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Single spin asymmetries in hadron-hadron collisions
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We study weighted azimuthal single spin asymmetries at leading order in hadron-hadron scattering
using the diagrammatic approach at tree level and assuming factorization. The effects of the intrinsic
transverse momenta of the partons are taken into account. We show that the way in which T -odd
functions, such as the Sivers function, appear in these processes does not merely involve a sign
flip when compared with semi-inclusive deep inelastic scattering, such as in the case of the Drell-
Yan process. Expressions for the weighted scattering cross sections in terms of distribution and
fragmentation functions folded with hard cross sections are obtained by introducing modified hard
cross sections, referred to as gluonic pole cross sections.

I. INTRODUCTION

Accessing the effects arising from the transverse momentum of quarks in hadrons requires hard processes involving at
least two hadrons (or hadronic jets) and a hard scale to separate them. This is most cleanly achieved in electroweak
processes in which the gauge boson provides the hard scale separating the two hadronic regions. The transition
between the hadronic regions and the hard subprocess is described by soft quark and gluon correlation functions,
implying approximate collinearity between the quarks, gluons and hadrons involved. Without effects of quark intrinsic
transverse momentum these are bilocal, lightlike separated, matrix elements where collinear gluons provide the gauge-
link. Transverse momentum dependent correlation functions involve bilocal matrix elements off the lightcone [1]. Here
the issue of color gauge-invariance is slightly more complex, involving gauge fields at lightcone infinity [2, 3, 4, 5, 6].
The gauge-link structure may depend on the hard subprocess and leads to observable consequences.

Absorbing the soft physics in the correlation functions requires coupling of, essentially, collinear quarks (and gluons)
to the hadronic region. These partons themselves are soft. In the absence of a hard scale from an electroweak boson,
as in strong interaction processes, the simplest hard subprocess (large momentum transfer) involving soft quarks and
gluons is a two-to-two process.

In this paper we discuss hard hadron-hadron scattering processes using the diagrammatic approach rather than
the commonly used helicity approach [7, 8, 9, 10, 11, 12]. This has the advantage that we can directly connect to
the matrix elements of quark and gluon fields, without having to go through the step of rewriting them into parton
distributions with specific helicities. It allows us to include the effects of collinear gluons, determining the gauge-link
structure and to compare this with semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY).
We note that in this paper we use the diagrammatic approach and assume the validity of factorization.

We will consider the possibilities to measure transverse moments which are obtained from transverse momentum
dependent (TMD) distribution and fragmentation functions upon integration over intrinsic transverse momentum
(kT ) including a kT -weighing. In the transverse moments the effects of the gauge-link structure remains visible. In
particular, this is reflected in the time-reversal properties. Time-reversal even or odd behavior can experimentally be
distinguished. In single-spin asymmetries at least one (in general an odd number of) T -odd function appears, while in
unpolarized processes or double-spin asymmetries an even number of T -odd functions must appear. The importance
of considering transverse momentum dependence comes from the fact that for spin 0 and spin 1

2 hadrons the simple
transverse momentum integrated distribution and fragmentation functions, relevant at leading order, are all T -even.

The specific hadronic process that we will consider is the 2-particle inclusive process H1+H2 → h1+h2+X , which
in order to separate the hadronic regions requires minimally a two-to-two hard subprocess. Also included are inclusive
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FIG. 1: The leading order contribution to the cross section of H1+H2 → h1+h2+X.

hadron-jet and jet-jet production in hadron-hadron scattering. The 1-particle inclusive process p↑+p→ π+X involving
a transversely polarized proton is known to show a large single-spin asymmetry [13, 14, 15, 16, 17]. Some of the
mechanisms [18, 19, 20] to explain these asymmetries involve T -odd functions, such as the Sivers distribution function
or the Collins fragmentation function. These functions are expected to appear in a cleaner way in 2-particle inclusive
processes [10]. Here we only consider single-hadron fragmentation functions, in which case the 2-particle inclusive
production requires h1 and h2 to belong to different (in lowest order opposite) jets.

In this paper we limit ourselves to the (anti)quark contributions with as main goal to show the relevant gauge-link

structure for the T -odd Sivers distribution functions f
(1)
1T and the Collins fragmentation functions H

⊥(1)
1 entering these

processes. This is important for the study of universality of these functions. The paper is structured as follows. In
section II we consider the kinematics particular to 2→2 particle scattering. In section III we discuss our approach and
several (weighted) scattering cross section are written down for hadronic pion production and hadronic jet production
in section IV. Details about the gauge-links and their consequences for distribution and fragmentation functions are
dealt with in the appendices.

II. KINEMATICS

The hard scale in the processH1(P1)+H2(P2) → h1(K1)+h2(K2)+X is set by the center-of-mass energy
√
s = Ecm.

The leading order contribution to the scattering cross section is shown in Fig. 1. In a hard scattering process it is
important to get as much information about the partonic momenta as possible, in our case including, in particular,
their transverse momenta. The partonic momenta, for which p1·P1 ∼ p2

1 ∼ P 2
1 = M2

1 are of hadronic scale, are
expanded as follows

p1 = x1 P1 + σ1 n1 + p1T , (1a)

p2 = x2 P2 + σ2 n2 + p2T , (1b)

k1 = z−1
1 K1 + σ′

1 n
′
1 + k1T , (1c)

k2 = z−1
2 K2 + σ′

2 n
′
2 + k2T , (1d)

where the ni (n′
i) are lightlike vectors chosen such that P1 ·n1 ∝ O(s1/2) and similarly for the other partonic momenta.

The fractions xi = pi·ni/Pi·ni and z−1
i = ki·n′

i/Ki·n′
i are lightcone momentum fractions. The quantity multiplying

the vector ni is the lightcone component conjugate to pi·ni and is given by

σi =
pi·Pi − xi M

2
i

Pi·ni
, (2)

(and similar expressions for σ′
i), quantities which are of order s−1/2. If any of the ‘parton’ momenta is actually an

external momentum (for leptons or when describing jets) the momentum fractions become unity and the transverse
momenta and σi vanish.

Integration over parton momenta is written as

d4p1 = dx1 d
2p1T d(p1·P1) , (3)

with d(p1·P1) = (P1·n1) dσ1 and similar expressions for d4p2, d
4k1 and d4k2. The integrations over the parton momen-

tum components (pi · Pi) and (ki ·Ki) will be included in the definitions of the TMD distribution and fragmentation
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FIG. 2: Plane perpendicular to the incoming hadronic momenta.

functions. Note that the subscripts T have a different meaning in each of the above decompositions, i.e., p1T is trans-
verse to P1 and n1, while p2T is transverse to P2 and n2, etc. Momentum conservation relates the partonic momenta:

p1 + p2 − k1 − k2 = 0 . (4)

This relation, however, does not imply that the sum of the intrinsic transverse momenta, qT ≡ p1T +p2T−k1T−k2T

≈ z−1
1 K1+z

−1
2 K2−x1P1−x2P2 vanishes.

We use the incoming momenta P1 and P2 to define perpendicular momenta Ki⊥ orthogonal to the incoming
hadronic momenta, Ki⊥·P1 = Ki⊥·P2 = 0. For the perpendicular momenta it is convenient to scale the variables
using xi⊥ = 2|Ki⊥|/

√
s. For the outgoing hadrons we use the pseudo-rapidities ηi defined by ηi = − ln tan(1

2θi) where
the θi are the polar angles of these hadrons in the center-of-mass frame. All invariants involving the external momenta
can be expressed in terms of these variables:

P1 ·K1 = 1
4s x1⊥ e

−η1 , P2 ·K1 = 1
4s x1⊥ e

+η1 , (5a)

P1 ·K2 = 1
4s x2⊥ e

−η2 , P2 ·K2 = 1
4s x2⊥ e

+η2 , (5b)

and P1·P2 = 1
2s. These identities are valid up to subleading order in

√
s. The remaining invariant K1·K2 is not

independent of the others. To leading order, one has

K1 ·K2 = 1
2s x1⊥x2⊥ cosh2

[
1
2 (η1−η2)

]
. (5c)

To subleading order the outgoing hadronic momenta can now be written as

K1 =
(K1·P2)P1 + (K1·P1)P2

P1·P2
+K1⊥ = 1

2x1⊥

(
e+η1P1 + e−η1P2

)
+K1⊥ , (6a)

K2 =
(K2·P2)P1 + (K2·P1)P2

P1·P2
+K2⊥ = 1

2x2⊥

(
e+η2P1 + e−η2P2

)
+K2⊥ . (6b)

The two perpendicular vectors K1⊥ and K2⊥ are approximately back-to-back (see Fig. 2). Sometimes the Feynman

variables xiF = Kcm
iz /K

cm(max)
iz = xi⊥ sinh ηi are used in the literature. Another useful variable in writing down

cross sections is the quantity y, which is defined via the Mandelstam variables of the partonic subprocess, and can be
related to the pseudo-rapidities,

y = − t̂

ŝ
=

√
(P1·K1)(P2·K2)

(P1·P2)(K1·K2)
=

1

e(η1−η2) + 1
. (7)

Dividing K1⊥ and K2⊥ by the momentum fractions one immediately sees from the decompositions of the partonic
momenta that the vector

r⊥ =
K1⊥

z1
+
K2⊥

z2
, (8)
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only involves transverse momenta of partons. It is just the small projection of the transverse momentum in the
perpendicular plane, r⊥ ≈ qT⊥. The vectors Ki⊥ themselves are not ‘small’ vectors. They are spacelike vectors with
invariant length of O(

√
s). In the analysis of the kinematics in the transverse plane the momentum fractions are not

direct observables. In particular, experimentally it is more convenient to work with the directions of the vectors Ki⊥

and the corresponding orthogonal directions (see Fig. 2)

eµ
1⊥ =

Kµ
1⊥

|K1⊥|
, eµ

1N
= −2

s

ǫP1P2K1 µ

|K1⊥|
= ǫµν

⊥ e1⊥ ν , (9)

and similarly forK2⊥. As illustrated in Fig. 2, the direction e2⊥ is, up to a (small)angle δφ ≡ φ2−φ1−π ∝ O(|pT |/
√
s),

opposite to e1⊥.
The momentum conservation relation in Eq. (4) is enforced by a delta function in the scattering cross section. The

delta function can be decomposed using the basis constructed in the previous paragraph. For R = p1+p2−k1−k2 this
decomposition reads

δ4(R) = 1
2s δ(R·P1) δ(R·P2) δ

2(R⊥) = 1
2s δ(R·P1) δ(R·P2) δ

2(qT⊥−r⊥) . (10)

The arguments of the first two delta functions involve large momenta and can be used to relate the momentum
fractions x1 and x2 to kinematical observables. For the latter two delta functions the treatment depends on the
situation. Using the orthogonal vectors e1⊥ and e1N we get, up to O(1/

√
s),

R·e1⊥ = e1⊥·qT +

(
x1⊥

z1
− x2⊥

z2

) √
s

2
, (11a)

R·e1N = e1N ·qT − x2⊥

z2

√
s

2
sin(δφ) . (11b)

In the case of two-hadron or hadron-jet production (z2 = 1), the first delta function implies that at leading order
x1⊥/z1 ≈ x2⊥/z2 ≡ x⊥, which is interpreted as the scaled parton perpendicular momentum, x⊥ = 2 |k2⊥|/

√
s. Using

the variable x⊥ as an integration variable we can write

δ4(p1+p2−k1−k2) =
4

s2
1

x1⊥ x2⊥

∫
dx⊥ δ

(
x1 − 1

2x⊥(eη1+eη2)
)
δ
(
x2 − 1

2x⊥(e−η1+e−η2)
)

× δ
(
z−1
1 − x⊥

x1⊥

)
δ
(
z−1
2 − x⊥

x2⊥

)
δ
( e1N ·qT√

s
− x⊥

2
sin(δφ)

)
,

(12)

which shows that in one- or two-particle inclusive processes we are always left with a convolution of distribution
and fragmentation functions over one momentum fraction or, equivalently, over the parton perpendicular momentum
variable x⊥. The last delta function shows explicitly that sin(δφ) ∝ 1/

√
s and that it can be used to construct cross

sections weighted with one component of the intrinsic transverse momentum, i.e. e1N ·qT .
In the case that K1 = k1 and K2 = k2 (i.e. zi = 1, kiT = 0), such as in production of a lepton pair in Drell-

Yan scattering or the (idealized) production of two jets, the delta function δ(R·e1⊥) also relates intrinsic transverse
momenta to observed momenta and, therefore, one can construct azimuthal asymmetries involving two components
of qT . In fact, the product of delta functions δ2(R⊥) = δ(R·e1⊥) δ(R·e1N) can be used to weigh with the transverse
momenta p1T +p2T , as they relate qT = p1T +p2T to q ≡ k1+k2 in the orthogonal plane. With the natural choice of the
n-vectors in the case that only two hadrons are involved such that P1T = P2T = 0, one obtains the familiar relation
p1T +p2T = qT = q−x1P1−x2P2, leading to

δ4(p1+p2−k1−k2) =
2

s
δ
(
x1 −

P2·q
P1·P2

)
δ
(
x2 −

P1·q
P1·P2

)
δ2
(
p1T +p2T−qT (q, P1, P2)

)
. (13)

III. CROSS SECTIONS

The scattering cross section for p1p2 → h1h2X (see Fig. 1) at tree-level is written as

dσ =
1

2s
|M|2 d3K1

(2π)3 2EK1

d3K2

(2π)3 2EK2

, (14)
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where the matrix element is expressed in terms of hard amplitudes and correlation functions (see appendix A). It is
given by

|M|2 =

∫
dx1d

2p1T dx2d
2p2T dz

−1
1 d2k1T dz

−1
2 d2k2T (2π)4δ4(p1+p2−k1−k2)

× Tr
{

Φ(x1, p1T )Φ(x2, p2T )∆(z1, k1T )∆(z2, k2T )H(p1, p2, k1, k2)H
∗(p1, p2, k1, k2)

}
.

(15)

The trace involves the appropriate contraction of Dirac indices in soft and hard scattering parts. A summation over
color and quark flavors is understood. The phase-space elements are given by

d3Ki

(2π)3 2EKi

=
xi⊥ s

8 (2π)2
dxi⊥ dηi

dφi

2π
. (16)

Combining the phase space integration and the delta functions coming from partonic energy-momentum conservation,
one has for back-to-back hadron-hadron production

dσ[h1h2] =
1

32 s
dx1⊥ dx2⊥ dη1 dη2

dφ1

2π

dφ2

2π

∫
dx⊥

∫
d2p1T d

2p2T d
2k1T d

2k2T δ
( e1N ·qT√

s
− x⊥

2
sin(δφ)

)

× Tr
{
Φ(x1, p1T )Φ(x2, p2T )∆(z1, k1T )∆(z2, k2T )H(p1, p2, k1, k2)H

∗(p1, p2, k1, k2)
}
.

(17)

In this expression the momentum fractions are fixed by the arguments of the delta functions in Eq. (12), i.e. one has
x1(x⊥, η1, η2), x2(x⊥, η1, η2), z1(x⊥, x1⊥), and z2(x⊥, x2⊥). Since x1⊥ ≤ x⊥ and x2⊥ ≤ x⊥, the integration over x⊥
is bounded from below.

In the hadron-jet inclusive process one has ∆(z2, k2T ) = δ(z2−1) δ2(k2T ) /k2 = x⊥ δ(x2⊥−x⊥) δ2(k2T ) /k2, which
implies that z2 = 1 and x⊥ = x2⊥. The cross section becomes

dσ[h1j2] =
x2⊥

32 s
dx1⊥ dx2⊥ dη1 dη2

dφ1

2π

dφ2

2π

∫
d2p1T d

2p2T d
2k1T δ

( e1N ·qT√
s

− x2⊥

2
sin(δφ)

)

× Tr
{
Φ(x1, p1T )Φ(x2, p2T )∆(z1, k1T )H(p1, p2, k1, k2)H

∗(p1, p2, k1, k2)
}
.

(18)

As stated in the previous section, in back-to-back jet production both delta functions in the perpendicular plane relate
observed kinematical variables to intrinsic transverse momenta. Therefore, in jet-jet production we use the expression
in Eq. (13) rather than Eq. (12) for the momentum conserving delta function, leading to

dσ[j1j2] =
x1⊥ x2⊥

64
dx1⊥ dx2⊥ dη1 dη2

dφ1

2π

dφ2

2π

∫
d2p1T d

2p2T δ2(p1T +p2T−qT )

× Tr
{
Φ(x1, p1T )Φ(x2, p2T )H(p1, p2, k1, k2)H

∗(p1, p2, k1, k2)
}
,

(19)

where z1 = z2 = 1, x1⊥ = x2⊥ = x⊥ and qT = q−x1P1−x2P2.
In averaged and weighted cross sections we will encounter contractions of hard and soft pieces like

Σ(x1, x2, z1, z2, y) =

∫
d2p1T d

2p2T d
2k1T d

2k2T Tr
{
Φ(x1, p1T )Φ(x2, p2T )∆(z1, k1T )∆(z2, k2T )H H∗

}

= Tr
{

Φ(x1)Φ(x2)∆(z1)∆(z2)H H∗
}
,

(20)

and

Σα
∂ (x1, x2, z1, z2, y) =

∫
d2p1T d

2p2T d
2k1T d

2k2T qα
T

Tr
{
Φ(x1, p1T )Φ(x2, p2T )∆(z1, k1T )∆(z2, k2T )H H∗

}

= Tr
{ [

Φα
∂ (x1)Φ(x2)∆(z1)∆(z2) + Φ(x1)Φ

α
∂ (x2)∆(z1)∆(z2)

− Φ(x1)Φ(x2)∆
α
∂ (z1)∆(z2) − Φ(x1)Φ(x2)∆(z1)∆

α
∂ (z2)

]
H H∗

}
.

(21)

These expressions for hadron-hadron scattering (and similar ones for hadron-jet and jet-jet scattering) are schematic
in the sense that the tracing depends on the particular term in the sum of squared amplitudes, including both direct
and interference diagrams when the hard amplitude contains more than one contribution.
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FIG. 3: Hard scattering amplitudes for quark-quark scattering: (a) t-diagram, (b) u-diagram;
quark-antiquark scattering: (c) s-diagram, (d) t-diagram.

In the case of hadron-hadron or hadron-jet cross sections one finds averaged cross sections like

〈 dσ[h1h2] 〉 =

∫
dφ2

dσ[h1h2]

dφ2

=
dx1⊥ dx2⊥ dη1 dη2

32 π s

dφ1

2π

∫
dx⊥
x⊥

Σ(x1, x2, z1, z2, y) , (22a)

〈 1
2 sin(δφ) dσ[h1h2] 〉 =

∫
dφ2

1
2 sin(δφ)

dσ[h1h2]

dφ2

=
dx1⊥ dx2⊥ dη1 dη2

32 π s3/2

dφ1

2π

∫
dx⊥
x2
⊥

e1N ·Σ∂(x1, x2, z1, z2, y) . (22b)

We would like to note that in Eq. (22b), one is weighing with a dimensionless quantity which leads to a suppression
with 1/

√
s. For jet-jet cross sections one has, in principle, the possibility to access both perpendicular directions of

Σα
∂ , assuming that q = k1+k2 is known accurately. One could, then, weigh with qα

T
, in analogy to the Drell-Yan

process [21]. In that case one weighs with dimensionful quantities, even if these are small momenta, and one does not
get additional suppression involving the hard scale.

These equations will be the starting point in the calculation of cross sections. One needs to calculate the quantities
in Eqs. (20) and (21). These expressions involve hard scattering amplitudes and soft correlators Φ and ∆, which
are obtained as Fourier transforms of matrix elements of nonlocal combinations of quark and gluon fields. They
are parametrized in terms of distribution and fragmentation functions as presented in appendix B and C. In order
to render the correlators color gauge invariant a gauge-link connecting the fields is needed. In the diagrammatic
calculation, gauge-links are explicitly found by taking into account, for each of the hadrons, the interactions of
collinear gluons (polarizations along hadron momentum) between the soft and hard parts. These give the well-known
straight-line gauge-links along the lightcone for transverse momentum integrated correlators [22], but they lead to
nontrivial gauge-link paths for the TMD correlators [3, 6, 23]. The integration paths in the gauge-links U are process
dependent, depending in particular on the hard partonic subprocesses. We indicate this dependence by a superscript
Φ[U ](x, pT ).

The transverse momentum integrated correlator is a lightcone correlator with a unique gauge-link, in which the
path dependence disappears:

Φ[U ](x) =

∫
d2pT Φ[U ](x, pT ) = Φ(x) . (23)

For the transverse moments of the correlators obtained after pT -weighing, of which we only consider the simplest one,
one finds two types of lightcone correlators, a quark-quark matrix element Φ∂ and a gluonic pole matrix element ΦG,
where the latter is multiplied by a factor that depends on the gauge-link

Φ
[U ]α
∂ (x) =

∫
d2pT pα

T
Φ[U ](x, pT ) = Φα

∂ (x) + C
[U ]
G πΦα

G(x, x) . (24)

This gluonic pole matrix element, which contains the T -odd distribution functions, was suggested in a slightly different
context by Qiu and Sterman [24, 25] as the origin of single spin asymmetries. In processes like SIDIS with underlying
hard process ℓ+q → ℓ+q and the DY process with underlying hard process q+q̄ → ℓ+ℓ̄, different gauge-link paths

U [+] and U [−] appear. In these processes the corresponding factors in Eq. (24) are simply C
[U [±]]
G = ±1.

As was shown in Ref. [23], more complex paths enter when other subprocesses are involved, such as the two-to-two
(anti)quark subprocesses in this paper. Moreover, in general several diagrams enter in the calculation. For instance,
for quark-antiquark scattering both t- and s-channel amplitudes (see Fig. 3) can contribute, H = Ht

qq̄+H
s
qq̄, whereas

for quark-quark scattering we get t- and u-channel amplitudes, Hqq = Ht
qq+H

u
qq. One must consider the additional
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diagrams that produce the gauge-links needed to render the correlation functions color gauge invariant. In these cases
the gauge-links, in general, also differ for the various terms appearing in the squared amplitude HH† for a given
partonic subprocess, for instance for the terms HtHt†, HuHu†, HtHu† and HuHt† in scattering of two identical
quarks. Details are explained in appendix A.

The results of the diagrammatic calculation for transverse momentum integrated cross sections involving soft and
hard parts can, in leading order, be recast in the form of a folding of the quark distribution and fragmentation functions
appearing in the transverse momentum integrated correlators Φ(x) and ∆(z) with hard partonic cross sections. For
SIDIS one has a folding with the cross section for the hard process ℓ+q → ℓ+q and in the DY process a folding with
the cross section for q+q̄ → ℓ+ℓ̄. In hadron-hadron scattering one has several hard processes. An example is qq
scattering with a cross section, in the case of identical quark flavors, of the form

dσ̂qq→qq

dt̂
=
∑

D

dσ̂
[D]
qq→qq

dt̂
, (25)

where the summation is over the different direct and interference contributions involving the t- and u-channel ampli-
tudes.

A folding of distribution and fragmentation functions is also possible for weighted cross sections. The cross sections
involving the link-independent parts of the transverse moments (i.e. Φ∂(x) and ∆∂(x)) also lead to a folding with the
normal partonic cross sections, just as for the integrated correlators Φ(x) and ∆(z). For the contractions with the
gluonic pole matrix elements πΦG(x, x) and π∆G(x, x), however, the gauge-link dependence in the decomposition in
Eq. (24) has important ramifications. Expressing the asymmetries as a folding of universal, one argument functions

and a hard part requires a modification of the hard cross section by including the gauge-link dependent factors C
[U ]
G

in the various terms in these cross sections. This is a convenient way of doing since the value of these factors depends
on these terms. For instance, in the example of unpolarized qq scattering for identical flavors, the functions in the
gluonic pole matrix elements are folded with the gluonic pole cross section

dσ̂ĝqq→qq

dt̂
=
∑

D

C
[U(D)]
G

dσ̂
[D]
qq→qq

dt̂
. (26)

The notation ĝq emphasizes which quark field (in this case the first one), accompanied by a zero momentum gluon
field, enters in the correlator πΦG(x, x). The parametrization of this correlator involves one-argument distribution
functions, which will appear folded with the gluonic pole cross sections. At tree level often only one diagram enters.
In that case the gluonic pole cross section is simply proportional to the normal partonic cross section. For instance,
the sign difference between SIDIS and DY for the Sivers distribution function, a uniquely defined function appearing

in the parametrization of πΦG(x, x), comes from the factors C
[U [±]]
G = ±1 discussed above. Instead of the folding with

partonic cross sections, the Sivers function is folded with the gluonic pole cross sections

dσ̂ℓĝq→ℓq

dt̂
= +

dσ̂ℓq→ℓq

dt̂
, (27a)

dσ̂ĝqq̄→ℓℓ̄

dt̂
= −

dσ̂qq̄→ℓℓ̄

dt̂
. (27b)

Although the gluonic pole cross sections should not be interpreted as true partonic cross sections, their concept is
convenient in order to get a simple folding expression for the one-argument functions appearing in the gluonic pole
matrix element πΦG(x, x) and they are easily obtained from the terms in the hard partonic cross section without soft
gluons.

In the following sections the formalism described above is applied to single spin asymmetries in inclusive two-hadron
production, hadron-jet and jet-jet production in p↑p scattering, for which the gluonic pole cross sections for polarized
(anti)quark scattering are also needed.

IV. SINGLE-SPIN ASYMMETRIES IN INCLUSIVE HADRON-HADRON SCATTERING

As a reference we first consider the cross section for 2-particle inclusive hadron-hadron scattering. The explicit
expression for the cross section in terms of the distribution and fragmentation functions can be obtained by inserting
the parametrizations of the correlators, Eqs. (B7) and (C8) in appendices B and C into Eq. (22a) and performing
the required traces. In this paper we restrict ourselves to the quark and antiquark scattering contributions. Since
the short-distance scattering subprocesses remain unobserved, all partonic subprocesses that could contribute have
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to be taken into account. This includes, for a realistic description, besides the (anti)quark contributions qq→qq,
qq̄→qq̄ and q̄q̄→q̄q̄, also contributions involving gluons, qg→qg, q̄g→q̄g, gg→gg, qq̄→gg and gg→qq̄ including their
polarizations [9, 10, 11, 12, 26, 27, 28]. However, the (anti)quark contributions suffice to illustrate how the inclusion
of gauge-links leads to altered strengths of specific distribution or fragmentation functions. Contributions involving
gluons can simply be added incoherently to the results presented here. For the (anti)quark contributions to the
averaged cross section one obtains

〈 dσ[h1h2] 〉 = dx1⊥ dx2⊥ dη1 dη2
dφ1

2π

∫
dx⊥
x⊥

× 2π α2
S

9 ŝ

{ (
(1 − y)2 + y2

)∑

q,q′

f q
1 (x1)f̄

q
1 (x2)D

q′

1 (z1)D̄
q′

1 (z2) (28a)

+
(1 − y)2 + 1

y2

∑

q,q′

f q
1 (x1)f

q′

1 (x2)D
q
1(z1)D

q′

1 (z2) (28b)

+
(1 − y)2 + 1

y2

∑

q,q′

f q
1 (x1)f̄

q′

1 (x2)D
q
1(z1)D̄

q′

1 (z2) (28c)

+
2

3

(1 − y)2

y

∑

q

f q
1 (x1)f̄

q
1 (x2)D

q
1(z1)D̄

q
1(z2) (28d)

− 1

3

1

y(1 − y)

∑

q

f q
1 (x1)f

q
1 (x2)D

q
1(z1)D

q
1(z2) (28e)

+
(
quark PDFs/FFs ↔ antiquark PDFs/FFs

) }
+
(
K1 ↔ K2

)

where the summation is over all quark flavors, including the case that q = q′. In this expression y is given by Eq. (7)
and ŝ is ŝ = x2

⊥ s cosh2[ 12 (η1−η2)] = x2
⊥ s/4y(1−y). This result can be recast into a folding of the distribution

and fragmentation functions appearing in Φ(x) and ∆(z) and the elementary (anti)quark cross sections given in
appendix E. That is, expression (28) can be rewritten to

〈 dσ[h1h2] 〉 = dx1⊥ dx2⊥ dη1 dη2
dφ1

2π

∫
dx⊥
x⊥

∑

q1q2q3q4

f q1

1 (x1)f
q2

1 (x2)
ŝ

2

dσ̂q1q2→q3q4

dt̂
Dq3

1 (z1)D
q4

1 (z2) , (29)

where the summation is over all quark and antiquark flavors. In the expressions above the momentum fractions are
fixed by x1/2 = 1

2x⊥
(
e±η1+e±η2

)
and zi = xi⊥/x⊥.

A. Hadron-hadron production in p↑p scattering: p↑+p → π+π+X

With only one of the hadrons polarized, any nonzero spin asymmetry must involve at least one T -odd function.
Restricting ourselves to hadrons with spin 0 and 1

2 , such functions do not show up in the transverse momentum
integrated correlators Φ(x) and ∆(z). They do appear in the parametrization of the matrix elements involved in
the decomposition of the transverse moments of the correlators. T -odd distribution functions only appear in the
gluonic pole matrix element πΦG, while T -odd fragmentation functions can appear in both the matrix elements ∆∂

and π∆G [6]. Using the parametrizations for these functions, one can calculate e1N ·Σ∂(x1, x2, z1, z2, y) and find
the expression for the weighted cross section using Eq. (22b). Considering only the (anti)quark contributions in
p↑+p → π+π+X the resulting cross section is explicitly given in appendix D, including in each term explicitly the

factor C
[U ]
G between braces { · }.

The results can most conveniently be expressed as a folding of distribution and fragmentation functions, now
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including always one T -odd function and a gluonic pole cross section,

〈 1
2 sin(δφ) dσ[h1h2] 〉

= dx1⊥ dx2⊥ dη1 dη2
dφ1

2π
cos(φS

1 )

∫
dx⊥
x⊥

×
{

M1

x⊥
√
s

∑

q1q2q3q4

f q1⊥(1)
1T (x1)f

q2

1 (x2)
ŝ

2

dσ̂ĝq1q2→q3q4

dt̂
Dq3

1 (z1)D
q4

1 (z2) (30a)

+
M2

x⊥
√
s

∑

q1q2q3q4

hq1

1 (x1)h
q2⊥(1)

1 (x2)
ŝ

2

d∆σ̂q↑
1 ĝq↑

2→q3q4

dt̂
Dq3

1 (z1)D
q4

1 (z2) (30b)

− Mh1

x⊥
√
s

∑

q1q2q3q4

hq1

1 (x1)f
q2

1 (x2)
ŝ

2

d∆σ̂q↑
1 q2→q↑

3 q4

dt̂
Hq3⊥(1)

1 (z1)D
q4

1 (z2) +
(
K1↔K2

)
(30c)

− Mh1

x⊥
√
s

∑

q1q2q3q4

hq1

1 (x1)f
q2

1 (x2)
ŝ

2

d∆σ̂q↑
1 q2→ĝq↑

3q4

dt̂
H̃q3⊥(1)

1 (z1)D
q4

1 (z2) +
(
K1↔K2

) }
(30d)

where the summations run over all quark and antiquark flavors and the angle φS
1 is defined by φS

1 = φ1−φS. All
non-vanishing partonic scattering cross sections and gluonic pole cross sections are functions of y or, equivalently,
η1−η2 and those that contribute to hadronic pion production are listed in appendix E.

We note the occurrence of one T -odd function in each of the terms in Eq. (30), the functions f
⊥(1)
1T (x) and h

⊥(1)
1 (x)

coming from the gluonic pole matrix element πΦG(x, x), the function H
⊥(1)
1 (z) coming from the link-independent

correlator ∆∂ and the function H̃
⊥(1)
1 (z) coming from the gluonic pole matrix element π∆G. We would, once more,

like to emphasize that for fragmentation both ∆∂ and π∆G contain T -odd functions contributing to the Collins effect.

In Ref. [29, 30] it is argued that the function H
⊥(1)
1 is universal, confirmed in several model calculations [31]. This

situation would occur if gluonic pole matrix elements in the case of fragmentation into final state hadrons vanish, in

which case the function H̃
⊥(1)
1 vanishes and all T-odd effects come from the ’universal’ function H

⊥(1)
1 . This latter

function appears folded with ordinary partonic cross sections. In this paper, however, we will allow for the gluonic

pole matrix element and a nonvanishing function H̃
⊥(1)
1 for fragmentation.

B. Hadron-jet production in p↑p scattering: p↑+p → π+Jet+X

We only take into account (anti)quark scattering processes in the weighted scattering cross section for p↑+p →
π+Jet+X with the pion and the jet approximately back-to-back in the perpendicular plane. This cross section can be
obtained from the more involved two-particle inclusive scattering cross section (D1) by taking Dq

1(z2) = δ(z2−1)δj2q =
x⊥ δ(x2⊥−x⊥)δj2q and by letting all other fragmentation functions vanish. Here δj2q is a delta function in flavor space,
indicating that the jet j2 is produced by quark q. The explicit expression using the diagrammatic approach is given in
appendix D. Recast into distribution and fragmentation functions folded with gluonic pole cross sections, we obtain

〈 1
2 sin(δφ) dσ[h1j2] 〉

= dx1⊥ dx2⊥ dη1 dη2
dφ1

2π
cos(φS

1 )

×
{

M1

x2⊥
√
s

∑

q1q2q3q4

f q1⊥(1)
1T (x1)f

q2

1 (x2)
ŝ

2

dσ̂ĝq1q2→q3q4

dt̂
Dq3

1 (z1) (31a)

+
M2

x2⊥
√
s

∑

q1q2q3q4

hq1

1 (x1)h
q2⊥(1)

1 (x2)
ŝ

2

d∆σ̂q↑
1 ĝq↑

2→q3q4

dt̂
Dq3

1 (z1) (31b)

− Mh1

x2⊥
√
s

∑

q1q2q3q4

hq1

1 (x1)f
q2

1 (x2)
ŝ

2

d∆σ̂q↑
1 q2→q↑

3q4

dt̂
Hq3⊥(1)

1 (z1) (31c)

− Mh1

x2⊥
√
s

∑

q1q2q3q4

hq1

1 (x1)f
q2

1 (x2)
ŝ

2

d∆σ̂q↑
1 q2→ĝq↑

3q4

dt̂
H̃q3⊥(1)

1 (z1)

}
(31d)
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C. Jet-jet production in p↑p scattering: p↑+p → Jet+Jet+X

We only take into account (anti)quark scattering processes in the weighted scattering cross section for p↑+p →
Jet+Jet+X with approximately back-to-back jets in the perpendicular plane. As argued, in principle one can construct
azimuthal asymmetries that give access to Σα

∂ (x1, x2, y), by weighing with the small momentum qα
T
. This requires,

however, accurate determination of the jet momenta k1 and k2. Here we only present the cross section obtained by
weighing with sin δφ, which can be obtained from the more involved two-particle inclusive process (D1) by taking
Dq

1(zi) = δ(zi−1)δjiq = x⊥ δ(xi⊥−x⊥)δjiq and by letting all other fragmentation functions vanish. Casting the result
from the diagrammatic approach (given explicitly in appendix D) in the form of a folding, one obtains

〈 1
2 sin(δφ) dσ[j1j2] 〉

= dx1⊥ dx2⊥ dη1 dη2
dφ1

2π
cos(φS

1 ) δ(x1⊥−x2⊥)

×
{
M1√
s

∑

q1q2q3q4

f q1⊥(1)
1T (x1)f

q2

1 (x2)
ŝ

2

dσ̂ĝq1q2→q3q4

dt̂
(32a)

+
M2√
s

∑

q1q2q3q4

hq1

1 (x1)h
q2⊥(1)

1 (x2)
ŝ

2

d∆σ̂q↑
1 ĝq↑

2→q3q4

dt̂

}
(32b)

V. SUMMARY AND CONCLUSIONS

In this paper we have used the diagrammatic approach at tree-level to derive expressions for single transverse-spin
asymmetries in 2-particle inclusive hadron-hadron collisions. The final states considered are hadron-hadron, hadron-jet
and jet-jet which are approximately back-to-back in the plane perpendicular to the incoming hadrons. The single spin
asymmetries require the inclusion of transverse momentum dependence for the partons. We have assumed factorization
to hold in this treatment of TMD effects although it is, at present, certainly not clear whether such a factorization
holds for hadron-hadron scattering processes, in particular not if one looks at explicitly TMD correlators. We have
limited ourselves to the first transverse moments obtained by weighing linearly with the transverse momentum. These
transverse moments show up in azimuthal asymmetries.

While single-spin asymmetries generated by fragmentation processes, in which one can have T -odd fragmentation
functions, are well-known, the single-spin asymmetries connected with initial state hadrons are more subtle. Within
the diagrammatic approach T -odd effects for tranverse momentum dependent distribution functions are attributed to
the path structure of the gauge-link. The path depends on the specific hard process in which the correlator is used,

explaining for instance the appearance of the Sivers function f
⊥(1)
1T with opposite signs in SIDIS and DY [4, 32, 33].

In the transverse moments of quark and antiquark correlators the effect of the gauge-link appears via the gluonic
pole matrix element, which in the case of distributions is a T -odd matrix element which gives rise to single spin

asymmetries [24, 25]. In this paper we show how the effects of the gauge-link appear as factors C
[U ]
G , which determine

the strengths with which the gluonic pole matrix elements occur. This is a generalisation of the factors ±1 appearing
in SIDIS and DY. The fact that these strengths are determined by the hard parts makes it convenient to absorb them
in so-called gluonic pole cross sections. Just as the transverse momentum averaged cross sections can, in leading
order, be written as a folding of universal distribution and fragmentation functions and a hard partonic cross section,
the single spin asymmetries can be written as a folding of universal distribution and fragmentation functions and a
gluonic pole cross section with one T -odd function.

In the case of fragmentation, we allow in our approach two possible mechanisms, implying that in the two matrix
elements, the link-independent part ∆∂ and the gluonic pole matrix element π∆G, in which the transverse moments
can be decomposed, one has both T -even and T -odd effects. For the Collins effect in fragmentation, it leads to two

independent functions H
⊥(1)
1 and H̃

⊥(1)
1 , the latter appearing in the gluonic pole matrix element. Having different

linear combinations of these functions in SIDIS and electron-positron annihilation spoils the comparison in that case.
In hadron-hadron collisions we find other linear combinations of the two functions. If fragmentation functions are

universal, as is argued in Refs. [29, 30], the tilde function H̃
⊥(1)
1 (and the gluonic pole matrix element for fragmentation)

vanishes. In that case only the contributions from H
⊥(1)
1 remain.

Our results, including the strengths of the gluonic pole matrix elements differ from those of earlier calculations, in
which the effects of the gauge-links have been omitted. The effects, however, can easily be incorporated by using the
gluonic pole cross sections instead of the normal hard partonic cross sections.

We have restricted ourselves to particular single spin asymmetry in which the azimuthal asymmetry arises from
the deviation of the back-to-back appearance of hadron-hadron, hadron-jet and jet-jet in the perpendicular plane
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in hadron-hadron scattering. Without the effects of gauge-links this situation was discussed in Ref. [10]. Although
experimentally more challenging, the 2-particle inclusive case is easier to analyze than the 1-particle inclusive case,
where large single spin asymmetries are observed but where also subleading transverse momentum averaged T -odd
fragmentation functions [34] will contribute. In principle the diagrammatic approach allows also for inclusion of these
contributions. Furthermore, the methods used in this paper to include the T -odd, transverse momentum dependent
effects in (anti)quark contributions, which are crucial to treat single spin asymmetries in hadron-hadron scattering,
will be extended to include the gluonic contributions as well as to treat various T -even double spin asymmetries.

APPENDIX A: QUARK CORRELATORS AND GAUGE-LINKS

The starting point for the structure of the hadron→quark transition is the quark correlator Φ(p) ≡ Φ(p;P, S) [35, 36]

Φij(p;P, S) =

∫
d4ξ

(2π)4
eip·ξ〈P, S|ψj(0)ψi(ξ) |P, S〉 . (A1)

Similarly, one has for the quark→hadron transition the fragmentation correlator ∆(k) ≡ ∆(k;K,S),

∆ij(k;K,Sh) =

∫
d4ξ

(2π)4
eik·ξ〈0|ψi(ξ) a

†
hah ψj(0) |0〉 , (A2)

with

a†hah =

∫∑
X

d3PX

(2π)32EX
|PX ;K,Sh〉〈PX ;K,Sh| . (A3)

In the description of hard scattering processes we need the quark correlator and the fragmentation correlator integrated
over, at least, the partonic momentum component p·P . This leaves the TMD correlator

Φ(x, pT ) =

∫
d(p·P ) Φ(p) . (A4)

Integrating the TMD correlator over or weighing it with the transverse momentum pT , we obtain

Φ(x) =

∫
d2pT Φ(x, pT ) , (A5a)

Φα
∂ (x) =

∫
d2pT pα

T
Φ(x, pT ) . (A5b)

One finds similar expressions for the fragmentation correlator. Analogous to the above one can write down the anti-
quark correlator Φ describing the hadron→quark transition and the antiquark fragmentation correlator ∆ describing
the antiquark→hadron transition.

To obtain properly gauge invariant correlators, gauge-links connecting the parton fields in the matrix elements are
needed. The general structure of the gauge-links is U [C](0, ξ)=P exp[−ig

∫
C A(z)·dz ], where the integration path C

runs from 0 to ξ. Here A is the gauge field and P is the path-ordering operator. The integration paths in the gauge-
links can be calculated by resumming all collinear gluon interactions between the soft and hard parts. Consequently,
for the TMD correlators they depend on the process in which they occur. The gauge-links appearing in the quark
correlator in a two-fermion hard scattering process with uncharged boson exchange, such as in QED, are readily
calculated by considering the flow of the fermion lines [23]. The results from that reference are given in Fig. 4.
Explicitly, we encounter the link structures

U [±] = U−
[(0−,0T ),(±∞−,0T )]U

T
[(±∞−,0T ),(±∞−,∞T )]U

T
[(±∞−,∞T ),(±∞−,ξ

T
)]U

−
[(±∞−,ξ

T
),(ξ−,ξ

T
)] , (A6)

U [�] = U [+]U [−]† , (A7)

which are build up from the gauge-links along straight lines

U−
[a,b] = P exp

[
− ig

∫ b

a

dz n ·A(z)
]
, and UT

[a,b] = P exp
[
− ig

∫ b

a

dzT · AT (z)
]
. (A8)
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Tr(U [�])

Nc

U
[+] Tr(U [�])

Nc

U
[+]

U
[�]

U
[+]

U
[�]

U
[+]

U
[−] Tr(U [�]†)

Nc

U
[+]

U
[−]

U
[−]

FIG. 4: Gauge-links entering in the correlator for the lower-left incoming quark for a hard
two-fermion scattering process without exchange of charge. Top: quark-quark scattering;
bottom: quark-antiquark scattering.

The gauge-links in the scattering of two colored fermions in QCD can be obtained from those in Fig. 4 by accounting
for the flow of color charge, using well-known QCD rules for color flow such as

= TF

(
− 1

Nc

)
. (A9)

For example, the tt∗-channel of quark-quark scattering can be decomposed in this way giving

= T 2
F

(
− 1

Nc
− 1

Nc
+

1

N2
c

)
. (A10)

The gauge-link of this diagram can be obtained by replacing each diagram on the r.h.s. with the corresponding QED
gauge-link as given by Fig. 4 and factoring out the overall color factor of the QCD diagram. The overall color factor
of the gluon exchange diagram on the l.h.s. is (Tr[tatb])2=T 2

F (N2
c −1), which can also be obtained by tracing the color

flow in all diagrams on the r.h.s. This color factor does not enter in the gauge-link, but in the evaluation of the
diagram itself and is included in the hard amplitudes that will be used in the calculations in appendix D. Accounting
for the additional factors Tr(11) = Nc that are obtained for color loops, one obtains the gauge-link

T 2
F (N2

c − 1) × U [tt∗]
qq = T 2

F

{
N2

c ×
Tr(U [�])

Nc
U [+] − U [�]U [+] − U [�]U [+] +

Tr(U [�])

Nc
U [+]

}
.

The other diagrams can be calculated analogously. For quark-quark scattering we obtain:

U [tt∗]
qq = U [uu∗]

qq =
1

N2
c − 1

{
(N2

c + 1)
Tr(U [�])

Nc
U [+] − 2U [�]U [+]

}
, (A11a)

U [tu∗]
qq = U [ut∗]

qq =
Nc

N2
c − 1

{
2Nc

Tr(U [�])

Nc
U [+] − N2

c + 1

Nc
U [�]U [+]

}
, (A11b)

and for quark-antiquark scattering:

U [ss∗]
qq =

1

N2
c − 1

{
N2

c

Tr(U [�]†)

Nc
U [+] − U [−]

}
, (A12a)

U [tt∗]
qq =

1

N2
c − 1

{ Tr(U [�]†)

Nc
U [+] + (N2

c − 2)U [−]
}
, (A12b)

U [st∗]
qq = U [ts∗]

qq =
Nc

N2
c − 1

{
Nc

Tr(U [�]†)

Nc
U [+] − 1

Nc
U [−]

}
. (A12c)

These are the gauge-link operators that enter between the quark fields in the correlator of the incoming quark:

Φ[U ](x, pT ;P, S) =

∫
d(ξ·P )

2π

d2ξT

(2π)2
eip·ξ〈P, S|ψ(0)U(0, ξ)ψ(ξ) |P, S〉 . (A13)
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The gauge-links that enter in the quark-fragmentation correlators are the time-reversed ones as compared to those in
the quark-correlators. That is, a U [+] in the quark-correlator corresponds to a U [−] in the fragmentation correlator and
a U [�] to a U [�]†, etc. The gauge-links that enter in the antiquark-correlators Φ and ∆ are the hermitian conjugates
of the gauge-links in the quark-correlators Φ and ∆ of the corresponding diagrams.

We note that for the fragmentation correlators the gauge-links are all split up in parts, parts connecting to the field
at ξ and others to the field at 0. Taking as an example the quark fragmentation correlators with the gauge-links U [±],
one has (compare with Eq. (A6))

∆[±](z, kT ;K,S) =

∫
d(ξ·K)

2π

d2ξT

(2π)2
eik·ξ〈0|UT

[(±∞−,∞T ),(±∞−,ξT )]U
−
[(±∞−,ξ

T
),(ξ−,ξ

T
)] ψ(ξ)

× a†hah ψ(0)U−
[(0−,0T ),(±∞−,0T )]U

T
[(±∞−,0T ),(±∞−,∞T )] |0〉 .

(A14)

APPENDIX B: CONSEQUENCES OF GAUGE-LINKS FOR DISTRIBUTION FUNCTIONS

The gauge-link has important consequences for the parametrizations of the correlator due to its behavior under the
time-reversal transformation. We start with the link structures enumerated in Fig. 4. The TMD correlators are link
dependent. We write Φ[±] for the correlators with gauge-links U [±], Φ[�+] for U [�]U [+], Φ[(�)+] for 1

Nc
Tr(U [�])U [+]

and Φ[(�†)+] for 1
Nc

Tr(U [�]†)U [+]. We will also need the transverse momentum integrated correlators Φα
D(x) and

Φα
G(x, x−x′),

Φα
D(x) =

∫
d(ξ·P )

2π
eix(ξ·P )〈P, S|ψ(0)U−

[0,ξ] iD
α(ξ)ψ(ξ) |P, S〉

⌋
LC

, (B1)

Φα
G(x, x−x′) =

∫
d(ξ·P )

2π

d(η·P )

2π
ei(x−x′)(ξ·P )eix′(η·P )〈P, S|ψ(0)U−

[0,η] gG
nα(η)U−

[η,ξ] ψ(ξ) |P, S〉
⌋
LC

, (B2)

which are set on the lightcone (LC) where ξ ·n = ξT = 0 and η ·n = ηT = 0. We have also used the shorthand notation
Gnα = gµνG

µαnν for the field strength tensor. In terms of these the weighted correlators can be written as

Φ
[±]α
∂ (x) = Φα

D(x) −
∫
dx′

i

x′ ∓ iǫ
Φα

G(x, x−x′) = Φα
∂ (x) ± πΦα

G(x, x) , (B3a)

Φ
[�+]α
∂ (x) = Φα

D(x) −
∫
dx′

{ i

x′ − iǫ
− 2πδ(x′)

}
Φα

G(x, x−x′) = Φα
∂ (x) + 3πΦα

G(x, x) , (B3b)

Φ
[(�)+]α
∂ (x) = Φ

[(�†)+]α
∂ (x) = Φα

D(x) −
∫
dx′

i

x′ − iǫ
Φα

G(x, x−x′) = Φα
∂ (x) + πΦα

G(x, x) , (B3c)

where Φ∂ without link index refers to

Φα
∂ (x) = Φα

D(x) −
∫
dx′ P

i

x′
Φα

G(x, x−x′) . (B4)

The decompositions of the weighted correlators in terms of Φ∂ and ΦG are particularly useful because the former is
T -even, while the latter is T -odd. They can be used as the basic matrix elements to be parametrized.

The correlators encountered in p↑p→ ππX are readily obtained from the results above and can also be decomposed
in terms of Φ∂ and ΦG. For instance, for the tt∗-channel in qq scattering we get from Eq. (A11a)

Φ
[tt∗]α
∂ (x) =

1

N2
c − 1

{
(N2

c + 1)Φ
[(�)+]α
∂ (x) − 2 Φ

[�+]α
∂ (x)

}

=
1

N2
c − 1

{
(N2

c + 1) − 2
}

Φα
∂ (x) +

1

N2
c − 1

{
(N2

c + 1) − 6
}
πΦα

G(x, x) .

The other correlators can be calculated analogously. For qq scattering we obtain:

Φ
[tt∗]α
∂ (x) = Φ

[uu∗]α
∂ (x) = Φα

∂ (x) +
N2

c − 5

N2
c − 1

πΦα
G(x, x) , (B5a)

Φ
[tu∗]α
∂ (x) = Φ

[ut∗]α
∂ (x) = Φα

∂ (x) − N2
c + 3

N2
c − 1

πΦα
G(x, x) , (B5b)
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U U
[±]

U
[�]

U
[+] 1

Nc
Tr(U [�])U [+] 1

Nc
Tr(U [�]†)U [+]

Φ[U ] Φ[±] Φ[�+] Φ[(�)+] Φ[(�†)+]

C
[U ]
G ±1 3 1 1

U U
[tt∗]
qq U

[uu∗]
qq U

[tu∗]
qq U

[ut∗]
qq U

[tt∗]
qq U

[ss∗]
qq U

[st∗]
qq U

[ts∗]
qq

Φ[U ] Φ[tt∗] Φ[uu∗] Φ[tu∗] Φ[ut∗] Φ[tt∗] Φ[ss∗] Φ[st∗] Φ[ts∗]

C
[U ]
G

N2
c
−5

N2
c
−1

−
N2

c
+3

N2
c
−1

−
N2

c
−3

N2
c
−1

N2
c
+1

N2
c
−1

TABLE I: The basic gauge-links (upper table) and the gauge-links in specific hard scattering (qq and qq̄)
diagrams (lower table), the notations used for the correlators and the strengths CG of the gluonic pole
contribution πΦG.

and from Eq. (A12) we get for qq̄ scattering

Φ
[ss∗]α
∂ (x) = Φ

[st∗]α
∂ (x) = Φ

[ts∗]α
∂ (x) = Φα

∂ (x) +
N2

c + 1

N2
c − 1

πΦα
G(x, x) , (B6a)

Φ
[tt∗]α
∂ (x) = Φα

∂ (x) − N2
c − 3

N2
c − 1

πΦα
G(x, x) . (B6b)

The integrated quark correlator Φ(x) is parametrized in terms of quark distribution functions as follows [21, 37, 38]

ΦU (x;P ) = 1
2 f1(x) /P , (B7a)

ΦL(x;P ) = 1
2SL g1(x)γ5 /P , (B7b)

ΦT (x;P ) = 1
2 h1(x)γ5

1
2 [/ST , /P ] , (B7c)

where

ǫµν
T

=
1

P ·n ǫ
Pnµν , and S = SL

1

M
P − SL

M

2P ·n n+ ST , (B8)

with S2
L
+S2

T
= −1. The indices U , L and T refer to unpolarized, longitudinally and transversely polarized hadrons,

respectively. For the T -even transverse momentum weighted correlator Φ∂(x) and the T -odd gluonic pole πΦG(x, x)
one has the parametrizations

(
Φα

∂

)
U
(x;P ) = 0 ,

(
πΦα

G

)
U
(x;P ) = 1

2M ih
⊥(1)
1 (x)1

2 [ /P, γα] , (B9a)
(
Φα

∂

)
L
(x;P ) = 1

2SL M h
⊥(1)
1L (x)γ5

1
2 [ /P, γα] ,

(
πΦα

G

)
L
(x;P ) = 0 , (B9b)

(
Φα

∂

)
T
(x;P ) = 1

2M Sα
T
g
(1)
1T (x)γ5 /P ,

(
πΦα

G

)
T
(x;P ) = 1

2M ǫαST

T
f
⊥(1)
1T (x) /P . (B9c)

From the parametrizations given above and using the decomposition in Eq. (B5a), we find that the T -odd distri-

bution functions f
⊥(1)
1T and h

⊥(1)
1 appear with a multiplicative prefactor C

[tt∗]
G =(N2

c −5)/(N2
c −1) in the contribution

corresponding to the tt∗-channel in qq-scattering. This is the appropriate generalization of the factors C
[U [±]]
G = ±1

occurring in SIDIS and Drell-Yan scattering (as explained in section III). Similarly, the prefactors of the T -odd
distribution functions appearing in the other scattering channels can be read of from Eq. (B5) for qq scattering and
from Eq. (B6) for qq̄ scattering. These prefactors are summarized in Table I. From the Eqs. (B5) and (B6) we also see
that all the T -even distribution functions occur in hadron-hadron scattering in the same way as they do in SIDIS, i.e.
with a prefactor +1. For antiquark distribution functions, which can be related to quark distributions in the negative
x region, the same results as above apply. The antiquark distribution functions will be distinguished from their quark
counterparts by an overline, e.g. f̄1(x), etc.

APPENDIX C: CONSEQUENCES OF GAUGE-LINKS FOR FRAGMENTATION FUNCTIONS

The discussion on the consequences of the gauge-links for fragmentation functions is a little bit more involved than
for distribution functions, due to the presence of the hadronic states |K,X〉 in the definition of the correlators, which
is an out-state, preventing the use of time-reversal to constrain the parametrization.
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All collinear interactions between the soft and hard parts result in the quark-fragmentation correlator ∆[−](k) in
SIDIS and the correlator ∆[+](k) in electron-positron annihilation (see equation (A14)). The transverse-momentum
integrated fragmentation correlators in these two processes are

∆[±](z) =

∫
d(ξ·K)

2π
eiz−1(ξ·K)〈0|U−

[±∞,ξ] ψ(ξ) a†hah ψ(0)U−
[0,±∞] |0〉

⌋
LC

. (C1)

Although not immediately evident, it is not hard to see that, since there are only gauge-links along the nh-direction,
the two correlators are identical ∆[+](z) = ∆[−](z) ≡ ∆(z).

In analogy to the previous appendix we define a correlator ∆α
D and a gluonic-pole matrix element ∆α

G

∆α
D(z) =

∫
d(ξ·K)

2π
ei(ξ·K)/z 〈0|U−

[ζ,ξ] iD
α(ξ)ψ(ξ) a†hah ψ(0)U−

[0,ζ] |0〉
⌋
LC

, (C2)

∆α
G(1

z ,
1
z− 1

z′ ) =

∫
d(ξ·K)

2π

d(η·K)

2π
ei(ξ·K)/zei[(η·K)−(ξ·K)]/z′

×〈0|U−
[ζ,η] gG

nhα(η)U−
[η,ξ] ψ(ξ) a†hah ψ(0)U−

[0,ζ] |0〉
⌋
LC

, (C3)

with Gnhα = gµνG
µαnν

h (and ζ an arbitrary point). It can be shown that in terms of these the weighted correlators
can be written as

∆
[±]α
∂ (z) = ∆α

D(z) −
∫
d( 1

z′ )
i

1
z′ ∓ iǫ

∆α
G(1

z ,
1
z− 1

z′ ) = ∆α
∂ (z) ± π∆α

G(1
z ,

1
z ) , (C4a)

∆
[−�

†]α
∂ (z) = ∆α

D(z) −
∫
d( 1

z′ )

{
i

1
z′ + iǫ

+ 2πδ
(

1
z′

)}
∆α

G(1
z ,

1
z− 1

z′ ) = ∆α
∂ (z) − 3π∆α

G(1
z ,

1
z ) , (C4b)

∆
[−(�)]α
∂ (z) = ∆

[−(�†)]α
∂ (z) = ∆α

D(z) −
∫
d( 1

z′ )
i

1
z′ + iǫ

∆α
G(1

z ,
1
z− 1

z′ ) = ∆α
∂ (z) − π∆α

G(1
z ,

1
z ) , (C4c)

where ∆∂ without link index refers to

∆α
∂ (z) = ∆α

D(z) −
∫
dz′−1 P

i

z′−1
∆α

G(1
z ,

1
z− 1

z′ ) . (C5)

As stated at the end of appendix A, the gauge-links in the fragmentation correlators in p↑p → ππX are obtained
from (A11) and (A12) by time-reversal. We, then, find the following quark-fragmentation correlator for the tt∗-channel
in quark-quark scattering (cf. (A11a)):

∆
[tt∗]α
∂ (z) =

1

N2
c − 1

{
(N2

c + 1)∆
[−(�†)]α
∂ (z) − 2 ∆

[−�
†]

∂ (z)
}

=
1

N2
c − 1

{
(N2

c + 1) − 2
}

∆α
∂ (z) − 1

N2
c − 1

{
(N2

c + 1) − 6
}
π∆α

G(1
z ,

1
z ) .

The other quark-fragmentation correlators can be calculated analogously. For quark-quark scattering we obtain:

∆
[tt∗]α
∂ (z) = ∆

[uu∗]α
∂ (z) = ∆α

∂ (z) − N2
c − 5

N2
c − 1

π∆α
G(1

z ,
1
z ) , (C6a)

∆
[tu∗]α
∂ (z) = ∆

[ut∗]α
∂ (z) = ∆α

∂ (z) +
N2

c + 3

N2
c − 1

π∆α
G(1

z ,
1
z ) , (C6b)

and for quark-antiquark scattering

∆
[ss∗]α
∂ (z) = ∆

[st∗]α
∂ (z) = ∆

[ts∗]α
∂ (z) = ∆α

∂ (z) − N2
c + 1

N2
c − 1

π∆α
G(1

z ,
1
z ) , (C7a)

∆
[tt∗]α
∂ (z) = ∆α

∂ (z) +
N2

c − 3

N2
c − 1

π∆α
G(1

z ,
1
z ) . (C7b)

The integrated fragmentation correlator ∆(z) is parametrized as follows [39]

z∆U (z;K) = D1(z) /K , (C8a)

z∆L(z;K) = SL G1(z)γ5 /K , (C8b)

z∆T (z;K) = H1(z)γ5
1
2 [/ST , /K] , (C8c)
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U U
[±]

U
[−]

U
[�]† 1

Nc
U

[−] Tr(U [�]) 1
Nc

U
[−] Tr(U [�]†)

∆[U ] ∆[±] ∆[−�
†] ∆[−(�)] ∆[−(�†)]

C
[U ]
G ±1 −3 −1 −1

U U
[tt∗]
qq U

[uu∗]
qq U

[tu∗]
qq U

[ut∗]
qq U

[tt∗]
qq U

[ss∗]
qq U

[st∗]
qq U

[ts∗]
qq

∆[U ] ∆[tt∗] ∆[uu∗] ∆[tu∗] ∆[ut∗] ∆[tt∗] ∆[ss∗] ∆[st∗] ∆[ts∗]

C
[U ]
G −

1
2

−
1
2

3
2

3
2

3
4

−
5
4

−
5
4

−
5
4

TABLE II: The basic gauge-links (upper table) and the gauge-links in specific hard scattering (qq and
qq̄) diagrams (lower table), the notations used for the correlators and the strengths CG of the gluonic pole
contribution π∆G with Nc=3.

with

ǫµν
T

=
1

K·nh
ǫKnhµν , and S = SL

1

Mh
K − SL

Mh

2K·nh
nh + ST . (C9)

The functions in these expansions are called quark fragmentation functions. Due to the internal soft interactions
in the final-state hadron the correlators ∆∂ and π∆G both contain T -even and T -odd parts [6]. Correspondingly,
they have very similar parametrizations in terms of fragmentation functions. We will distinguish the fragmentation
functions in these two correlators by adding a tilde to the fragmentation functions appearing in the parametrization
of the gluonic pole. That is, parametrizing the correlator ∆∂ as follows

z
(
∆α

∂

)
U

(z;K) = Mh iH
⊥(1)
1 (z)1

2 [ /K, γα] , (C10a)

z
(
∆α

∂

)
L
(z;K) = SL MhH

⊥(1)
1L (z)γ5

1
2 [ /K, γα] , (C10b)

z
(
∆α

∂

)
T
(z;K) = Mh

{
Sα

T
G

(1)
1T (z)γ5 /K − ǫαST

T
D

⊥(1)
1T (z) /K

}
, (C10c)

the parametrization of the gluonic pole is written as

z
(
π∆α

G

)
U

(1
z ,

1
z ;K) = Mh iH̃

⊥(1)
1 (z)1

2 [ /K, γα] , (C11a)

z
(
π∆α

G

)
L
(1

z ,
1
z ;K) = SL Mh H̃

⊥(1)
1L (z)γ5

1
2 [ /K, γα] , (C11b)

z
(
π∆α

G

)
T
(1

z ,
1
z ;K) = Mh

{
Sα

T
G̃

(1)
1T (z)γ5 /K − ǫαST

T
D̃

⊥(1)
1T (z) /K

}
. (C11c)

The fragmentation functions appearing in these parametrizations contribute to azimuthal asymmetries in special
combinations. For instance, using the decomposition in Eq. (C6a) we find that the Collins effect contributed by the

tt∗-channel for qq scattering is H
⊥(1)
1 (z)−N2

c
−5

N2
c
−1 H̃

⊥(1)
1 . Similarly, the other partonic channels contribute particular

combinations of fragmentation functions. The particular combination of fragmentation functions that one should take
for a certain process can be read of directly from the decompositions in Eq. (C6) and (C7). That is, if we let FF(z)
denote a generic fragmentation function appearing in the parametrizations in Eq. (C10) and (C11), then this frag-

mentation function will appear in the expressions for azimuthal asymmetries in the combination FF(z)−C [U ]
G F̃F(z).

In particular, we see that the tilde fragmentation functions always appear with the (process dependent) prefactors

C
[U ]
G summarized in Table II, while the fragmentation functions without a tilde always occur with a simple prefactor

+1. If the gluonic pole matrix elements π∆G vanish, then so do all the tilde functions. In that case fragmentation is
completely described by the universal functions appearing in the parametrization of ∆∂ . Notably, the Collins effect

is always given by the term H
⊥(1)
1 (z).

For antiquark-fragmentation functions, which can be related to the quark-fragmentation functions in the negative
z region, the same results as above apply.

APPENDIX D: RESULTS IN THE DIAGRAMMATIC APPROACH

In the expressions given below y is given by Eq. (7) and ŝ is ŝ = x2
⊥ s cosh2[ 12 (η1−η2)] = x2

⊥ s/4y(1−y). The

summations run over all quark flavors, including the case that q′ = q (where applicable). Similarly, the δjiq are delta
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functions in flavor space, indicating that the jet ji is produced by quark q. We have written the factors C
[U ]
G for

the T -odd distribution functions between braces { · }. For the Collins functions we have written the combinations

H
⊥(1)
1 −C [U ]

G H̃
⊥(1)
1 between braces. The factors C

[U ]
G are taken from Table I for the distribution functions and from

Table II for the fragmentation functions.

p↑+p → π+π+X

Considering only the (anti)quark contributions in p↑+p→ π+π+X the resulting cross section is given by

〈 1
2 sin(δφ) dσ[h1h2] 〉

= dx1⊥ dx2⊥ dη1 dη2
dφ1

2π
cos(φ1−φS)

∫
dx⊥
x⊥

ŝ

2x⊥
√
s

× 4π α2
S

9 ŝ2

{
M1

(1 − y)2 + 1

y2

∑

q,q′

{ 1
2} f

q⊥(1)
1T (x1)f

q′

1 (x2)D
q
1(z1)D

q′

1 (z2) (D1a)

−M1
1

3

1

y(1 − y)

∑

q

{− 3
2} f

q⊥(1)
1T (x1)f

q
1 (x2)D

q
1(z1)D

q
1(z2) (D1b)

+M1

(
(1 − y)2 + y2

)∑

q,q′

{ 5
4} f

q⊥(1)
1T (x1)f̄

q
1(x2)D

q′

1 (z1)D̄
q′

1 (z2) (D1c)

+M1
(1 − y)2 + 1

y2

∑

q,q′

{− 3
4} f

q⊥(1)
1T (x1)f̄

q′

1 (x2)D
q
1(z1)D̄

q′

1 (z2) (D1d)

+M1
2

3

(1 − y)2

y

∑

q

{ 5
4} f

q⊥(1)
1T (x1)f̄

q
1(x2)D

q
1(z1)D̄

q
1(z2) (D1e)

−M2 2y(1 − y)
∑

q,q′

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2)D

q′

1 (z1)D̄
q′

1 (z2) (D1f)

−M2
2

3
(1 − y)

∑

q

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2)D

q
1(z1)D̄

q
1(z2) (D1g)

−M2
1

3

∑

q

{− 3
2} h

q
1(x1)h

q⊥(1)
1 (x2)D

q
1(z1)D

q
1(z2) (D1h)

−Mh1 2
1 − y

y2

∑

q,q′

hq
1(x1)f

q′

1 (x2)
{
Hq⊥(1)

1 (z1)− 1
2H̃

q⊥(1)
1 (z1)

}
Dq′

1 (z2) (D1i)

+Mh1

2

3

1

y

∑

q

hq
1(x1)f

q
1 (x2)

{
Hq⊥(1)

1 (z1)+
3
2H̃

q⊥(1)
1 (z1)

}
Dq

1(z2) (D1j)

−Mh1 2
1 − y

y2

∑

q,q′

hq
1(x1)f̄

q′

1 (x2)
{
Hq⊥(1)

1 (z1)+
3
4H̃

q⊥(1)
1 (z1)

}
D̄q′

1 (z2) (D1k)

−Mh1

2

3

1 − y

y

∑

q

hq
1(x1)f̄

q
1(x2)

{
Hq⊥(1)

1 (z1)− 5
4H̃

q⊥(1)
1 (z1)

}
D̄q

1(z2) (D1l)

+Mh1

2

3

∑

q

hq
1(x1)f̄

q
1(x2)

{
H̄q⊥(1)

1 (z1)− 5
4
˜̄Hq⊥(1)

1 (z1)
}
Dq

1(z2) (D1m)

+
(
quarks ↔ antiquarks

) }
+
(
K1 ↔ K2

)
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p + p → π + Jet + X

Considering only the (anti)quark contributions in p↑+p→ π+Jet+X the resulting cross section is given by

〈 1
2 sin(δφ) dσ[h1j2] 〉

= dx1⊥ dx2⊥ dη1 dη2
dφ1

2π
cos(φ1−φS)

ŝ

2x2⊥
√
s

× 4π α2
S

9 ŝ2

{
M1

(1 − y)2 + 1

y2

∑

q,q′

{ 1
2} f

q⊥(1)
1T (x1)f

q′

1 (x2)D
q
1(z1) δ

j2q′

(D2a)

+M1
y2 + 1

(1 − y)2

∑

q,q′

{ 1
2} f

q⊥(1)
1T (x1)f

q′

1 (x2)D
q′

1 (z1) δ
j2q (D2b)

−M1
2

3

1

y(1 − y)

∑

q

{− 3
2} f

q⊥(1)
1T (x1)f

q
1 (x2)D

q
1(z1) δ

j2q (D2c)

+M1

(
(1 − y)2 + y2

)∑

q,q′

{ 5
4} f

q⊥(1)
1T (x1)f̄

q
1(x2)D

q′

1 (z1) δ
j2 q̄′

(D2d)

+M1

(
(1 − y)2 + y2

)∑

q,q′

{ 5
4} f

q⊥(1)
1T (x1)f̄

q
1(x2)D̄

q′

1 (z1) δ
j2q′

(D2e)

+M1
(1 − y)2 + 1

y2

∑

q,q′

{− 3
4} f

q⊥(1)
1T (x1)f̄

q′

1 (x2)D
q
1(z1) δ

j2 q̄′

(D2f)

+M1
y2 + 1

(1 − y)2

∑

q,q′

{− 3
4} f

q⊥(1)
1T (x1)f̄

q′

1 (x2)D̄
q′

1 (z1) δ
j2q (D2g)

+M1
2

3

(1 − y)2

y

∑

q

{ 5
4} f q⊥(1)

1T (x1)f̄
q
1(x2)D

q
1(z1) δ

j2 q̄ (D2h)

+M1
2

3

y2

1 − y

∑

q

{ 5
4} f q⊥(1)

1T (x1)f̄
q
1(x2)D̄

q
1(z1) δ

j2q (D2i)

−M2 2y(1 − y)
∑

q,q′

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2)D

q′

1 (z1) δ
j2 q̄′

(D2j)

−M2 2y(1 − y)
∑

q,q′

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2)D̄

q′

1 (z1) δ
j2q′

(D2k)

−M2
2

3
(1 − y)

∑

q

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2)D

q
1(z1) δ

j2 q̄ (D2l)

−M2
2

3
y
∑

q

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2)D̄

q
1(z1) δ

j2q (D2m)

−M2
2

3

∑

q

{− 3
2} h

q
1(x1)h

q⊥(1)
1 (x2)D

q
1(z1) δ

j2q (D2n)

−Mh1 2
1 − y

y2

∑

q,q′

hq
1(x1)f

q′

1 (x2)
{
Hq⊥(1)

1 (z1)− 1
2H̃

q⊥(1)
1 (z1)

}
δj2q′

(D2o)

+Mh1

2

3

1

y

∑

q

hq
1(x1)f

q
1 (x2)

{
Hq⊥(1)

1 (z1)+
3
2H̃

q⊥(1)
1 (z1)

}
δj2q (D2p)

−Mh1 2
1 − y

y2

∑

q,q′

hq
1(x1)f̄

q′

1 (x2)
{
Hq⊥(1)

1 (z1)+
3
4H̃

q⊥(1)
1 (z1)

}
δj2 q̄′

(D2q)
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−Mh1

2

3

1 − y

y

∑

q

hq
1(x1)f̄

q
1(x2)

{
Hq⊥(1)

1 (z1)− 5
4H̃

q⊥(1)
1 (z1)

}
δj2 q̄ (D2r)

+Mh1

2

3

∑

q

hq
1(x1)f̄

q
1(x2)

{
H̄q⊥(1)

1 (z1)− 5
4
˜̄Hq⊥(1)

1 (z1)
}
δj2q (D2s)

+
(
quarks ↔ antiquarks

) }

p + p → Jet + Jet + X

Considering only the (anti)quark contributions in p↑+p→ Jet+Jet+X the resulting cross section is given by

〈 1
2 sin(δφ) dσ[j1j2] 〉

= dx1⊥ dx2⊥ dη1 dη2
dφ1

2π
cos(φ1−φS) δ(x1⊥−x2⊥)

ŝ

2
√
s

× 4π α2
S

9 ŝ2

{
M1

(1 − y)2 + 1

y2

∑

q,q′

{ 1
2} f

q⊥(1)
1T (x1)f

q′

1 (x2) δ
j1qδj2q′

(D3a)

−M1
1

3

1

y(1 − y)

∑

q

{− 3
2} f

q⊥(1)
1T (x1)f

q
1 (x2) δ

j1qδj2q (D3b)

+M1

(
(1 − y)2 + y2

)∑

q,q′

{ 5
4} f q⊥(1)

1T (x1)f̄
q
1(x2) δ

j1q′

δj2 q̄′

(D3c)

+M1
(1 − y)2 + 1

y2

∑

q,q′

{− 3
4} f

q⊥(1)
1T (x1)f̄

q′

1 (x2) δ
j1qδj2 q̄′

(D3d)

+M1
2

3

(1 − y)2

y

∑

q

{ 5
4} f

q⊥(1)
1T (x1)f̄

q
1(x2) δ

j1qδj2 q̄ (D3e)

−M2 2y(1 − y)
∑

q,q′

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2) δ

j1q′

δj2 q̄′

(D3f)

−M2
2

3
(1 − y)

∑

q

{ 5
4} h

q
1(x1)h̄

q⊥(1)
1 (x2) δ

j1qδj2 q̄ (D3g)

−M2
1

3

∑

q

{− 3
2} h

q
1(x1)h

q⊥(1)
1 (x2) δ

j1qδj2q (D3h)

+
(
quarks ↔ antiquarks

) }
+
(
Jet1 ↔ Jet2

)

APPENDIX E: PARTONIC CROSS SECTIONS

In this appendix we enumerate all the (anti)quark scattering cross sections (taken from [40]) that are needed in this
paper.
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Quark-quark scattering

The unpolarized quark-quark scattering cross sections are given by

dσ̂qq′→qq′

dt̂
=

4πα2
S

9 ŝ2
ŝ2 + û2

t̂2
, (E1a)

dσ̂qq′→q′q

dt̂
=

4πα2
S

9 ŝ2
ŝ2 + t̂2

û2
, (E1b)

dσ̂qq→qq

dt̂
=
dσ̂qq′→qq′

dt̂
+
dσ̂qq′→q′q

dt̂
− 2

dσ̂I
qq→qq

dt̂
, (E1c)

where dσ̂I represents the interference terms

dσ̂I
qq→qq

dt̂
=

4πα2
S

27 ŝ2
ŝ2

t̂û
. (E2)

The polarized quark-quark scattering cross sections are

d∆σ̂q↑q↑→qq

dt̂
= −8πα2

S

27 ŝ2
, (E3a)

d∆σ̂q↑q′→q↑q′

dt̂
= −8πα2

S

9 ŝ2
ûŝ

t̂2
, (E3b)

d∆σ̂q↑q→q↑q

dt̂
=
d∆σ̂q↑q′→q↑q′

dt̂
−
d∆σ̂I

q↑q→q↑q

dt̂
, (E3c)

with the interference term

d∆σ̂I
q↑q→q↑q

dt̂
= −8πα2

S

27 ŝ2
ŝ

t̂
. (E4)

The modified cross sections are

dσ̂ĝqq′→qq′

dt̂
=
N2

c −5

N2
c −1

dσ̂qq′→qq′

dt̂
, (E5a)

dσ̂ĝqq′→q′q

dt̂
=
N2

c −5

N2
c −1

dσ̂qq′→q′q

dt̂
, (E5b)

dσ̂ĝqq→qq

dt̂
=
N2

c −5

N2
c −1

[
dσ̂qq′→qq′

dt̂
+
dσ̂qq′→q′q

dt̂

]
+ 2

N2
c +3

N2
c −1

dσ̂I
qq→qq

dt̂
, (E5c)

d∆σ̂q↑ ĝq↑→qq

dt̂
= −N

2
c +3

N2
c −1

d∆σ̂q↑q↑→qq

dt̂
, (E5d)

d∆σ̂q↑q′→ĝq↑q′

dt̂
= −N

2
c −5

N2
c −1

d∆σ̂q↑q′→q↑q′

dt̂
, (E5e)

d∆σ̂q↑q→ĝq↑q

dt̂
= −N

2
c −5

N2
c −1

d∆σ̂q↑q′→q↑q′

dt̂
− N2

c +3

N2
c −1

d∆σ̂I
q↑q→q↑q

dt̂
. (E5f)

The partonic cross sections can be regarded as functions of the variable y defined in (7) through

t̂

ŝ
= −y , û

ŝ
= −(1 − y) , ŝ =

x2
⊥ s

4y(1 − y)
. (E6)

All other non-vanishing quark-quark and antiquark-antiquark scattering cross sections that contribute to hadronic
pion production can be obtained from the above from symmetry considerations.
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Quark-antiquark scattering

The unpolarized quark-antiquark scattering cross sections are given by

dσ̂qq̄′→qq̄′

dt̂
=

4πα2
S

9 ŝ2
ŝ2 + û2

t̂2
, (E7a)

dσ̂qq̄→q′ q̄′

dt̂
=

4πα2
S

9 ŝ2
t̂2 + û2

ŝ2
, (E7b)

dσ̂qq̄→qq̄

dt̂
=
dσ̂qq̄′→qq̄′

dt̂
+
dσ̂qq̄→q′ q̄′

dt̂
− 2

dσ̂I
qq̄→qq̄

dt̂
, (E7c)

with the interference term

dσ̂I
qq̄→qq̄

dt̂
≡ 4πα2

S

27 ŝ2
û2

t̂ŝ
. (E8)

The polarized quark-antiquark scattering cross sections are

d∆σ̂q↑ q̄↑→q′ q̄′

dt̂
= −8πα2

S

9 ŝ2
t̂û

ŝ2
, (E9a)

d∆σ̂q↑ q̄↑→qq̄

dt̂
=
d∆σ̂q↑ q̄↑→q′ q̄′

dt̂
−
d∆σ̂I

q↑ q̄↑→qq̄

dt̂
, (E9b)

d∆σ̂q↑ q̄′→q↑q̄′

dt̂
= −8πα2

S

9 ŝ2
ûŝ

t̂2
, (E9c)

d∆σ̂q↑ q̄→q↑q̄

dt̂
=
d∆σ̂q↑ q̄′→q↑q̄′

dt̂
−
d∆σ̂I

q↑ q̄→q↑ q̄

dt̂
, (E9d)

d∆σ̂q↑ q̄→q̄↑q

dt̂
= −8πα2

S

27ŝ2
, (E9e)

with the interference terms

d∆σ̂I
q↑ q̄↑→qq̄

dt̂
= −8πα2

S

27 ŝ2
û

ŝ
,

d∆σ̂I
q↑ q̄→q↑ q̄

dt̂
= −8πα2

S

27ŝ2
û

t̂
. (E10)

The modified cross sections are

dσ̂ĝqq̄′→qq̄′

dt̂
= −N

2
c −3

N2
c −1

dσ̂qq̄′→qq̄′

dt̂
, (E11a)

dσ̂ĝqq̄→q′ q̄′

dt̂
=
N2

c +1

N2
c −1

dσ̂qq̄→q′ q̄′

dt̂
, (E11b)

dσ̂ĝqq̄→qq̄

dt̂
= −N

2
c −3

N2
c −1

dσ̂qq̄′→qq̄′

dt̂
+
N2

c +1

N2
c −1

[
dσ̂qq̄→q′ q̄′

dt̂
− 2

dσ̂I
qq̄→qq̄

dt̂

]
, (E11c)

d∆σ̂q↑ ĝq̄↑→q′ q̄′

dt̂
=
N2

c +1

N2
c −1

d∆σ̂q↑ q̄↑→q′ q̄′

dt̂
, (E11d)

d∆σ̂q↑ ĝq̄↑→qq̄

dt̂
=
N2

c +1

N2
c −1

d∆σ̂q↑ q̄↑→qq̄

dt̂
, (E11e)

d∆σ̂q↑ q̄′→ĝq↑q̄′

dt̂
=
N2

c −3

N2
c −1

d∆σ̂q↑ q̄′→q↑q̄′

dt̂
, (E11f)

d∆σ̂q↑ q̄→ĝq↑q̄

dt̂
=
N2

c −3

N2
c −1

d∆σ̂q↑ q̄′→q↑ q̄′

dt̂
+

N2
c +1

N2
c − 1

d∆σ̂I
q↑ q̄→q↑ q̄

dt̂
, (E11g)

d∆σ̂q↑ q̄→ĝq̄↑q

dt̂
= −N

2
c +1

N2
c −1

d∆σ̂q↑ q̄→q̄↑q

dt̂
. (E11h)

All other non-vanishing quark-antiquark scattering cross sections that contribute to hadronic pion production can be
obtained from the above from symmetry considerations.



22

ACKNOWLEDGMENTS

We acknowledge discussions with D. Boer and W. Vogelsang. Part of this work was supported by the foundation
for Fundamental Research of Matter (FOM) and the National Organization for Scientific Research (NWO).

[1] J. P. Ralston and D. E. Soper, Nucl. Phys. B152, 109 (1979).
[2] D. Boer and P. J. Mulders, Nucl. Phys. B569, 505 (2000), hep-ph/9906223.
[3] A. V. Belitsky, X. Ji, and F. Yuan, Nucl. Phys. B656, 165 (2003), hep-ph/0208038.
[4] J. C. Collins, Phys. Lett. B536, 43 (2002), hep-ph/0204004.
[5] J. C. Collins, Acta Phys. Polon. B34, 3103 (2003), hep-ph/0304122.
[6] D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B667, 201 (2003), hep-ph/0303034.
[7] R. L. Jaffe and N. Saito, Phys. Lett. B382, 165 (1996), hep-ph/9604220.
[8] M. Anselmino, M. Boglione, and F. Murgia, Phys. Rev. D60, 054027 (1999), hep-ph/9901442.
[9] M. Anselmino, U. D’Alesio, and F. Murgia, Phys. Rev. D67, 074010 (2003), hep-ph/0210371.

[10] D. Boer and W. Vogelsang, Phys. Rev. D69, 094025 (2004), hep-ph/0312320.
[11] U. D’Alesio and F. Murgia, Phys. Rev. D70, 074009 (2004), hep-ph/0408092.
[12] M. Anselmino, M. Boglione, U. D’Alesio, E. Leader, and F. Murgia, Phys. Rev. D71, 014002 (2005), hep-ph/0408356.
[13] D. L. Adams et al. (E581), Phys. Lett. B261, 201 (1991).
[14] D. L. Adams et al. (FNAL-E704), Phys. Lett. B264, 462 (1991).
[15] A. Bravar et al. (Fermilab E704), Phys. Rev. Lett. 77, 2626 (1996).
[16] J. Adams et al. (STAR), Phys. Rev. Lett. 92, 171801 (2004), hep-ex/0310058.
[17] S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 91, 241803 (2003), hep-ex/0304038.
[18] D. W. Sivers, Phys. Rev. D41, 83 (1990).
[19] D. W. Sivers, Phys. Rev. D43, 261 (1991).
[20] J. C. Collins, Nucl. Phys. B396, 161 (1993), hep-ph/9208213.
[21] R. D. Tangerman and P. J. Mulders, Phys. Rev. D51, 3357 (1995), hep-ph/9403227.
[22] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 44, 774 (1981).
[23] C. J. Bomhof, P. J. Mulders, and F. Pijlman, Phys. Lett. B596, 277 (2004), hep-ph/0406099.
[24] J.-w. Qiu and G. Sterman, Nucl. Phys. B378, 52 (1992).
[25] J.-w. Qiu and G. Sterman, Phys. Rev. D59, 014004 (1999), hep-ph/9806356.
[26] M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B362, 164 (1995), hep-ph/9503290.
[27] B.-Q. Ma, I. Schmidt, and J.-J. Yang, Eur. Phys. J. C40, 63 (2005), hep-ph/0409012.
[28] I. Schmidt, J. Soffer, and J.-J. Yang (2005), hep-ph/0503127.
[29] A. Metz, Phys. Lett. B549, 139 (2002).
[30] J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001 (2004), hep-ph/0408249.
[31] D. Amrath, A. Bacchetta, and A. Metz (2005), hep-ph/0504124.
[32] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B530, 99 (2002), hep-ph/0201296.
[33] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Nucl. Phys. B642, 344 (2002), hep-ph/0206259.
[34] R. L. Jaffe and X.-D. Ji, Phys. Rev. Lett. 71, 2547 (1993), hep-ph/9307329.
[35] D. E. Soper, Phys. Rev. D15, 1141 (1977).
[36] J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445 (1982).
[37] R. L. Jaffe and X.-D. Ji, Nucl. Phys. B375, 527 (1992).
[38] J. Levelt and P. J. Mulders, Phys. Lett. B338, 357 (1994), hep-ph/9408257.
[39] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197 (1996), hep-ph/9510301.
[40] A. Bacchetta and M. Radici, Phys. Rev. D70, 094032 (2004), hep-ph/0409174.


	Introduction
	kinematics
	cross sections
	 Single-spin asymmetries in inclusive hadron-hadron scattering
	 Hadron-hadron production in p"3222378 p scattering: p"3222378 +p++X
	 Hadron-jet production in p"3222378 p scattering: p"3222378 +p+Jet+X
	 Jet-jet production in p"3222378 p scattering: p"3222378 +pJet+Jet+X

	Summary and conclusions
	quark correlators and gauge-links
	 consequences of gauge-links for distribution functions
	 consequences of gauge-links for fragmentation functions
	 Results in the diagrammatic approach
	p"3222378 +p++X
	p+p+Jet+X
	p+pJet+Jet+X

	Partonic cross sections
	Quark-quark scattering
	Quark-antiquark scattering

	Acknowledgments
	References

