (since the number operators are defined

not to include the contributions from worldsheet bosons), and NL = 2 in

(6.6.3).
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How do we interpret these states? Once again, the states (6.6.2) are eas-

ily recognized as our gravity multiplet, consisting of the spin-two graviton

gµν , the spin-one anti-symmetric tensor Bµν , and the spin-zero dilaton φ.

It is interesting to note that this state (6.6.2) is realized as a hybrid of the

gravity multiplet state in the bosonic string (6.2.19) and in the superstring

(6.4.7). This reflects the underlying construction of the heterotic string,

and ensures that the heterotic string, like its predecessors, is also a theory

of quantized gravity. Once again, the appearance of the gravity multiplet

is a useful cross-check of the GSO constraints.

The states in (6.6.3) have a different interpretation, however. Clearly,

their Lorentz structure indicates that they are massless Lorentz vectors.

Thus, they are to be interpreted as spacetime gauge bosons. Thus, we

see that the heterotic string has succeeded in providing us with spacetime

gauge symmetry, just as we had originally hoped.

But what is the gauge group? Of course, the gauge group is ultimately

determined from the i, j indices, and since (in Cases A and B) we have

not destroyed the rotational symmetry in the space of the 16 complex left-

moving fermions Ψi
L (or the 32 real left-moving fermions into which they

can be decomposed), we immediately suspect that the gauge symmetry

should be SO(32). There are number of ways to deduce that this is correct.

Perhaps the easiest way is simply to count the gauge boson states in (6.6.3).

If we restrict our attention to the cases i 6= j, then there are (2 ·16)(2 ·15)/2

states. The first factor (2 · 16) reflects the fact that for each of the 16

possible choices of Ψi
L, we can excite either the fermion or anti-fermion

mode. The second factor (2 · 15) reflects the same set of options for the

second fermion Ψj
L, and we divide by two as the interchange symmetry

factor. There are also the cases with i = j: from such cases we obtain 16

possible states, reflecting the 16 different fermions Ψi
L whose fermion and

anti-fermion modes are jointly excited. The total number of states is then

(2 · 16)(2 · 15)

2
+ 16 = 496 = dimSO(32) . (6.6.4)

Of course, the above counting method for determining the gauge group

is hardly precise, for there are a number of gauge groups with the same

overall dimension (and we shall come across another such gauge group very

soon). We therefore require a more sophisticated method which also gener-

alizes to more complicated cases. By definition, of course, the gauge group

can be determined by explicitly examining the charges of the gauge boson

states and determining which Lie algebra (i.e., which root system) they
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fill out. We therefore need a way of determining the charges of the gauge

boson states. Since our gauge symmetry is ultimately associated with the

left-moving worldsheet fermions Ψi
L, the relevant current in this case is

simply the worldsheet current J i ≡ Ψ̄i
LΨi

L. From this, we can deduce the

associated charge Qi. It turns out that

Great Leap #7: The charge associated with each world-

sheet fermion Ψi
L for a given string state with fermionic ex-

citation number N (i) is given by Qi ≡ N (i) + qi. Here qi is

a “background” charge which is 0 if Ψi
L is a Neveu-Schwarz

fermion and −1/2 if Ψi
L is a Ramond fermion.

Given this result, we can easily deduce the gauge group for the case

in question. For simplicity, let us first imagine that there are only two

left-moving fermions Ψi=1,2
L . In this case, (6.6.3) reduces to six states:

b1−1/2b
2
−1/2|0〉L , b1−1/2d

2
−1/2|0〉L , d1

−1/2b
2
−1/2|0〉L ,

d1
−1/2d

2
−1/2|0〉L , b1−1/2d

1
−1/2|0〉L , b2−1/2d

2
−1/2|0〉L . (6.6.5)

For each of these states, there are two charges, Q1 and Q2, associated with

each of the two complex fermions. If we denote these states as A through F

respectively, we can plot the charges of these six states as in Fig. 6.8. The

resulting diagram is easily recognized as the root system (or equivalently

the weight system of the adjoint representation) of the Lie group SO(4).

Generalizing from two complex fermions to n complex fermions analogously

yields the gauge group SO(2n), provided that all n complex fermions have

the same modings. Thus, in the case of 16 complex fermions, we find the

gauge group SO(32).

Note that this argument suffices to show that the gauge bosons fill out

the adjoint representation of SO(32). However, it does not demonstrate

that all other string states in the model fall into representations of this gauge

group. Of course, this is required for the consistency of the string. However,

such a result can indeed be proven mathematically by constructing the

current operators associated with the gauge group in question (as discussed

above), and demonstrating that all states surviving the appropriate GSO

constraints transform appropriately under these currents. For example,

the 32 tachyonic states in (6.6.1) transform in the vector representation of

SO(32), and the gravity multiplet (6.6.2) transforms as a singlet of SO(32)

(as it must). However, a proof that this holds for all states in both the

massless and massive string spectrum is beyond the scope of these lectures.
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We should also point out that what emerges in such closed string theo-

ries is not simply the algebra associated the gauge symmetry in question,

but rather an infinite-dimensional extension (or “affinization”) of it. Such

affine Lie algebras are discussed in Ginsparg (reference given at the end

of Lecture #1), and play an important role in the consistency and phe-

nomenology of such heterotic string theories.

To summarize, then, we see that Case A results in a tachyonic string

model with quantum gravity and SO(32) gauge symmetry. In addition

to 32 scalar tachyons transforming in the vector representation of SO(32),

this model contains massless gauge bosons transforming in the adjoint rep-

resentation of SO(32) as well as the usual gravity multiplet. This non-

supersymmetric SO(32) heterotic string model is the heterotic analogue of

the Type 0 string models in Lecture #4.

6.6.3.2. The supersymmetric SO(32) string

Let us now proceed to Case B. In this case there are four sectors (#1

through #4 in Table 6.2), and we must impose the GSO constraints listed

in the second column of Table 6.3.

Let us begin by considering the states from Sector #1. These are the

same as those considered in Case A, except that we must now impose the ad-

ditional GSO constraint NL = even. This projects out the tachyonic states

(6.6.1), but preserves the gravity multiplet as well as the gauge bosons.

As we discussed previously, Sectors #2 and #3 contain no massless

states. Therefore, all that remains is to consider the states from Sector #4.

Here the vacuum energy is (aR, aL) = (0,−1). The right-moving ground

state in this sector is the Ramond zero-mode ground state, which we have

previously denoted {b̃µ0}|0〉R, and thus massless states are realized only

through non-zero excitations of the left-movers. The possible states are

{b̃µ0}|0〉R ⊗



































αν−1|0〉L
bi−1/2 b

j
−1/2 |0〉L

bi−1/2 d
j
−1/2 |0〉L

di−1/2 b
j
−1/2 |0〉L

di−1/2 d
j
−1/2 |0〉L .

(6.6.6)

In each case, the GSO constraints imply that we can excite only an odd

number of right-moving zero-modes. According to our previous conven-

tions, this indicates that the right-moving ground state corresponds to the
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spacetime Lorentz spinor S̄8 (rather than the conjugate spinor C̄8).

It is, by now, easy to interpret the states in (6.6.6). The first state

provides the superpartner states to the gravity multiplet, and contains a

gravitino. This implies that the model has spacetime supersymmetry. Like-

wise, the remaining states correspond to the superpartners of the SO(32)

gauge bosons, and contain the SO(32) gauginos. The chirality of these

spinor states is fixed by the GSO constraint and the right-moving ground

state S̄8.

Summarizing, we see that this model therefore consists of the following

states. We shall describe these states using the notation R̄1⊗(R2;R3) where

R1, R2 are representations of the spacetime Lorentz group, and where R3

is a representation of the SO(32) gauge group. These states consist of

V̄8 ⊗ (V8;1) , V̄8 ⊗ (1;adj) , S̄8 ⊗ (V8;1) , S̄8 ⊗ (1;adj) , (6.6.7)

where the first and third states form the N = 1 supergravity multiplet and

the second and fourth states form the SO(32) gauge boson supermultiplet.

Together these states can be written in the factorized form

(V̄8 ⊕ S̄8) ⊗ {(V8;1) ⊕ (1;adj)} , (6.6.8)

thereby explicitly exhibiting the supersymmetry V̄8 ↔ S̄8.

This string is the famous supersymmetric SO(32) heterotic string. Al-

though not directly relevant for string phenomenology, this string plays a

vital role in recent developments in string duality (to be discussed briefly

in Lecture #8).

6.6.3.3. The SO(16) × SO(16) and E8 × E8 strings

Let us now proceed to Case C. As discussed in Sect. 6.2, this case differs

from Case B because we have now “twisted” the second group of eight left-

moving complex worldsheet fermions relative to the first set. A priori , it is

easy to imagine that this twist will break the gauge symmetry SO(32) →
SO(16) × SO(16). However, there a few surprises still in store for us.

We begin in Sector #1, which previously gave rise to the states given

in (6.6.2) and (6.6.3). Introducing the third GSO constraint (8)NL ≡
∑8

i=1N
(i) = even does not affect the gravity multiplet (6.6.2), but has

a drastic effect on the remaining gauge boson states. We now see that we

cannot excite arbitrary combinations of (i, j) fermions; instead we must

choose either (i, j) = 1, ..., 8 or (i, j) = 9, ..., 16. In string-theory parlance,

all of the other states have been “projected out of the spectrum”. It is in
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this manner that we remove gauge boson states and break gauge symme-

tries in string theory. (There are other methods for doing this in string

theory, but this is the only method at tree-level.) It is easy to see (follow-

ing the arguments given above) that the remaining gauge boson states fill

out the adjoint representation of two copies of SO(16), and thus the gauge

group is a priori SO(16) × SO(16). Therefore, we shall henceforth denote

our string states in the notation R̄1 ⊗ (R2;R3, R4) where R̄1, R2 are the

representations of the Lorentz group from the right- and left-movers, and

where R3, R4 are the representations with respect to the two gauge group

factors of SO(16) respectively. Thus, we see that Sector #1 gives rise to

the states

V̄8 ⊗ (V8;1,1) , V̄8 ⊗ (1;adj,1) , V̄8 ⊗ (1;1,adj) , (6.6.9)

where the first states form the gravity multiplet and the second and third

states are the SO(16) × SO(16) gauge bosons.

As before, Sectors #2 and #3 do not give rise to massless states. Let

us now consider what happens in Sector #4. The states that previously

emerged in Sector #4 are given in (6.6.6). We now must impose the remain-

ing GSO constraint (8)NL =

{

odd

even

}

. Let us consider each case separately.

If we impose the odd choice, then the gravitino state in (6.6.6) is projected

out of the spectrum, indicating that supersymmetry is broken. Likewise, we

find that the gaugino states are also affected: we can now excite only those

states for which i = 1, ..., 8 and j = 9, ..., 16. This spinor state transforms in

the (16,16) representation of SO(16)×SO(16) (i.e., as the vector-vector bi-

fundamental). By contrast, if we impose the even choice, then the gravitino

state in (6.6.6) remains in the spectrum, indicating that supersymmetry is

preserved . Likewise, the gaugino states are affected only by the new re-

quirement that either i, j = 1, ..., 8 or i, j = 9, ..., 16. Thus, the new GSO

projection projects our SO(32) gauginos down to SO(16) × SO(16) gaugi-

nos, as expected. Summarizing, we find that in the “even” case, the states

from Sector #4 are

S̄8 ⊗ (V8;1,1) , S̄8 ⊗ (1;adj,1) , S̄8 ⊗ (1;1,adj) . (6.6.10)

Let us now consider Sector #5. As indicated in Table 6.2, in this sector

the vacuum energy is (aR, aL) = (−1/2, 0) and the first eight left-moving

complex fermions are Neveu-Schwarz while the second eight are Ramond.

Choosing the “odd” GSO constraints projects all possible massless states

out of the spectrum (because there is no simultaneous solution to all three
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GSO constraints in the “odd” case). By contrast, choosing the “even” GSO

constraints yields the states

b̃µ−1/2|0〉R ⊗ {bi0}|0〉L (i = 9, ..., 16) (6.6.11)

where we must choose an even number of zero-mode excitations on the left-

moving side. This produces a massless vector state which transforms in

a (128-dimensional) spinorial representation of the second SO(16) gauge

group factor. Following our previous conventions, we shall refer to this

spinor as C128 rather than its conjugate S128. This state can therefore be

denoted as

V̄8 ⊗ (1;1,C128) . (6.6.12)

We shall discuss the physical interpretation of this state shortly.

Sector #6 is similar to Sector #5, except that now the first eight left-

moving complex fermions are Ramond and the second eight are Neveu-

Schwarz. In a similar way we then find that there are no states in the

“odd” case, while in the “even” case we find the states

V̄8 ⊗ (1;C128,1) . (6.6.13)

We now turn to Sector #7. Here the vacuum energy is (aR, aL) =

(0, 0), which implies that if we restrict our attention to massless states, we

can tolerate only zero-mode excitations amongst both the left- and right-

movers. In the “odd” case, we find the states

{b̃µ0}|0〉R ⊗ {bi0}|0〉L (i = 9, ..., 16) (6.6.14)

where the GSO projections restrict us to an even number of zero-mode

excitations on the right-moving side and an odd number on the left-moving

side. According to our conventions, this produces the state C̄8⊗(1;1,S128).

In the “even” case, by contrast, we are restricted to (6.6.14) where now we

must have an even number of zero-mode excitations on the right-moving

side and an odd number of the left-moving side. This produces the state

S̄8 ⊗ (1;1,C128) . (6.6.15)

Finally, in Sector #8, we similiarly find the states C̄8 ⊗ (1;S128,1) in

the “odd” case and

S̄8 ⊗ (1;C128,1) (6.6.16)

in the “even” case.
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What are we to make of these results? Collecting our states for the

“odd” case, we find a string model with the following massless spectrum:

V̄8 ⊗ (V8;1,1) , V̄8 ⊗ (1;adj,1) , V̄8 ⊗ (1;1,adj)

S̄8 ⊗ (1;V16,V16) , C̄8 ⊗ (1;S128,1) , C̄8 ⊗ (1;1,S128) .(6.6.17)

This is clearly a non-supersymmetric spectrum consisting of a gravity mul-

tiplet, vector bosons transforming of the adjoint of SO(16) × SO(16), one

spinor transforming as a vector-vector bifundamental with respect to the

gauge group, and two additional spinors of opposite chirality transform-

ing in the spinor representations of the gauge group. This is the non-

supersymmetric SO(16)× SO(16) heterotic string model, first constructed

in 1986. Note that this spectrum configuration is anomaly-free, as required

for a self-consistent string theory. Also note that this string is tachyon-

free even though it is non-supersymmetric. This example thus proves that

not all non-supersymmetric strings have tachyons (although it is certainly

true that all supersymmetric strings lack tachyons). While this is the only

non-supersymmetric tachyon-free heterotic string in ten dimensions, there

exist a plethora of such strings in lower dimensions. We shall discuss some

of the properties of such strings in Lecture #8, but this raises an interest-

ing issue: Does string theory predict spacetime supersymmetry? As this

example makes clear, string theory certainly does not predict spacetime

supersymmetry on the basis of tachyon-avoidance. However, the general

answer to this question is unknown.

Even more interesting is the model that results in the “even” case.

Collecting our states from (6.6.9), (6.6.10), (6.6.12), (6.6.13), (6.6.15), and

(6.6.16), we find that the total massless spectrum of this string can be

written in the factorized form

(V̄8⊕S̄8) ⊗
{

(V8;1,1)⊕
(

1;

{

adj ⊕ C128

}

,1

)

⊕
(

1;1,

{

adj ⊕ C128

})

}

.

(6.6.18)

The appearance of the right-moving factor V̄8⊕S̄8 indicates that this model

has N = 1 supersymmetry, as expected from the appearance of a single

gravitino in the massless spectrum. The left-moving factor, by contrast,

contains three terms. The first term combines with the right-moving factor

to produce the supergravity multiplet. The second two terms formerly

gave rise to the SO(16) × SO(16) gauge supermultiplet. However, we now

see that for each SO(16) gauge group factor, the massless vector states

transform in the adj ⊕ C128 representation rather than simply in the adj
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representation. While the adj contribution is easy to interpret (giving rise

to the usual gauge bosons of SO(16)), the extra massless vector states

transforming in the C128 representation of each gauge group factor appear

to cause an inconsistency, for we know that all massless vector states must

be interpreted as gauge bosons, and hence such states can only transform

in the adjoint representation. Thus, the only possible way that this string

can be consistent is if the massless vector states in this model somehow

combine to fill out the adjoint representation of some other group G:

adjSO(16) ⊕ C128
?
= adjG . (6.6.19)

Remarkably, this is precisely what occurs: the group G is nothing but the

exceptional Lie group E8! Indeed, the 120 states of the adjoint represen-

tation of SO(16) together with the 128 states of the spinor representation

of SO(16) combine to produce the 248 states of the adjoint representation

of E8! In string parlance, we thus say that the presence of the “twisted”

states (6.6.12), (6.6.13), (6.6.15), and (6.6.16) has enhanced the total gauge

group from SO(16)× SO(16) to E8 ×E8. This, then, is the famous super-

symmetric E8 × E8 heterotic string.

Unlike the supersymmetric SO(32) string, this string is generally consid-

ered to have excellent phenomenological prospects. It has N = 1 spacetime

supersymmetry, quantum gravity, and an E8 × E8 gauge symmetry. E8

is a compelling gauge group for phenomenology because it contains E6 as

a subgroup, and E6 is a group that contains chiral representations which

can be associated with grand unification and which thereby contain all of

the particle content of the Standard Model. (Of course, it is still neces-

sary to obtain actual matter representations from this string, but these can

arise upon compactification.) Moreover, while we can imagine the Stan-

dard Model to reside entirely within one of the E8 gauge group factors,

the other factor may be interpreted as a “hidden” sector which can also

have important phenomenological uses (such as triggering supersymmetry

breaking, providing dark-matter candidates, and enforcing string selection

rules). Thus, historically, much of the original work in string phenomenol-

ogy began with a study of the compactification of this model down to four

dimensions. However, it is possible to construct heterotic string models

directly in four dimensions, and to obtain models which do not necessarily

have an interpretation as arising via the compactification of any particular

string model in ten dimensions. Thus, as we shall see, the prospects for

phenomenological heterotic string model-building are broader than merely

studying the compactifications of the E8 × E8 heterotic string.
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6.6.4. More ten-dimensional heterotic strings

So far, we have constructed four heterotic string models in ten dimensions.

Of these, two have spacetime supersymmetry, and two do not. However, it

is readily apparent that further models can be constructed by introducing

further “twists” which further enlarge the set of sectors in Table 6.2 and

which further break the gauge group into smaller factors (or which break

the original SO(32) gauge group in entirely different ways). The question

that arises, then, is whether there exist other ten-dimensional heterotic

strings with spacetime supersymmetry, or whether there exist other non-

supersymmetric strings in ten dimensions that are tachyon-free. The answer

to both questions turns out to be “no”. A complete list of ten-dimensional

heterotic strings is given in Table 6.4.

The presence of the last string in Table 6.4 might seem surprising. After

all, the rank of the gauge group for this string is only eight rather than

sixteen, which implies that its construction must differ substantially from

that of the previous strings. It turns out that this is indeed the case.∗ We

briefly indicate in Lecture #7 how such strings may be constructed.

6.7. Lecture #7: Rules for string model-building

In the last several lectures, we constructed many different string models.

Amongst the superstring models, we constructed the Type 0A, Type 0B,

Type IIA, and Type IIB models, while amongst the heterotic string

models, we constructed the non-supersymmetric SO(32) model, the non-

supersymmetric SO(16)× SO(16) model, and the supersymmetric SO(32)

and E8 × E8 models. In each case, we simply asserted a set of sectors

(combinations of Neveu-Schwarz and Ramond modings) and a set of GSO

constraints in each sector. Of course, each of these sets of sectors and GSO

constraints conspires to yield a self-consistent string model, and occasion-

ally it is even possible to see intuitively which choices can lead to self-

consistent string models. However, we ultimately wish to construct semi-

realistic string models where the groups are broken down to much smaller

pieces than we have been dealing with thus far (e.g., SU(3)×SU(2)×U(1),

∗Unlike the other ten-dimensional heterotic strings, this string involves splitting each
complex worldsheet fermion into a pair of two real worldsheet fermions and then intro-
ducing relative “twists” within each pair. In technical language, this results in a gauge
group whose rank is reduced but whose so-called affine level is increased relative to
those of the other strings. This increase in the affine level is important for string GUT
model-building, and will be discussed in subsequent lectures.
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or even SU(5) or SO(10)), and this is going to require more complicated

twists than we have thus far been using. Furthermore, all of our string

models thus far have been in ten dimensions, yet we are ultimately going

to wish to compactify our string models to four dimensions. It turns out

that this will introduce even further choices for modings, twists, and their

associated GSO projections. (In geometric language, these further choices

amount the choice of compactification manifold.)

The question that arises, then, is to determine the minimal set of param-

eters that govern these choices. What we require is a way to systematize the

whole process of string model-construction, so that we will know precisely

which choices govern the construction of a string model and guarantee its

internal self-consistency. In other words, we require rules for string model-

building. This is the subject of the present lecture.

Once we learn the rules for the construction of ten-dimensional string

models, it will be relatively straightforward to generalize these rules for the

construction of models in four dimensions. We will then have the tools

whereby we may finally construct semi-realistic four-dimensional string

models.

6.7.1. Generating the sector combinations: The 20-

dimensional lattice

The first issue we face is that of choosing the appropriate sector combi-

nations. For example, let us recall the possible heterotic string sectors in

Table 6.2. As we discussed in Sect. 6.2, this set of sectors permits only three

distinct sector combinations: either we choose Sectors #1 and #2 only, or

we choose Sectors #1 through #4 only, or we choose Sectors #1 through

#8. How can we know which combinations are allowed, and which sectors

are required in each grouping? In Sect. 6.2, we discussed how modular in-

variance ultimately governs these choices. Here, however, we shall develop

a rule which we can use in order to deduce these sector combinations rather

quickly and which can easily be generalized to more complicated situtions.

First, let us introduce some notation. Since it is rather awkward to con-

sider left-moving complex fermions Ψi
L at the same time as right-moving

real (Majorana) fermions ψµR, let us “complexify” our right-moving Majo-

rana fermions so that all of our worldsheet fermions are complex. This

means that instead of having eight left-moving real fermions ψµR in light-

cone gauge, we have instead four complex ones Ψµ
R formed by pairing the

left-moving real fermions in groups of two. (We retain the index µ to re-
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mind ourselves that these fields carry indices with respect to the spacetime

Lorentz algebra, even though strictly speaking it is only their real compo-

nent fields ψµR that carry such vectorial indices.)

We also need a more general notation for discussing the possible bound-

ary conditions and modings that any such complex worldsheet fermion can

take. In general, we can parametrize any possible worldsheet boundary

condition in the form

Ψ(σ1 + π, σ2) = − e−2πiv Ψ(σ1, σ2) (6.7.1)

where − 1
2 ≤ v < 1

2 . Thus the quantity v parametrizes the boundary

condition of the individual fermion, with

v = 0 : anti-periodic (Neveu-Schwarz)

v = −1/2 : periodic (Ramond) . (6.7.2)

General values of v correspond to so-called “multi-periodic fermions”.

For example, the general moding of a multi-periodic left-moving complex

fermion is given by

ΨL(σ1 + σ2) =

∞
∑

n=1

[

bn+v−1/2e
−i(n+v−1/2)(σ1+σ2)

+ d†n−v−1/2e
+i(n−v−1/2)(σ1+σ2)

]

, (6.7.3)

and the corresponding number operator and worldsheet energy are defined

accordingly. Note that these modings generalize those given in Sect. 5.3.

Likewise, the vacuum energy contribution from such a fermion is given by

aΨ =
1

2

(

v2 − 1

12

)

. (6.7.4)

This too generalizes our previous results.

In ten dimensions, it turns out that we lose no generality by consid-

ering only the specific cases v = 0,− 1
2 for all worldsheet fermions. What

this means is that all self-consistent ten-dimensional string models can ul-

timately be realized using worldsheet fermions with only Neveu-Schwarz

or Ramond boundary conditions. In lower dimensions, by contrast, other

choices are possible. Therefore, even though we shall primarily focus our

attention on the cases v ∈ {0,− 1
2}, we shall develop our formalism in such

a way that it holds for arbitrary values of v.

Given this parametrization, we can describe the boundary conditions

within any sector rather succinctly by specifying twenty v-values, four for
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the complex right-movers Ψµ
R and sixteen for the complex left-movers Ψi

L.

We can group these twenty v-values to form a “boundary-condition” vector

V = [v̄1, v̄2, v̄3, v̄4 | v1, ..., v16] , (6.7.5)

and thus we may associate a vector with each underyling string sector. For

example, the sectors in Table 6.2 now correspond to the vectors shown in

Table 6.5. Note that in Table 6.5, we have used a shorthand notation in

which superscripts indicate repeated components. We have also dropped

the minus signs from the Ramond entries v = − 1
2 . We stress, however, that

even though we shall no longer explicitly indicate the Ramond minus sign,

it should continue to be implicitly understood for all Ramond boundary

conditions. (This minus sign can play an important role for string models

in lower dimensions.)

What, then, are the self-consistent combinations of sectors? Recall from

the previous lecture that the first self-consistent combination of sectors

comprises Sectors #1 and #2 only. Let us therefore study this simplest

combination. Sector #1 (the so-called NS-NS sector) corresponds to the

zero-vector 0, the vector whose entries all vanish. Thus, in this sense, we

might associate the NS-NS sector with the origin in a twenty-dimensional

vector space. Sector #2 (the so-called Ramond-Ramond sector) then cor-

responds to some other point in the vector space which is some distance

away from the origin. Let us call this other location V0 ≡ [(1
2 )4|(1

2 )16].

If we were to consider V0 to be a lattice basis vector, a natural question

would be to determine the lattice that is generated by this basis vector.

Because there is only one such non-zero vector, this would clearly be a

one-dimensional “lattice”. Since V0 ≡ [(1
2 )4|(1

2 )16], the next point in the

lattice would be 2V0 ≡ [(1)4|(1)16]. How can we interpret this point?

Recall from (6.7.1) that the components of such vectors (i.e., the values of

v) are defined only modulo 1 (i.e., they are restricted to the unit interval

− 1
2 ≤ v < 1

2 ). Thus, we see that v = 1 is physically the same as v = 0, once

again implying a Neveu-Schwarz boundary condition. In other words, we

should only add our vectors modulo 1 . Given this, we find that 2V0
1
= 0,

where we have introduced the notation
1
= to indicate equality modulo

1. Likewise, 3V0
1
= V0, and so forth. Thus, we see that V0 generates a

“lattice” consisting of only two physically distinct “points”:

{0,V0} . (6.7.6)

However, these are precisely the two “points” that comprised our first self-

consistent set of sectors (Case A in Lecture #6), and which led to our first
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string model!

It turns out that this is a general property: All self-consistent choices

of string sectors are those that correspond to the “points” in a twenty-

dimensional lattice generated by a set of basis vectors. To illustrate this

principle, let us consider the next case (Case B in Lecture #6). In this

case, we included only Sectors #1 through #4. This indicates that we need

a larger lattice, which in turn implies the existence of not just the single

lattice-generating basis vector V0, but also an additional basis vector V1.

One choice is:

V0 = [(1
2 )4 | (1

2 )16]

V1 = [(0)4 | (1
2 )16] . (6.7.7)

Using these choices, we can see that indeed all four of these sectors can

be generated as the different “points” in the resulting lattice: Sector #1

corresponds to the origin 0, Sector #2 corresponds to V0 itself, Sector #3

corresponds to V1 itself, and Sector #4 corresponds to the remaining lat-

tice point V0 + V1. Note that no other points exist in this lattice, since

2V0
1
= 2V1

1
= 0. Thus, we see that the introduction of the additional basis

vector V1 is physically equivalent to the “twist” that shifts the boundary

conditions of the left-moving fermions relative to those of the right-moving

fermions in Sectors #3 and #4.

Finally, let us consider the full set (Case C) consisting of Sectors #1

through #8. It is easy to see that this set is generated by the three basis

vectors:

V0 = [(1
2 )4 | (1

2 )16]

V1 = [(0)4 | (1
2 )16]

V2 = [(0)4 | (1
2 )8(0)8] . (6.7.8)

Once again, the introduction of the new basis vector V2 implements the

“twist” that separates the boundary conditions of the first set of eight left-

moving fermions from those of the second set.

This procedure can be continued. Each additional basis vector intro-

duces a new twist, increases the size of the resulting lattice, and leads

to the introduction of new physical string sectors (so-called “twisted sec-

tors”). For example, one further basis vector that might be introduced is

V3 ≡ [(0)4|(1
2 )4(0)4(1

2 )4(0)4]. This vector would have the effect of intro-

ducing a further twist amongst the left-moving fermions within each group

of eight.
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Clearly, given a set ofN basis vectors Vi (i = 0, ..., N−1), the procedure

for generating the full set of resulting string sectors is to consider all possible

lattice vectors
∑N−1

i=0 αiVi where αi ∈ {0, 1}. Note that this restriction on

the values of αi assumes that we are considering only Neveu-Schwarz or

Ramond boundary conditions for the worldsheet fermions; generalizations

to multi-periodic fermions will be discussed shortly. We shall henceforth

denote a given string sector as αV ≡
∑

i αiVi. For example, the NS-

NS sector (i.e., Sector #1) always corresponds to α = (0, 0, ...) and the

Ramond-Ramond sector (i.e., Sector #2) corresponds to α = (1, 0, ...).

At this stage, we now know how to generate the full set of underlying

string sectors once we are given a “primordial” set of basis vectors Vi.

The next issue that arises is to determine the rules that govern the allowed

choices of these basis vectors. Of course, we have already derived one such

rule: each basis vector Vi must take the form

Vi = [(v̄)4 | v1, ..., v16] (6.7.9)

where the right-moving fermions all have same moding v̄ ∈ {0,− 1
2}. In-

deed, as we saw in Lectures #5 and #6, this requirement is necessary for

the preservation of the right-moving worldsheet supersymmetry (so that the

right-moving worldsheet supercurrent has a unique moding in each sector).

This is also necessary for the preservation of spacetime Lorentz invariance,

since the right-moving worldsheet fermions carry Lorentz spacetime indices.

As we might expect, there are still several additional conditions that our

basis vectors Vi must satisfy. But before we can discuss these conditions,

we must turn to the generation of the GSO constraints in each sector.

6.7.2. Generating the GSO constraints

We have already seen in previous lectures that the appearance of new string

sectors is correlated with the appearance of new GSO constraints in each

sector. We are now in a position to formulate this correlation more pre-

cisely: in each string sector, there is one GSO projection for each basis

vector. Our task, then, is to find a simple way to generate the exact forms

of these GSO projections.

Let us return to Case A, and consider the model consisting of only

Sectors #1 and #2. As we have seen above, this model is generated by

the single basis vector V0 ≡ [(1
2 )4|(1

2 )16], resulting in the two sectors 0

(Sector #1) and V0 (Sector #2). In each of these sectors, recall from

Table 6.3 that we then had the single GSO constraint NL −NR = odd, or
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equivalently

16
∑

i=1

N (i) −
4

∑

j=1

N̄ (j) = odd . (6.7.10)

(Here we have used the j-index to span our four complex right-moving

fermions, while the i-index spans our sixteen complex left-moving fermions.)

It is this GSO constraint that we now wish to write in a more transparent

manner.

Given our success in using the lattice idea and modular arithmetic in

order to generate the complete set of string sectors, let us attempt to write

(6.7.10) in a form that makes use of both ideas. Let us first concentrate on

the modular arithmetic idea. Since all of our basis vectors are defined only

modulo one, let us cast (6.7.10) into the form of a modulo-one relation.

Since (6.7.10) is already a modulo-two relation, this can be achieved by

dividing by two:

1
2

16
∑

i=1

N (i) − 1
2

4
∑

j=1

N (j) 1
= 1

2 (6.7.11)

where we have used the notation
1
= to indicate equality modulo 1.

Let us now try to incorporate the lattice idea. To do this, let us make

a vector out of our twenty number operators:

N ≡ [N̄ (1), N̄ (2), N̄ (3), N̄ (4) |N (1), ..., N (16)] . (6.7.12)

Clearly, each different possible string state in a given sector corresponds

to a different N-vector, and the physical (surviving) string states are those

satisfying (6.7.11). Let us now attempt to write (6.7.11) in a vector no-

tation. Neglecting the minus sign in (6.7.11) for the moment, we see that

(6.7.11) involves a sum of vector components, which reminds us of a vector

dot product. Thus, if we define the “signature” of our twenty-dimensional

lattice to be [(−)4 | (+)16], we can write (6.7.11) in the form of a vector dot

product:

[(1
2 )4 | (1

2 )16] · N
1
= 1

2 (6.7.13)

where we have introduced a vector each of whose components is equal to
1
2 . However, this vector is nothing but V0, the basis vector that generates

the lattice for this model! Thus, we see that if our model is generated by

the basis vector V0, then in each of the resulting sectors {0,V0} the GSO
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projections take the form

V0 · N 1
= 1

2 . (6.7.14)

This produces the non-supersymmetric SO(32) string model from Lec-

ture #6!

Let us now consider Case B, consisting of Sectors #1 through #4. As

we saw in Lecture #6, this produces the supersymmetric SO(32) heterotic

string model, and is generated by the set of two basis vectors given in

(6.7.7). In each of the four resulting sectors {0,V0,V1,V0 + V1}, the two

GSO projections were NL−NR = odd and NL = even. (Recall Table 6.3.)

These now take the form

V0 ·N 1
= 1

2 , V1 ·N 1
= 1

2 . (6.7.15)

Similarly, Case C is generated by the three basis vectors in (6.7.8), and the

three GSO constraints in each sector take the general form

NL −NR = ... , NL = ..., (8)NL = ... . (6.7.16)

Here (8)NL ≡ ∑8
i=1N

(i), and we shall momentarily defer a discussion of

the values of the right sides of these constraint equations. We then find

that these three GSO constraints take the general forms

V0 · N 1
= ... , V1 ·N 1

= ... , V2 ·N 1
= ... . (6.7.17)

Depending on the right sides of these equations, this generates either the

supersymmetric E8×E8 string or the non-supersymmetric SO(16)×SO(16)

string.

The final question, then, is to determine what appears on the right

sides of these GSO constraint equations. In general, this will be some value

x which satisfies − 1
2 ≤ x < 1

2 . This x-value is called a GSO projection

phase, and is generally different for each sector. Thus, we know that x

must itself depend on α, where (as discussed in Sect. 7.1) α parametrizes

the particular sector in question. We also know from our prior experience

(in particular, from Table 6.3) that x must also contain some additional free

parameters because we occasionally still had the freedom to make choices

such as
{

evenodd
}

when constructing our GSO constraints.

It turns out the final result is the following. Within any given string

sector αV ≡ ∑N−1
i=0 αiVi, the states that survive are those whose number

operator vectors N satisfy the equations

Vi ·N 1
=

N−1
∑

j=0

kijαj + si − Vi · (αV) , 0 ≤ i ≤ N − 1 . (6.7.18)
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This is therefore the full set of GSO constraint equations for the sector

αV. In (6.7.18), the notation is as follows. There are N different equations

here, depending on the value of i. In the last term, the dot product Vi ·
(αV) is the dot product between Vi and the sector αV for which the GSO

constraint is being applied. In the second-to-last term, si is defined as

the first component (i.e., the first of the right-moving components) of the

vector Vi:

si ≡ V
(1)
i . (6.7.19)

Thus si parametrizes the spacetime statistics of the sector Vi, with si = 0

indicating spacetime bosons and si = − 1
2 indicating spacetime fermions.

Likewise, the sum
∑

αisi (mod 1) indicates the statistics of the sector

αV. In the remaining term, kij denotes a certain N × N matrix of num-

bers (so-called GSO projection phases) satisfying − 1
2 ≤ kij <

1
2 . These

are therefore the remaining degrees of freedom that enter into our GSO

constraints. In the case of ZZ2 twists (for which all fermionic boundary

conditions have either Neveu-Schwarz or Ramond boundary conditions),

one has kij ∈ {0,− 1
2} only. The case of multi-periodic fermions will be

discussed shortly.

Thus, if we are given a set of parameters {Vi, kij}, we can now generate

the resulting string model and the entire corresponding spectrum! These

parameters are ultimately the parameters that physically describe a given

string model.

6.7.3. Self-consistency constraints

We finally turn to the remaining question: what determines how the pa-

rameters {Vi, kij} are to be chosen? What are the rules that guarantee a

self-consistent choice?

Clearly, as we have discussed earlier, modular invariance is one of

many symmetries that govern these choices. Other requirements for self-

consistency include proper spacetime spin-statistics relations (so that all

Ramond states are indeed anti-commuting spacetime fermions, and all

Neveu-Schwarz states are commuting spacetime bosons) and physically

sensible GSO projections (so that unitarity is not violated, among other

things). It is important to stress that these are not additional constraints

that need to be imposed in order to guarantee the consistency of the string

in spacetime; rather these constraints are intrinsic to string theory itself

at the worldsheet level, emerging as string self-consistency constraints, and
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together imply these features in spacetime.

We have already discussed the first contraint that governs the choices of

the basis vectors: they must all have the form (6.7.9), with all right-moving

fermions sharing the same boundary condition. Second, these vectors must

all be linearly independent with respect to addition (modulo 1); otherwise,

at least one of these vectors is redundant. The third constraint also turns

out to be quite simple: among our set of basis vectors, we must always start

with the vector

V0 ≡ [(1
2 )4 | (1

2 )16] . (6.7.20)

The presence of this vector ensures that the resulting string model contains

at least a Ramond-Ramond sector in addition to a NS-NS sector.

The remaining constraints serve to correlate the Vi vectors with the

GSO projection phases kij , and take the form:

kij + kji
1
= Vi ·Vj

kii + ki0
1
= 1

2Vi ·Vi − si . (6.7.21)

Note that given a set of boundary condition vectors Vi, the constraints

(6.7.21) imply that only the elements kij with i > j are independent param-

eters. The first equation in (6.7.21) then enables us to uniquely determine

kij with i < j, and the second equation in (6.7.21) enables us to uniquely

determine the diagonal elements kii.

6.7.4. Summary, examples, and generalizations

Let us now summarize the rules for heterotic string model-building in D =

10. We begin by choosing a set of linearly independent basis vectors Vi

(i = 0, ..., N − 1) and a corresponding matrix of GSO projection phases

kij (i, j = 0, ..., N − 1). Our set of basis vectors may be as large as we

desire; since each vector corresponds to an additional twist, larger sets of

vectors lead to more complicated string models. Among our choice of basis

vectors must always appear the vector V0 defined in (6.7.20), and every

basis vector is required to have the form (6.7.9). We must also ensure that

our choices of basis vectors Vi and GSO projection phases kij are properly

correlated according to (6.7.21). If there does not exist a solution for kij ,

then our original choice of Vi must be discarded or repaired. These are the

only constraints that govern the choices of the parameters {Vi, kij}.
Given such a self-consistent choice of parameters {Vi, kij}, we are

then guaranteed to have a self-consistent string model. The different sec-
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tors of this model are generated as all combinations
∑

i αiVi that fill

out the twenty-dimensional lattice, where αi ∈ {0, 1}. In each sector

αV ≡ ∑

i αiVi, the allowed states are then those whose number operator

vectors N simultaneously satisfy the constraints (6.7.18) for i = 0, ..., N−1.

This is often called the spectrum-generating formula.

It is straightforward to see how this formalism can be applied in practice.

We shall leave it as an exercise to verify that the choice

V0 ≡ [(1
2 )4 | (1

2 )16] , k00 = (0) (6.7.22)

generates the non-supersymmetric SO(32) heterotic string model; that the

choice
{

V0 ≡ [(1
2 )4 | (1

2 )16]

V1 ≡ [(0)4 | (1
2 )16]

kij =

(

0 0

0 0

)

(6.7.23)

generates the supersymmetric SO(32) heterotic string model; and that the

choices














V0 ≡ [(1
2 )4 | (1

2 )16]

V1 ≡ [(0)4 | (1
2 )16]

V2 ≡ [(0)4 | (1
2 )8(0)8]

kij =





0 0 0

0 0 k

0 k 0



 (6.7.24)

generate the supersymmetric E8 × E8 string model if we choose k = 0,

and the non-supersymmetric SO(16) × SO(16) string model if we choose

k = 1/2. Indeed, it is a general property that if we choose our vector V1

as above, then spacetime supersymmetry is preserved if ki0 = ki1 for all

i = 0, 1, ..., N − 1, and broken otherwise. Thus, we see that we now have

a very compact notation and procedure for generating and analyzing ten-

dimensional heterotic string models! We should also stress that these are

not the only parameter choices of {Vi, kij} that will lead to these mod-

els. In fact, there is often a great redundancy in this procedure, so that

a given physical string model can have many different representations in

terms of the worldsheet parameters {Vi, kij}. However, a given set of pa-

rameters always corresponds to a single, unique, self-consistent string model

in spacetime.

The formalism that we have presented in this lecture is called the

“free-fermionic construction”, and was developed in 1986 by H. Kawai,

D.C. Lewellen, and S.-H.H. Tye and by I. Antoniadis, C. Bachas, and

C. Kounnas. The name stems from the fact that the fundamental degrees

of freedom on the string worldsheet (in addition to the spacetime coordi-

nate fields Xµ) are taken to be the free fermionic fields Ψ. Even though
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we have presented this formalism for the case of ten-dimensional heterotic

strings, there also exists a straightforward generalization of this formalism

to four-dimensional heterotic string models.

As we have indicated, this formalism also carries over directly to the

case of multi-periodic complex fermions for which the boundary condition

parameter v in (6.7.1) can be an arbitrary rational number in the range

− 1
2 ≤ v < 1

2 . For each resulting boundary-condition vector Vi, let us define

mi to be the smallest integer such that if we multiply each element in Vi

by mi, we obtain a vector of integer entries. In general, mi is called the

“order” of the vector Vi, and is also the order of the corresponding physical

twist introduced by that vector. For example, in the case of only Neveu-

Schwarz or Ramond fermions, we have mi = 2 for all i, implying only ZZ2

twists. Nevertheless, even for general multi-periodic boundary conditions,

the above constraints continue to apply exactly as written. Indeed, the

only small change is that we now must take αi ∈ {0, 1, ...,mi − 1} when

generating our lattice of corresponding string sectors. Likewise, each GSO

projection phase kij must now also be chosen such that mjkij ∈ ZZ.

In this regard, it is important to note that the only fermions which can

possibly have such generalized boundary conditions are those which are not

the worldsheet superpartners of worldsheet bosons. This restriction arises

because the structure of the worldsheet supersymmetry algebra itself re-

stricts the corresponding fermions to have only Neveu-Schwarz or Ramond

boundary conditions. For example, in the case of the ten-dimensional het-

erotic string, only the left-moving worldsheet fermions are a priori permit-

ted to have generalized boundary conditions. By contrast, the right-moving

fermions are restricted by the right-moving worldsheet supersymmetry al-

gebra to have either Neveu-Schwarz or Ramond boundary conditions. This

in turn implies that si ∈ {0,− 1
2}, so that a given string sector continues to

give rise to only spacetime bosons or spacetime fermions. Also note that al-

though we are capable in principle of utilizing multi-periodic fermions while

constructing ten-dimensional heterotic string models, in practice it turns

out that this does not lead to new models which are physically distinct from

those using only Ramond or Neveu-Schwarz fermions. It is for this reason

that we can ultimately restrict ourselves to these simpler boundary condi-

tions in ten dimensions without loss of generality. In lower dimensions, by

contrast, this is no longer true, and the number of possible models grows

dramatically.

This formalism can also be carried over to the case of ten-dimensional su-

perstrings (rather than heterotic strings). For superstrings, the boundary-
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condition vectors take the simpler form

Vi = [(v̄)4 | (v)4] (6.7.25)

where v, v̄ ∈ {0, 1
2}. Our mandatory vector V0 then takes the form

[(1
2 )4|(1

2 )4], and we define si ≡ v+ v̄ (mod 1) as our new spacetime statistics

parameter, replacing (6.7.19). The results (6.7.21) and (6.7.18) then con-

tinue to apply directly. Of course, this formalism is fairly trivial in the case

of ten-dimensional superstrings, for the maximal set of linearly independent

basis vectors of the form (6.7.25) consists of only V0 and V1 ≡ [(0)4|(1
2 )4].

As we have seen in Lecture #4, this results in only four distinct super-

string models in ten dimensions: omitting V1 from our basis set generates

the Type 0 models, while including V1 in our basis set generates the Type II

models. However, just as for the heterotic strings, this formalism can also

be generalized to the case of four-dimensional superstring models where the

possibilities become much richer.

It turns out that the free-fermionic formalism can be extended still fur-

ther. For example, one can also extend this formalism to compactifications

of the bosonic string. Moreover, one can even extend this formalism to

special types of superstring and heterotic string models whose worldsheet

actions must be represented in terms of real rather than complex fermions.

Likewise, there even exist generalizations to string models involving non-

free worldsheet fermions (i.e., models whose worldsheet actions involve ad-

ditional Thirring-type interactions between the worldsheet fermions). In

fact, even though there exist alternative model-construction formalisms

that do not involve free worldsheet fermions at all, the free-fermionic con-

struction can often yield models that are physically equivalent to those that

are constructed through these other means.

How general, then, is the free-fermionic construction? It turns out that

for ten-dimensional string models, this construction is completely general.

What this means is that all known physically consistent superstring and

heterotic string models in ten dimensions can be realized via this construc-

tion (i.e., as stemming from an underlying set of free-fermionic parame-

ters {Vi, kij}). In lower dimensions, by contrast, this construction is not

completely general — there exist self-consistent lower-dimensional string

models which cannot be written or constructed in this manner. However,

the free-fermionic construction does comprise a vast set of semi-realistic

string models. Moreover, the free-fermionic construction has the great ad-

vantage that the rules for construction are relatively simple, and that they

enable one to systematically construct many string models and examine
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their phenomenological properties. Indeed, many computer programs have

been written that use this formalism in order to scan the space of string

models and analyze their low-energy phenomenologies. Thus, for these rea-

sons, the free-fermionic construction has played a very useful role as the

underlying method through which the majority of string model-building

has historically been pursued.

6.7.5. Assessment:

At this point, it is perhaps useful to assess the position in which we now

find ourselves. Clearly, through these constructions, we are able to produce

many string models. In fact, as we shall see, the number of self-consistent

string models in D < 10 is virtually infinite, and there exists a whole space

of such models. This space of models is called a moduli space, where the

so-called moduli are various continuous parameters which can be adjusted

in order to yield different models. (Of course, we have seen that we have

only discrete parameter choices in ten dimensions, but these parameters can

become continuous in lower dimensions.) Moreover, each of these models

has a completely different spacetime phenomenology. What, then, is the

use of string theory as an “ultimate” theory, if it does not lead to a single,

unique model with a unique low-energy phenomenology?

To answer this question, we should recall our discussion at the begin-

ning of these lectures. Just as field theory is a language for building certain

models (one of which, say, is the Standard Model), string theory is a new

and deeper language by which we might also build models. The advantages

of using this new language, as discussed in Lecture #1, include the fact that

our resulting models incorporate quantum gravity and Planck-scale physics.

Of course, in field theory, many parameters enter into the choice of model-

building. These parameters include the choice of fields (for example, the

choice of the gauge group, and whether or not to have spacetime supersym-

metry), the number of fields (for example, the number of generations), the

masses of particles, their mixing angles, and so forth. These are all space-

time parameters. In string theory, by contrast, we do not choose these

spacetime parameters; we instead choose a set of worldsheet parameters.

For example, in the free-fermionic construction, we choose the parameters

{Vi, kij}. All of the phenomenological properties in spacetime are then

derived as consequences of these more fundamental choices. But still, just

as in field theory, we are faced with the difficult task of model-building.

Is this progress, then? While opinions on this question may differ, one
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can argue that the answer is still definitely “yes”. Recall that quantum

gravity is automatically included in these string models. This is one of the

benefits of model-building on the worldsheet rather than in spacetime. Also

recall that string theory is a finite theory, and does not contain the sorts

of ultraviolet divergences that plague us in field theory. This is another

benefit of worldsheet, rather than spacetime, model-building. Moreover,

worldsheet model-building ultimately involves choosing fewer parameters

than we would have to choose in field theory — for example, we have seen

that an entire infinite tower of string states, their gauge groups and charges

and spins, are all ultimately encoded in a few underlying worldsheet param-

eters such as {Vi, kij}. Furthermore, because of this drastic reduction in

the number of free parameters, string phenomenology is in many ways more

tightly constrained than ordinary field-theoretic phenomenology. Thus, it

is in this way that string theory can guide our choices and expectations

for physics beyond the Standard Model. Indeed, from a string perspective,

we see that we should favor only those patterns of spacetime physics that

can ultimately be derived from an underlying set of worldsheet parameters

such as {Vi, kij}. These would then serve as a “minimal set” of parameters

which would govern all of spacetime physics!

Of course, at a theoretical or philosophical level, this state of affairs

is still somewhat unsatisfactory. After all, we still do not know which

self-consistent choice of string parameters ultimately corresponds to real-

ity. However, in principle, string theory should be able to predict this

dynamically. Indeed, even though there exists a whole moduli space of self-

consistent string models, there should exist an energy or potential func-

tion in this space (i.e., some function V ({φ}) of all the moduli {φ}) which

should dynamically select a particular point in moduli space (e.g., as a local

or global minimum of V ). This would then fix all of the moduli to specific

values, or equivalently (in the language of the free-fermionic construction)

tell us which choices of parameters {Vi, kij} are preferred dynamically.

Unfortunately, we do not understand the dynamics of string theory well

enough to carry out such an ambitious undertaking. Certainly, at the level

of perturbative (weakly coupled) string theory, we have no way to distin-

guish amongst the possible low-energy models by calculating such a function

V ({φ}). This is particularly true for string models exhibiting spacetime su-

persymmetry, for which V = 0 exactly to all orders in perturbation theory.

Even if the spacetime supersymmetry is broken, the resulting potential

V ({φ}) often turns out not to have a stable minimum. This is the so-called

“runaway problem”, to be discussed further in Lecture #8. Of course,
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one might hope that recent advances in understanding the non-perturbative

structure of string theory will ultimately be able to provide guidance in

this direction. However, as we shall discuss briefly in Lecture #8, although

these non-perturbative insights (particularly those concerning string dual-

ity) have thus far changed our understanding of the size and shape of this

moduli space, they have not yet succeeded in leading us to an explanation

of which points in this moduli space are dynamically selected.

So where do we stand? As string phenomenologists, we can do two

things. First, we can pursue model-building: we can search through the

moduli space of self-consistent string models in order to determine how close

to realistic spacetime physics we can come. This is, in some sense, a direct

test of string theory as a phenomenological theory of physics. Of course, this

approach to string phenomenology is ultimately limited by many factors: we

have no assurance that our model-construction techniques are sufficiently

powerful or general to include the “correct” string model (assuming that

one exists); we have no assurance that our model-construction techniques

will not lead to physically distinct models which nevertheless “agree” as

far as their testable low-energy predictions are concerned; and we have no

assurance that the most important phenomenological features that describe

our low-energy world (such as the pattern of supersymmetry-breaking) are

to be found in perturbative string theory rather than in non-perturbative

string theory. For example, it may well be (and it has indeed been ar-

gued) that the true underlying string theory that describes nature is one

which is intrinsically non-perturbative, and which would therefore be be-

yond the reach of the sorts of approaches typically followed in studies of

string phenomenology.

Another option, then, is to temporarily abandon string model-building

somewhat, and to seek to extract general phenomenological theorems or

correlations about spacetime physics that follow directly from the general

structure of string theory itself. Clearly, we would wish such information to

be model-independent , i.e., independent of our particular location in mod-

uli space or the values of particular string parameters such as {Vi, kij}. For

example, if some particular configuration of spacetime physics (some pat-

tern of low-energy phenomenology) can be shown to be inconsistent with

being realized from an underlying set of {Vi, kij} parameters, and if such a

demonstration can be made to transcend the particular free-fermionic con-

struction so that it relies on only the primordial string symmetries them-

selves, then such patterns of phenomenology can be ruled out. In this way,

one can still use string theory in order to narrow the list of possibilities
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for physics at higher energies, and to correlate various seemingly discon-

nected phenomenological features with each other. Such correlations would

then be viewed as “predictions” from string theory, and we shall see many

examples of this phenomenon in subsequent lectures.

In summary, then, we have seen that there exist powerful ways of con-

structing string models and surveying their low-energy phenomenologies,

but that this leads to the problem of selecting the true model (i.e., the true

“ground state” or “vacuum”) of string theory. Despite recent advances in

understanding various non-perturbative aspects of string theory, our in-

ability to answer the fundamental question of vacuum selection persists.

Until this challenge is overcome, string phenomenology therefore must con-

tent itself with answering questions of a relative nature (such as questions

concerning relative patterns of phenomenology) rather than the sorts of

absolute questions (such as calculating the mass of the electron) that one

would also ideally like to ask. Nevertheless, as we shall see, string the-

ory can still provide us with considerable guidance for physics beyond the

Standard Model.

6.8. Lecture #8: A final lecture

Up to this point, we have primarily discussed string model-building — i.e.,

the art of building string models. Hopefully, we have given the reader some

sense of the complexity of the many constraints that are involved. In this

final lecture, however, we shall depart from the somewhat “linear” devel-

opment we have followed thus far in order to discuss string phenomenology

— the study of the low-energy physical attributes of these models.

In the first part of this final lecture, we shall outline some general prop-

erties of four-dimensional heterotic string models. Then, we shall contrast

these with the phenomenological properties of open-string D-brane models.

Finally, we shall provide general comments concerning string phenomenol-

ogy as a whole, and conclude with a brief discussion of some new, recent

directions in string phenomenology.

6.8.1. General properties of perturbative D = 4 heterotic

string models

In previous lectures, we have discussed the construction of perturbative

heterotic string models. Here, we shall now turn the general low-energy

properties that emerge from these constructions.
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First, such models all have big gauge groups. For perturbative heterotic

strings in four dimensions, we find that

rank(G) ≤ 22 . (6.8.1)

This is the four-dimensional analogue of the observation that the maximum

rank in 10 dimensions is 16, such as for the SO(32) and E8 × E8 heterotic

strings. The additional six units of rank emerge from the Kaluza-Klein

reduction from D = 10 to D = 4.

If the string model in question is “realistic”, then typically we can write

G = G1 × G2 (6.8.2)

where G1 contains SU(3) × SU(2) × U(1)hypercharge. Here G1 is called the

“observable-sector” gauge group: e.g., G1 could be SU(3)×SU(2)×U(1),

SO(6) × SO(4), SU(5), SO(10), E6, etc. By contrast, G2 is called the

“hidden-sector” gauge group.

Second, there are typically lots of massless (“observable”) states! These

can be classified into several categories:

• Typical representations will carry charges under both G1 and G2

(i.e., transform as non-singlet representations of these groups). In

general, we will only have spinors, vectors (i.e., fundamentals), and

adjoints at the massless string level. (This is indeed a theorem:

the allowed representations are closely tied to something called the

“affine level” of the gauge group.) These states will typically fall

into two subsets. First, there may be states that can be identified

as (MS)SM quarks and leptons. In such cases, all gauge symmetry

groups under which the SM gauge particles transform as singlets

are considered to be part of G2, i.e., the hidden sector. Second,

there can be extra states beyond the (MS)SM. There will typically

be a lot of such states as well. They may be identified as exotic

quarks and leptons. They will typically have fractional electric

charge. This could cause problems (see below).

• Many gauge-singlet states (i.e., states carrying no gauge charges)

will also exist in the string model. For example, such states include

the graviton, antisymmetric tensor, and dilaton φ. Recall that

gstring ∼ exp(−〈φ〉). Thus, the dilaton must be stabilized to yield

a fixed value for the string coupling, and to avoid the so-called

“dilaton runaway problem” (wherein 〈φ〉 → ∞, or gstring → 0).

The dilaton is just one example of a generic class of Lorentz-singlet

particles called string “moduli”. The effective potential for such
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models is flat to all orders in perturbation theory. Thus, non-

perturbative string effects must somehow introduce a potential for

these fields, i.e., lift the degeneracy of string “ground states” and

select a string vacuum. But how does this happen? This is a

major unsolved problem, with lots of ideas in the literature. This

is critically important for string phenomenology, since the vevs of

the moduli set the values for gauge couplings, particle masses, and

so forth. Without knowing the values of these couplings, the best

we can look for is string-constrained patterns (textures) in these

parameters.

Third, there will be infinite towers of Planck-scale string states! These

states come in increasingly larger representations of gauge groups, and like-

wise have higher and higher Lorentz spins. These states are the means by

which string theory maintains finiteness. They propagate in all string loop

diagrams, and their contributions cancel the divergences of the massless

states. They are the result of conformal invariance (really its one-loop

extension, called “modular invariance”).

One interesting fact about these states is that the number of such mas-

sive states with spacetime mass M grows exponentially:

gM ∼ exp(cM
√
α′) (6.8.3)

where c is a fixed positive constant. One of the implications of an exponen-

tially growing degeneracy is as follows. Let us consider the thermodynamic

partition function:

Z ≡
∑

M

gM exp(−M/kT ) (6.8.4)

where T is the temperature and k is Boltzmann’s constant. This gives:

Z =
∑

M

exp[M(c
√
α′ − 1/kT )] . (6.8.5)

Thus, if T is bigger than a critical value

Tc ≡ (kc
√
α′)−1 , (6.8.6)

then the thermodynamic partition function diverges ! This is the so-called

“Hagedorn” phenomenon.

Does this signal a phase transition? Or is there instead a limiting

(“Hagedorn”) temperature for string theory beyond which one cannot go?

What happens to a box of strings (i.e., the “universe”) if we pump in lots

of energy and try to raise the temperature?
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The answers to these questions are really not known. The current belief

is that we have a phase transition in which all extra energy gets dumped

into long string modes. But the nature of this phase transition is generally

unclear. Indeed, this Hagedorn phenomenon is one of the central hallmarks

of the the subject of string thermodynamics . As might be imagined, this

subject is of critical importance for string cosmology and for string-based

studies of the early universe.

Fourth, such heterotic string models will typically give rise to a single

“pseudo-anomalous” U(1) gauge group! Recall that in field theory, given

a set of states with U(1) charges Qi, we must have
∑

iQi = 0 in order to

cancel axial (triangle) anomalies. In particular, certainly the hypercharge

U(1) must be anomaly-free.

However, in (many/most) heterotic string models, gauge groups are

big and there can be extra U(1) gauge groups. One finds, upon summing

over massless spectrum, that one of these gauge groups, typically denoted

U(1)X , has corresponding states with charges QX such that
∑

QX 6= 0.

Thus, from the field-theory point of view, this U(1)X appears to be anoma-

lous!

In fact, however, this gauge group is not anomalous (since string the-

ory is always anomaly-free); there are extra contributions to the appar-

ent anomaly which come from anomalous transformations of the string

“axion field” (related to the antisymmetric tensor Bµν) which cancel this

anomaly. This is an intrinsically “stringy” mechanism (called the Green-

Schwarz mechanism) for cancelling an anomaly.

Fifth, such models typically give rise to automatic gauge coupling unifi-

cation (regardless of existence of any GUT symmetry in the string model).

In fact, the gauge couplings are even unified with the gravitational coupling!

It is easy to understand why this is the case. Recall that our original

“untwisted” four-dimensional heterotic string model has a “unified” gauge

group SO(44), with one gauge gauge coupling whose value is set by the

dilaton vev. (This is the analogue of SO(32) in ten dimensions.) When

we break subsequently break the gauge symmetry by introducing twists

(“orbifolding”), this does not affect the gauge couplings. They are still all

set by the same dilaton vev (ultimately because there is only one dilaton

to which all gauge groups can couple). Thus, gauge coupling unification is

automatic in heterotic string theory.

One important question is the scale of the unification. Clearly, by

dimensional analysis, this can be nothing but the string scale. At tree-

level, we have already seen in Lecture #1 that the string scale is given by
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Mstring = gstringMPlanck. However, work by Kaplunovsky has shown that

at one-loop order, and with the usual GUT assumption of gstring ≈ 0.7, this

result is shifted down to an approximate value, Mstring ≈ 5.27× 1017 GeV.

This is generally a problem, since the expected GUT value for the uni-

fication scale is MGUT = 2 × 1016 GeV. How then do we explain this

factor-of-20 discrepancy between Mstring and MGUT? This is currently an

open question, with many potential solutions. A comprehensive review of

this subject can be found in K.R. Dienes, Phys Reports 287 (1997) 447 =

hep-th/9602045.

Sixth, such models typically give rise to states with fractional electric

charge. We already referred to this above. Indeed, extra states beyond the

MSSM will typically have SU(2)×U(1) quantum numbers which imply non-

integer values for the electric charge. In fact, one can prove (see theorem by

A.N. Schellekens) that if the model has a gauge symmetry SU(3)×SU(2)×
U(1) rather than a GUT, then the string will necessarily give rise to such

fractionally charged states. This is a result of conformal invariance and

modular invariance.

One possible resolution to this problem is that such fractionally charged

states might be able to confine to form integer-charged states under the

influence of non-abelian gauge symmetries beyond the SM. However, if

this is not possible in a given string model, then that model is generally

considered to be phenomenologically inconsistent.

General theorems exist which enable one to classify the different types of

fractional charges one can expect to find in a given string model and which

can be “confined” away. (We refer the reader to papers by Schellekens; also

by Dienes, Faraggi, March-Russell.)

Seventh, it turns out that such string models cannot contain any exact

global symmetries! For example, in heterotic string theory, baryon- and

lepton-number conservation, as well as other discrete symmetries, must all

be parts of local symmetries (gauge symmetries) or be only approximate

symmetries (i.e., accidental).

Eighth, such heterotic string models will either exhibit spacetime su-

persymmetry, or they will be non-supersymmetric. If non-supersymmetric,

however, they nevertheless have a hidden symmetry called a “misaligned

supersymmetry” which governs how the bosons and fermions are arranged

at all mass levels so that finiteness is preserved, even without SUSY. Even

the supertraces, when evaluated over the entire Fock space of string states,

continue to vanish. [References include K.R. Dienes, Nucl. Phys. B429

(1994) 533; K.R. Dienes, M. Moshe, and R.C. Myers, Phys. Rev. Lett. 74
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(1995) 4767.]

However, it is not known whether such non-supersymmetric strings can

ever be stable beyond tree level. This is an important open question in

string theory. However, if such stable non-SUSY strings exist, then this

could provide a whole new framework for thinking about the gauge hier-

archy problem, SUSY-breaking, questions of finiteness, the role of effective

field theories and in particular the massive Planck-scale states, and gauge

coupling unification. This may even provide an alternative, “stringy” ap-

proach towards the hierarchy problem which does not involve either super-

symmetry or extra spacetime dimensions. [For some speculative ideas along

this direction, see K.R. Dienes, hep-th/0104274.]

Ninth, the spacetime string spectrum can exhibit certain dualities. In-

deed, there are several kinds of duality which, taken together, form an

interconnected web of relations between different kinds of string theories.

• One kind of duality is called “T-duality”. Consider string #1, com-

pactified on a circle of radius R, and string #2, compactified on a

circle of radius
√
α′/R. It turns out that these strings are indis-

tinguishable, in the sense that they have exactly the same space-

time spectrum! What would be considered a momentum state in

string #1 would be considered a winding-mode state in string #2,

and vice versa. This is clearly a very “stringy” symmetry! In fact,

this symmetry transcends the mere tree-level spectrum, and holds

to all orders. It also applies for all correlation functions, scattering

amplitudes, both perturbatively and even non-perturbatively. This

is an exact symmetry of closed string theories.

One important implication of T-duality is that closed string the-

ory (unlike point-particle field theory) cannot distinguish between

large and small compactification radii! An interesting question is

what this might imply about string cosmology. Likewise, what are

the implications about our ultimate ability to derive effective field

theories from the string?

• There are also other kinds of dualities which exist amongst the

different string theories. For example, there is a duality called “S-

duality” which flips the sign of the dilaton and thus relates theories

at weak coupling to theories at strong coupling! Under such a

mapping, perturbative string states (such as the ones we have been

considering all along) are exchanged with non-perturbative string

states (which have not considered at all, but which are ”solitons”
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= D-branes in the theory). Under this mapping, for example, the

SO(32) heterotic (closed) string theory is mapped into the SO(32)

Type I (open) string theory. Combined with T-duality, one finds

that all the different kinds of ten-dimensional strings are ultimately

related to each other, becoming part of a larger superstructure

called “M-theory”.

The study of string dualities is a vast subject which easily deserves

its own lectures, and which comprises the so-called ”second” superstring

revolution, dating from 1995. Indeed, insights have enabled us, in many

cases, to “solve” for the strong-behavior of string theory!

I cannot give a proper introduction to M-theory here, but I will simply

give some general comments. M-theory is a conjectured eleven-dimensional

theory (of strings? of membranes? – we don’t know) which can be defined

through its three fundamental properties:

• The low-energy limit of M-theory is eleven-dimensional SUGRA

(recall that D = 11 is the maximum dimension for SUGRA).

• Compactifying M-theory on a circle of radius R yields the Type IIA

string with a coupling that is a growing function of R. So, at strong

coupling, the Type IIA string begins to ”see” an extra dimension

and become eleven-dimensional.

• Compactifying M-theory on a line segment of length L yields the

E8×E8 heterotic string with a coupling that grows with L. This is

why one does not see this 11th dimension in studies of the pertur-

bative heterotic string: the very act of taking the string coupling

to be small reduces the 11th dimension to zero size!

Studying M-theory and its compactifications (and its phenomenological

properties, such as how SUSY-breaking may be realized in this framework)

has been a hot topic in the string literature. In particular, one may ask

whether it is possible to compactify M-theory to four dimensions in ways

that do not pass through an intermediate realization in terms of a D = 10

heterotic string, thereby constructing new classes of four-dimensional string

models? The answer is to this question is ‘yes’. Thus, even without knowing

the precise nature of M-theory, it has already been possible to use insights

gleaned from the mere existence of such a theory in order to generate new

classes of string models.

Taken together, these developments have led to the realization that

many of our cherished “fundamental” string symmetries (such as confor-
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mal invariance, modular invariance, etc.) are only effective weak-coupling

symmetries, applicable only for closed strings. Thus, as the string coupling

grows in closed string theories, we expect to see deviations from the con-

straints that come from these symmetries. This could be very useful in

“freeing up” certain undesirable predictions of string phenomenology, even

within closed strings.

6.8.2. General properties of D = 4 open-string models

Many of the above phenomenological features of heterotic strings change

when one deals with Type I theories (i.e., theories which include open

strings). Some of the most viable models in this class that have chiral

spectra include so-called ”intersecting D-brane Models” as well as models

with D-branes at singularities. Unfortunately, we do not have the space here

to discuss such constructions. However, there are excellent reviews avail-

able, In particular, we refer the reader to R. Blumenhagen, M. Cvetic, P.

Langacker, and G. Shiu, hep-th/0502005 and to M. Grana, hep-th/0509003.

There are many reasons to examine such Type I theories. Of course,

they are interesting in their own right since they are among the possible

allowed string constructions. However, as a result of the various string

dualities discussed above, such strings often represent the strong-coupling

limits of the heterotic models (this is “heterotic/Type I duality”, a com-

ponent of S-duality). Thus, by studying Type I string models, one is often

really analyzing the strong-coupling limit of a closed heterotic string model.

We cannot provide a complete discussion of such Type I models here.

However, the basic ideas are simple. Unlike heterotic string models, which

realize their gauge symmetries along the closed strings through Kaluza-

Klein reductions from 10 or 26 dimensions (as discussed above), gauge

symmetries are realized in open strings through so-called “Chan-Paton fac-

tors” which reside at the endpoints of the open strings. These are the

analogues of “quarks” at the ends of the open strings, and they carry the

gauge charges associated with the string states.

Nowadays these Chan-Paton factors are reinterpreted as the labels asso-

ciated with D-branes, so that open strings are considered to have endpoints

which are restricted to lie on D-branes. Indeed, one definition of a D-brane

is that it represents a solitonic membrane-like object on which an open

strings can end. A single D-brane corresponds to a U(1) gauge symmetry

(the corresponding photon being represented by an open string which starts

and ends on the brane), while non-abelian U(N) gauge symmetries are re-
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alized through stacks of N coincident D-branes. In such configurations,

the non-abelian gauge bosons are realized as strings which start and end

on different D-branes within the stack. The Higgs mechanism (by which

certain gauge symmetries can be broken and certain corresponding gauge

bosons get heavy) can be realized in this framework by separating branes

within the stack; those strings which start and end on different D-branes

get stretched as a result of this separation, and thus become massive as a

result of the tension involved in that stretching.

In general, within such constructions, one might realize the Standard

Model through an SU(3) stack of D-branes and an SU(2) stack of D-branes.

In such a scenario, quarks (which carrying non-trivial SU(3) and U(2) gauge

charges) would be represented by strings stretching from the SU(3) stack

to the SU(2) stack; such states can indeed be light (or massless) if these

stacks of branes intersect, and the strings lie near that intersection. Of

course, gravitational physics continues to be represented by closed strings

which, having no endpoints, are not tied to particular branes and can there-

fore propagate freely in the “bulk”. In general, only those states which are

neutral with respect to all gauge symmetries (such as gravitons) are per-

mitted to wander freely in the entire volume both within and transverse

to the branes. In certain constructions, other possible closed-string states

might include right-handed neutrinos (which are also completely neutral

with respect to all Standard-Model gauge symmetries).

In general, the requirements of spacetime supersymmetry imply that the

theory contain combinations of D-branes of only certain dimensionalities;

likewise, the relative positions and/or geometric intersections of these D-

branes are highly constrained. There are also generally other extended

objects in these theories (beyond D-branes): these include anti-Dbranes,

orientifold planes, and other types of branes (such as NS branes). Anomaly

cancellation considerations end up playing a huge role in determining which

configurations of all of these objects are required to form self-consistent

string models.

Other than these constraints, however, one has tremendous freedom in

designing D-brane configurations, compactifying the theory, wrapping the

D-branes around the compactification manifolds, and so forth. This is then

the art of Type I model building. Because of the tremendous range of al-

lowed D-brane configurations and dimensionalities, and because the closed-

string and open-string sectors have very different properties, Type I string

phenomenology turns out to be very rich and unconstrained compared to

heterotic string phenomenology.
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In particular, even without providing details concerning such construc-

tions, it is possible to summarize some of the major phenomenological dif-

ferences between these string models and the closed (heterotic) strings dis-

cussed above.

First, the rank of the gauge group no longer restricted to 22! Indeed,

non-perturbative effecs can give rise to new gauge interactions that can

increase the total rank beyond 22, and there is no bound to how large

these gauge groups can become! (You can decide for yourself whether you

consider this to be a good thing...)

Second, the fundamental scale of the theory (Mstring) is no longer tied

to MPlanck. The usual heterotic relation Mstring = gstringMPlanck no longer

applies to open strings. The reason is that for closed strings, both gauge

forces and the gravitational force emerge together. However, for Type I

strings, the gravitational force emerges from the closed-string sector, while

the gauge forces typically emerge from the open-string sectors. This differ-

ence introduces an undetermined “rescaling” factor between the different

sectors, and therefore allows one to “dial” Mstring as we wish in such the-

ories. [For more details, see Chapter 10 of K.R. Dienes, Phys Reports 287

(1997) 447 = hep-th/9602045, which summarizes the original proposal of

Witten: E. Witten, Nucl Phys B 471, 135 (1996)]. One could conceivably

dial the Type I string scale all the way down to the TeV range – see, e.g.,

J. Lykken, PRD 54, 3693 (1996); K.R. Dienes, E. Dudas, T. Gherghetta,

Nucl. Phys. B537, 47 (1999); G. Shiu, S.-H.H. Tye, Nucl. Phys. B548, 180

(1999).

This freedom to adjust the string scale and realize the Standard Model

as an open string living on a brane while gravitational fields correspond to

closed strings living in the bulk is the primary reason why Type I strings

provide the natural realization (and inspiration) for extra-dimensional

“brane-world” scenarios.

Third, for weakly coupled heterotic strings, there is only one dilaton-like

field which couples to all gauge groups and matter fields in a universal way.

However, in Type I theories there can generally be multiple dilaton-like

fields.

Fourth, for Type I theories, gauge coupling unification is no longer auto-

matic. This is a consequence of the existence of multiple dilaton-like fields.

Each gauge coupling can be determined by the vev of a different dilaton

field, and likewise the gauge theories living on different D-branes can ex-

perience different transverse volumes which also affect the values of their

respective gauge couplings.
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Fifth, in heterotic strings, there was only one anomalous U(1) because

there was only one dilaton to cancel this anomaly through the Green-

Scwharz mechanism. However, in Type I theories there can be multiple

anomalous U(1)’s because the presence of multiple dilatons in Type I the-

ories implies that there can be a generalized Green-Schwarz mechanism

which cancels multiple U(1) anomalies.

Sixth, it turns out that whole new types of spacetime compactifica-

tions are possible. In heterotic strings, one must compactify on a so-called

“Calabi-Yau” manifold if one wishes to preserve N=1 spacetime supersym-

metry. (See Polchinski’s textbook for a complete discussion: technically CY

manifolds are six-dimensional complex manifolds with SU(3) holonomy or

equivalently vanishing first Chern class.) While the simple cases of tori

(and orbifolds thereof) are well understood, the general full class of CY

manifolds is not well understood (not even classified by mathematicians)

and it is hard to perform detailed calculations of the resulting low-energy

phenomenologies that emerge when heterotic strings are compactified on

such spaces.

Type I string models are different. Because the matter arises locally (on

branes) rather than globally (in the bulk), the compactification geometry is

less constrained. For example, chirality no longer requires compactification

on an orbifold, since chirality can instead emerge directly from D-brane

intersections even when the compactification space is a smooth manifold.

For further discussions of these differences between the phenomenolo-

gies of open and closed strings, good references are: L.E. Ibanez, hep-

th/9804236; F. Quevedo, Trieste String School Lectures, March 2002.

6.8.3. String model-building and string phenomenology:

General practice and goals

Having discussed the different types of phenomenological features of these

different types of string models, we now outline the basic way in which

the string model-building game is played. Of course, the following steps

are merely caricatures, with many details omitted. Nevertheless, they do

indicate the rough methodology that a string phenomenologist must follow

in order to claim to have a realistic string model.

The first step, as always, is to build the candidate string model itself.

We have discussed how to do this in great detail in previous lectures. This

is the string “model-building” aspect of string phenomenology. How one

goes about doing this will depend on the particular string framework one
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has in mind, whether closed or open strings are involved, whether one is

dealing with perturbative or non-perturbative constructions, and so forth.

Each construction will carry with it its own constraints, its own techniques,

and its own unique advantages and difficulties.

Once one has a particular string model in hand, one then extracts the

gauge symmetry, the particle content (massless spectrum only, if one cares

only about questions pertaining to observable low-energy states), and all

associated charges and couplings.

The next step, if necessary (such as in heterotic strings), is to do a so-

called “string vacuum shift”. This is a technical step. Recall that there

often exists a pseudo-anomalous U(1)X gauge symmetry. Although this

is not really anomalous, it leads to an effective Fayet-Iliopoulos D-term

which can break spacetime SUSY and destabilize the string vacuum. So, in

order to “fix” this problem, one shifts the ground state slightly: one assigns

a vev to certain moduli in the theory in order to break the U(1)X gauge

symmetry and cancel the D-term. This makes the model stable again. This

vev may often also break other gauge symmetries in addition to U(1)X . It

also can generate intermediate mass scales for various light states in the

string model.

The third step is to write down an effective Lagrangian of these light

fields that are derived from the string. Typically we will write something

of the form

L = LSUGRA + Lmatter + Lcouplings . (6.8.7)

These different pieces are as follows.

• LSUGRA: This must be appropriate for the given model in question,

e.g., N = 0 (non-susy), or N = 1, or Type IIA or IIB SUGRA, etc.

• Lmatter: This will consist of the kinetic terms for all light fields

(including an appropriate dilaton dependence).

• Lcouplings: Here, we must include all couplings allowed by string

symmetries, given the charges that these states have under both ob-

servable and hidden-sector gauge symmetries (i.e., selection rules).

These will include renormalizable and non-renormalizable cou-

plings, where the non-renormalizable ones are suppressed by powers

of the string scale Mstring. In principle, one should calculate the

coefficients that pre-multiply these terms by explicitly evaluating

the appropriate corresponding string diagrams.

All together, this is the “effective Lagrangian from the string model”.
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One must make sure that it is consistent with all string symmetries (e.g.,

T-duality, S-duality, others) if you are going to ask physics questions for

which those symmetries are likely to be important.

The final step is to proceed to analyze the physics of the string model by

analyzing the effective field theory of the effective Lagrangian derived from

the string. We treat this Lagrangian as describing the physics at the string

scale, and use RGE’s to pass to lower energy scales (as we would in ordi-

nary field theory). Along the way (i.e., at intermediate scales), various new

features can arise. For example, although Standard Model gauge groups

will hopefully stay perturbative, the hidden-sector gauge couplings may,

depending on the particle content, become strong and non-perturbative

at some intermediate scale. This can trigger the corresponding gauginos

to condense (“gaugino condensation”). which in turn can trigger SUSY-

breaking. This is indeed an elegant string-inspired but field-theoretic means

of breaking SUSY at intermediate energy scales. Likewise, extra matter

beyond the MSSM (with masses determined by vacuum shifting, as dis-

cussed) can decouple. Clearly, the analysis for this sep is generally very

model-dependent!

Ultimately, we seek to reproduce the low-energy world at the TeV-scale

— i.e., we wish to reproduce the Standard Model, and then study the phe-

nomenological implications of the extra string-inspired particles or interac-

tions that are predicted at higher scales. For example, one might construct

string GUT models (realizing standard field-theory GUT scenarios from

string theory), or realize the Standard Model directly at the string scale

without an intervening GUT, or...

Given this procedure as outlined, one might wonder what the goals of

string phenomenology ultimately are. Is it sufficient to try to construct

semi-realistic string models, or are there are other goals as well? While a

conversation on this topic can easily yield as many opinions as there are

people in the conversation, the following represent the personal opinions

of your humble lecturer. Therefore, the reader is forewarned about the

potential bias of the lecturer.

Clearly, one important and undeniable goal must be to try to construct

realistic string models, i.e., to see how far one can really “push” the em-

bedding of the low-energy world into string theory, to test the extent to

which one can really make string theory consistent with the real world.

Unfortunately, this is very model-dependent. Also, given the large (in-

finite) “moduli” space of all possible string models, it is hard (impossible?)

to believe that we would really be lucky enough to stumble across the right
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string model (assuming one exists).

Also, although we discussed one particular method of model-

construction in these lectures (the so-called ”free-fermionic construction”

for closed strings), its applications and scope are limited (it essentially only

hits discrete points in moduli space). They are points of enhanced symme-

try, so they may indeed be special, but we don’t know the structure of mod-

uli space well enough to have a feeling for whether other, more compelling

points might exist. And for open strings, we have seen the possibilities are

even more varied!

Therefore, an alternative goal might be to try to uncover model-

independent phenomenological truths from string theory. For example, one

might ask questions such as

• What “patterns” of low-energy phenomenology are consistent with

coming from or being realized from an underlying string theory?

• What “patterns” of low-energy phenomenology can be excluded?

• What sorts of “correlations” does string theory predict between

phenomenological features that would otherwise appear to be com-

pletely independent from a field theory point of view? As an exam-

ple, string theory predicts correlations between gauge groups and

fractional charges, etc. These correlations are ultimately the reflec-

tions of the deeper string symmetries (i.e., worldsheet symmetries)

from which all spacetime physics is ultimately derived. For further

editorializing along these lines, see the comments about the string

landscape at the end of this lecture. In this way, we can then ask

the question:

• What guidance does string theory provide for answering or address-

ing questions of physics beyond the Standard Model?

Of course, string theory also has the potential to provide insights of a

completely different nature. For example, just as field theory provides cer-

tain mechanisms for addressing long-standing questions of particle physics,

string theory (viewed as a general theory of extended objects) has the po-

tential to provide new, additional, intrinsically geometric mechanisms for

solving some of these same problems. Moreover, these mechanisms may

also be able to generate new approaches to solving long-statnding problems

that ordinary field theories based on point particles cannot reach. Thus,

string phenomenology may be able to enlarge the domain of problems that

a particle physicist might hope to address, and provide new tools for this

endeavor.
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But finally, perhaps the most important unresolved problem within

string phenomenology is to understand what selects the string vacuum.

Clearly, in order to make full progress in our understanding of string the-

ory and its low-energy phenomenological predictions, we must eventually

uncover the dynamics (presumably non-perturbative or semi-perturbative,

or involving a mix of perturbative and non-perturbative physics) which ul-

timately pushes the universe towards the true ground state of string theory,

the one in which we live.

Progress along these lines will be very hard, but is very important. Per-

haps insight will come (or even may be coming) from recent developments

in string duality. This problem seems tied up with the whole issue of how

SUSY is broken, and the cosmological constant problem, so it is likely to

take some time.

6.8.4. New/current directions in string phenomenology

We close this final lecture with a brief discussion of three new/current

directions in string phenomenology. Once again, the following list is hardly

complete. However, it does capture several of the main thrusts of string

phenomenology research over the past few years, and the directions which

are likely to hold the attention of string phenonenologists for the forseeable

future.

Large-radius compactifications / TeV-scale strings

Many of you probably consider higher-dimensional “brane world” sce-

narios as something separate from string theory. But in truth, much of

this work is really a branch of string phenomenology: one is studying the

properties of string theories in a corner of the parameter space where the

compactification radii are large, or where the Standard Model is restricted

to a brane (stack) as in Type I models! Indeed, the whole setup of much of

this work (SM restricted to a brane, gravity propagating in the bulk, and so

forth) really emerges from Type I string theories where the SM is realized

through open strings (whose endpoints therefore must lie on D-branes) and

the graviton is realized through closed strings (which have no endpoints and

which are therefore free to wander throughout the full higher-dimensional

spacetime).

Thus, when one studies issues of flavor physics or develops new higher-

dimensional mechanisms for understanding hierarchies, supersymmetry

breaking, proton stability, etc, one is really developing an understanding

of the phenomenology of open strings in a particular corner of compacti-
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fication parameter space! In other words, the brane world is nothing but

a branch of string phenomenology, studied through an effective field the-

ory approach which might ultimately emerge from an underlying (Type I)

string.

In addition to Kaustubh Agashe’s excellent lectures on this subject at

this year’s TASI school, I recommend (of course) my own TASI 2002 lectures

on the brane world: K.R. Dienes, 2002 TASI Lectures: New Directions for

New Dimensions: An Introduction to Kaluza-Klein Theory, Large Extra

Dimensions, and the Brane World”, available at

http://scipp.ucsc.edu/haber/tasi proceedings/dienes.ps.

Flux compactifications

Another line of intense research in recent years concerns the possibility

of so-called flux compactifications . There are compactifications in which

various background fluxes associated with different p-form gauge fields in

the theory are actually turned on. (Previous work had always assumed

that such fluxes were zero.) It turns out that turning on such fluxes has a

number of important effects. For example, the constraints on the allowed

compactification geometries are modified, and the extra flux contributions

allow us to go beyond the simple class of Calabi-Yau compactifications.

However, the most important phenomenological aspect of such flux com-

pactifications is that they provide a framework leading to new methods of

moduli stabilization. Indeed, within the framework of flux compactifica-

tions, it has been been possible to build semi-realistic string models in which

the vast majority of complex and Kähler moduli are completely frozen!

Flux compactifications thus provide a new arena in which to address the

all-important issues of moduli stabilization and vacuum selection. Indeed,

work of Kachru, Kallosh, Linde, and Trivedi (KKLT) has even provided a

framework in which it might be possible to realize meta-stable string vacua

with deSitter (dS) geometries. This is of critical importance if string theory

is to make contact with cosmological evolution.

The string theory “landscape”

Finally, as we have seen repeatedly throughout these lectures, one of

the most serious problems faced by practitioners of string phenomenology

is the multitude of possible, self-consistent string vacua. That there exist

large numbers of potential string solutions has been known since the ear-

liest days of string theory; these result from the large numbers of possible

ways in which one may choose an appropriate compactification manifold (or

orbifold), an appropriate set of background fields and fluxes, and appropri-
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ate expectation values for the plethora of additional moduli to which string

theories generically give rise. Although historically these string solutions

were not completely stabilized, it was tacitly anticipated for many years

that some unknown vacuum stabilization mechanism would ultimately lead

to a unique vacuum state. Unfortunately, recent developments suggest

that there continue to exist huge numbers of self-consistent string solutions

(i.e., string “models” or “vacua”) even after stabilization. Thus, a picture

emerges in which there exist huge numbers of possible string vacua, all po-

tentially stable (or sufficiently metastable), with apparently no dynamical

principle to select amongst them. Indeed, each of these potential vacua can

be viewed as sitting at the local minimum of a complex terrain of possible

string solutions dominated by hills and valleys. This terrain has come to

be known as the “string-theory landscape”.

The existence of such a landscape has tremendous practical significance

because, as we have seen, the specific low-energy phenomenology that can

be expected to emerge from string theory depends critically on the partic-

ular choice of vacuum state. Detailed quantities such as particle masses

and mixings, and even more general quantities and structures such as the

choice of gauge group, number of chiral particle generations, magnitude of

the supersymmetry-breaking scale, and even the cosmological constant can

be expected to vary significantly from one vacuum solution to the next.

Thus, in the absence of some sort of vacuum selection principle, it is nat-

ural to tackle a secondary but perhaps more tractible question concerning

whether there might exist generic string-derived correlations between dif-

ferent phenomenological features. In this way, one can still hope to extract

phenomenological predictions from string theory.

Over the past two years, this idea has triggered a surge of activity con-

cerning the statistical properties of the landscape. Investigations along

these lines have focused on diverse phenomenological issues including the

value of the supersymmetry-breaking scale, the value of the cosmological

constant, and the preferred rank of the corresponding gauge groups, the

prevalence of the Standard-Model gauge group, and possible numbers of

chiral generations. Discussions of the landscape have also led to various

theoretical paradigm shifts, ranging from alternative landscape-based no-

tions of naturalness and novel cosmological inflationary scenarios to the use

of anthropic arguments to constrain the set of viable string vacua. There

have even been proposals for field-theoretic analogues of the string-theory

landscape, as well as discussions concerning whether a landscape of suffi-

ciently stable string vacua actually exists.
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The implications of a landscape (if it exists) have been hotly debated

in the string community. Undoubtedly, if the string landscape exists, it

is a very rich place, full of unanticipated properties and characteristics.

Nevertheless, at the very least, the possible existence of such a landscape has

focused the attention of the string community on the fundamental question

which has plagued string theory over the past twenty years, namely the

issue of vacuum selection.

One might argue that the landscape is simply too large to permit any

reasonable analysis. Indeed, one might even argue that if such a landscape

exists, string theory is doomed as a predictive theory of physics, and that

the answers to some of the most fundamental questions in physics might

find their answers in random environmental selection (or as the result of

cosmological chance).

However, it is also true that the direct examination of actual string mod-

els uncovers features and behaviors that might not otherwise be expected.

Moreover, through direct enumeration, we gain valuable experience in the

construction and analysis of phenomenologically viable string vacua. Fi-

nally, as string phenomenologists, we must ultimately come to terms with

the landscape (if it exists). Just as in other fields ranging from astrophysics

and botany all the way to zoology, the first step in the analysis of a large

data set is enumeration and classification. Indeed, this is how science be-

gins. Thus, properly interpreted, statistical landscape studies might be

useful and relevant in this overall endeavor of connecting string theory to

the real world.
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Fig. 6.3. In string theory, we replace (a) zero-dimensional elementary particles with one-
dimensional strings; (b) one-dimensional worldlines with two-dimensional worldsheets;
and (c) Feynman diagrams with two-dimensional manifolds. For example, tree dia-
grams correspond to genus-zero manifolds (spheres), and one-loop diagrams correspond
to genus-one manifolds (tori).
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Fig. 6.4. (a) Illustration of the fact that string propagators and string vertices are not
independent. (b) Illustration of the fact that string theory lacks many of the ultraviolet
divergences that arise in field theory from the short-distance limit x→ y. (c) Illustration
of the fact that one string diagram often comprises many field-theoretic diagrams.
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Fig. 6.5. String phenomenology is the central “meeting-ground” between Standard-
Model physics, extensions to the Standard Model, formal string issues, and string cos-
mology.
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Xµ(σ1,σ2)

σ

σ

1

2

Fig. 6.6. The string worldsheet can be parametrized by two worldsheet coordinates
(σ1, σ2). Thus, the location in the external spacetime of any point on the string world-
sheet is described by a set of functions Xµ(σ1, σ2). It is convenient to think of σ1 as a
spacelike worldsheet coordinate, and σ2 as a timelike worldsheet coordinate.

loops on sphere
no non-contractible two non-contractible

loops on torus

(a) (b)

Fig. 6.7. (a) On a sphere, all closed loops can be continuously shrunk to a point. (b)
On a torus, there exist two topologically distinct non-contractible loops.
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Sector # Case A Case B Case C

1 NL −NR = odd NL −NR = odd NL −NR = odd

NL = even NL = even
(8)NL = even

2 NL −NR = odd NL −NR = odd NL −NR = odd

NL = even NL = even
(8)NL = even

3 — NL −NR = odd NL −NR = odd

NL = even NL = even

(8)NL =

{

odd

even

}

4 — NL −NR = odd NL −NR = odd

NL = even NL = even

(8)NL =

{

odd

even

}

5 — — NL −NR = odd

NL =

{

odd

even

}

(8)NL =

{

odd

even

}

6 — — NL −NR = odd

NL =

{

odd

even

}

(8)NL = even

7 — — NL −NR = odd

NL =

{

odd

even

}

(8)NL = even

8 — — NL −NR = odd

NL =

{

odd

even

}

(8)NL =

{

odd

even

}
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Fig. 6.8. The two-dimensional “charge lattice” associated with the six string states A
through F in (6.6.5). Note that the two states E and F fill out the Cartan subalgebra
of the root system. For a ten-dimensional heterotic string, the charge lattice is always
sixteen-dimensional (generally implying a gauge group of rank 16), with a Cartan sub-
algebra consisting of sixteen gauge boson states.

gauge group spacetime SUSY? tachyon-free?

SO(32) yes yes

E8 × E8 yes yes

SO(16) × SO(16) no yes

SO(32) no no

SO(16) × E8 no no

SO(8) × SO(24) no no

(E7)
2 × [SU(2)]2 no no

U(16) no no

E8 no no
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Sector # V

1 [(0)4 | (0)16]

2 [(1
2 )4 | (1

2 )16]

3 [(0)4 | (1
2 )16]

4 [(1
2 )4 | (0)16]

5 [(0)4 | (0)8(1
2 )8]

6 [(0)4 | (1
2 )8(0)8]

7 [(1
2 )4 | (0)8(1

2 )8]

8 [(1
2 )4 | (1

2 )8(0)8]


