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Drell-Yan process: H1 +H2 → `+ ¯̀+X

µ+

µ-A

B

In general, photon has a transverse
momentum qT w.r.t. PA, PB

Consider three cases (with each a different factorization):

• qT integrated cross section
dσ

dxAdxB
∼ dσ

dQ2dy
• QT ≡ |qT | dependent cross section

dσ

dQ2dydQ2
T

• qT dependent cross section

dσ

dQ2dyd2qTdΩ
∼ dσ

d4qdΩ
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Collinear factorization

Leading twist factorization theorem in Drell-Yan:

dσ

dQ2dy
=
∑

a

∫ 1

xA

dξA
ξA

fa/A(ξA;µ)
∑

b

∫ 1

xB

dξB
ξB

fb/B(ξB;µ)Hab

(
xA

ξA
,
xB

ξB
, Q;

µ

Q
,αs(µ)

)

xA = ey

√
Q2

s
, xB = e−y

√
Q2

s
, y =

1
2

ln
q · PA

q · PB

Q2 is large, one deals with collinear factorization

A similar collinear factorization applies when QT is observed and large (QT ∼ Q):

dσ

dQ2dy
−→ dσ

dQ2dydQ2
T

Hab

(
xA

ξA
,
xB

ξB
, Q;

µ

Q
,αs(µ)

)
−→ Tab

(
xA

ξA
,
xB

ξB
, Q,QT ;µ, αs(µ)

)
Tab is singular as QT → 0, one needs to resum large logarithms
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Collinear factorization plus resummation

Λ2 � Q2
T � Q2: Collins-Soper-Sterman (CSS) formalism

dσ

dQ2dydQ2
T

=
∫
d2b e−ib·qTW̃ (b,Q;xA, xB) + Y (QT , Q;xA, xB) b = |b|

W̃ (b,Q;xA, xB) =
∑

j

e2j
∑

a

∫ 1

xA

dξA
ξA

fa/A (ξA; 1/b)
∑

b

∫ 1

xB

dξB
ξB

fb/B (ξB; 1/b)

×e−S(b,Q)Cja

(
xA

ξA
;αs (1/b)

)
Cj̄b

(
xB

ξB
;αs (1/b)

)

Collins, Soper & Sterman, NPB 250 (’85) 199

Y (x1, x2, Q,QT ) becomes important only when QT ∼ Q
Introduced to match to fixed order pQCD calculations at large QT

e−S(b,Q) = Sudakov form factor [exponentiation rather than cancellation of soft gluon
contributions]
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Sudakov factor

S(b,Q) =
∫ Q2

1/b2

dµ2

µ2

[
A (αs(µ)) ln

Q2

µ2
+B (αs(µ))

]
At the leading log level (O(αs)) : A = αsCF/π +O(α2

s)

Without running of αs:

S(b,Q) = −αs
CF

π
log2

(
b2Q2

)
With running:

S(b,Q) = −CF

β1

{
log
(
b2Q2

)
+ log

(
Q2

Λ2

)
log

[
1−

log
(
b2Q2

)
log (Q2/Λ2)

]}

Using only this expression in the factorization expression is valid for Q2 very large, when
the restriction b2 � 1/Λ2 is justified

If also b2>∼ 1/Λ2 contributions are important (µ2<∼Λ2), then one needs to include a
nonperturbative Sudakov factor
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Nonperturbative Sudakov factor

Rewriting W̃ (b) with help of b∗ = b/
√

1 + b2/b2max ≤ bmax:

W̃ (b) ≡ W̃ (b∗) e−SNP (b)

W̃ (b∗) can be calculated within perturbation theory

Usually bmax = 0.5 GeV−1, such that αs(1/b∗) ≤ αs(2) ≈ 0.3

In general the nonperturbative Sudakov factor is of the form

e−SNP (b,Q) = e−(ln(Q2/Q2
0)g1(b)+gA(xA,b)+gB(xB,b)) Q0 =

1
bmax

Collins, Soper & Sterman, NPB 250 (’85) 199

The g.. functions are not calculable in perturbation theory and need to be fitted to
experiment, in fact, they are needed to be able to describe the data

SNP is Q2 dependent (!)
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Application of CSS formalism
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)

BLNY (CTEQ6M)
D0 Z Run-1
LY (CTEQ6M)
CDF*0.89

exp

8<
:−

�
g1 + g2 ln

Q

2Q0

+ g1g3 ln (100x1x2)

�
b
2

9=
;

g1 = 0.21± 0.01

g2 = 0.68± 0.02

g3 = 0.60± 0.05

Transverse momentum distribution of Z bosons at the Tevatron run-1 fitted using the
CSS resummation formalism (includes low energy DY data in global fit)

Landry, Brock, Nadolsky, Yuan, PRD 67 (’03) 073016
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Angular asymmetries

In order to describe angular dependences of the cross section:

dσ

dQ2dydQ2
T

−→ dσ

dQ2dyd2qTdΩ
∼ dσ

d4qdΩ

dΩ = d cos θdφl, where θ and φl are the angles of one of the leptons in the lepton-pair
center of mass

d2qT = dφhdQ2
T/2 and φ = φh − φl

ẑ

P1 2P ĥ φ

lepton plane (cm)

θ

l’

l
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Angular asymmetries

For unpolarized scattering one has the general angular dependence

dN

dΩ
≡

(
dσ

d4q

)−1
dσ

d4qdΩ
=

3
4π

1
λ+ 3

[
1 + λ cos2 θ + µ sin 2θ cosφ

+
ν

2
sin2 θ cos 2φ

]
Fixed order perturbative calculation at O(αs)

dN

dΩ
=

3
16π

1 + 3
2ρ

2

1 + ρ2

[
1 +

1− 1
2ρ

2

1 + 3
2ρ

2
cos2 θ +

ρ

(1 + 3
2ρ

2)
f

(
ξA
xA
,
ξB
xB

)
sin 2θ cosφ

+
1
2

ρ2

1 + 3
2ρ

2
sin2 θ cos 2φ

]
Collins, PRL 42 (’79) 291

This expression holds (in the Collins-Soper frame) when ρ ≡ QT/Q = O(1)
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Beyond fixed order perturbation theory

For small QT one finds from fixed order (LO) perturbation theory:

λ→ 1, µ→ 0, ν → 0

Not a singular limit

However, for small QT collinear factorization is not the right starting point

The CSS formalism applies to dσ/dQ2dydQ2
T , but it stems from a more

general factorization theorem that applies to dσ/dQ2dyd2qTdΩ

This “CS-81” factorization theorem applied to e+e− → h1 h2X, not DY
Collins & Soper, NPB 193 (’81) 381

A similar factorization for SIDIS and DY was discussed recently by Ji, Ma, Yuan

(PRD 71 (’05) 034005 & PLB 597 (’04) 299), but with some differences
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CS-81 formalism

dσ

dQ2dyd2qTdΩ
=
∫
d2b e−ib·qTW̃ (b, Q;xA, xB) + Y (qT , Q;xA, xB)

W̃ (b, Q;xA, xB) =
∑

a

f̃a/A(xA, b; 1/b, αs(1/b))
∑

b

f̃b/B(xB, b; 1/b, αs(1/b))

×e−S(b,Q)Hab (xA, xB, Q;αs(Q)) Ũ(b; 1/b, αs(1/b))

Here f̃(x, b) is the Fourier transform of f(x,kT ), hence one needs to deal with TMDs

Note there is no integral over momentum fractions (ξ) now

Ũ is a soft factor

The factorization form as discussed by Ji, Ma, Yuan (PRD 71 (’05) 034005 & PLB 597 (’04)

299) has µ 6= 1/b and the nonperturbative b region is treated differently
Idilbi, Ji, Ma, Yuan, PRD 70 (’04) 074021
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Transverse momentum dependence

Collinear parton distributions are defined from

Φ(x) ≡
∫
dλ

2π
eiλx 〈P |ψ(0)L[0, λ]ψ(λ)|P 〉

For unpolarized hadrons: Φ(x) = 1
2f1(x)6P

Include parton transverse momentum Φ(x) → Φ(x,kT )

Φ(x,kT ) =
M

2

{
f1(x,k2

T )
6P
M

+ h⊥1 (x,k2
T )
i6kT 6P
M2

}

Without h⊥1 , one can do a perturbative expansion of Φ(x,kT ) for large k2
T , to go from

the CS-81 to the CSS formalism (this will generate the integral over ξ)

Nonperturbative kT (or b) dependence can then be absorbed in Sudakov factor

If h⊥1 6= 0, then one cannot reduce to a leading twist CSS expression by expanding in k2
T
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Numerical study of Sudakov suppression

dσ

dQ2dyd2qTdΩ
=
∫
d2b e−ib·qTW̃ (b, Q;xA, xB) + Y (qT , Q;xA, xB)

with f̃ → Φ̃

W̃ (b, Q;xA, xB) =
∑

a

Φ̃a/A(xA, b; 1/b, αs(1/b))
∑

b

Φ̃b/B(xB, b; 1/b, αs(1/b))

×e−S(b,Q)Hab (xA, xB, Q;αs(Q)) Ũ(b; 1/b, αs(1/b))

Scale choice is such that b dependence of soft factor Ũ appears only at NLLA

Φ̃(x, b) =
M

2

{
f̃1(x, b2)

6P
M

+
(
∂

∂b2
h̃⊥1 (x, b2)

)
2 6b 6P
M2

}

Furthermore, assume Gaussian kT dependence for f1 (with Gaussian width R2
u) and h⊥1

(with Gaussian width R2 > R2
u)
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Example 1: cos 2φ in DY

dσ

dQ2dyd2qTdΩ
∝
{

1 + . . .+
ν(QT )

2
sin2 θ cos 2φ

}
The asymmetry arising at large QT (associated to the Y term) to first order in αs is

νY (QT ) =
Q2

T

Q2 + 3Q2
T/2

The tree level expression at small QT due to h⊥1 is

ν(0)(QT ) =
h⊥1 (x1) h⊥1 (x2)
f1(x1) f1(x2)

Q2
TR

2

2M2R2
u

exp
(
−
[
R2 −R2

u

]Q2
T

2

)
Including Sudakov factors:

ν(QT ) =
h⊥1 (x1) h⊥1 (x2)
f1(x1) f1(x2)

A(QT )
2M4R4
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Numerical estimates

ν(QT ) =
h⊥1 (x1) h⊥1 (x2)
f1(x1) f1(x2)

A(QT )
2M4R4

A(QT ) ≡ M2

∫∞
0
db b3 J2(bQT ) exp (−S(b∗)−SNP (b))∫∞

0
db b J0(bQT ) exp (−S(b∗)−Su

NP (b))

Using a generic Su
NP

Ladinsky & Yuan, PRD 50 (’94) R4239

Results in a considerable Sudakov
suppression with increasing Q: ∼ 1/Q
D.B., NPB 603 (’01) 195 0
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Numerical estimates

Comparison of tree level and
Sudakov results at Q = 90 GeV

Latter is much smaller and broader
0

1
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QT [GeV]

Tree level: Ru
2=1, R2= 3/2*Ru

2

Sudakov result (x10)

Data for π−N → µ+µ−X, with N = D, W , from NA10 Collab. (’86/’88) & E615 Collab. (’89)

with π−-beams of 140-286 GeV and lepton pair invariant mass Q ∼ 4− 12 GeV

Impression of small and large QT

contributions (at Q = 8 GeV) compared
to DY data of NA10 (’88)

h⊥1 can be used to describe the data
D.B., PRD 60 (’99) 014012 0
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NA10 data, ZPC 37 (’88) 545
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Transverse moments

If one doesn’t want to assume Gaussians, then one can consider taking QT moments

This leads to expressions involving h
⊥(1)
1

h
⊥(1)
1 (x) ≡

∫
d2kT

k2
T

2M2
h⊥1 (x,k2

T )

It turns out that in the particular case of the cos 2φ asymmetry∫
dQ2

T Q
2
T

dσ

dQ2
T

is insensitive to the Sudakov factors

However, the Q2
T weight emphasizes the Y term

It is mostly sensitive to the high Q2
T ∼ Q2 hard gluon radiation

Solution: introduce an upper QT cut-off or subtract the calculable pQCD contribution
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Azimuthal spin asymmetries

Semi-inclusive DIS

e+ p↑ → e′ + π +X
^

P
h h⊥

z

^

lepton scattering plane

q
k

k’ Ph
φ

dσ(e p↑ → e′πX)
dΩ dφe

πd|P π
⊥|2

∝
{
1 + . . .+ |ST | sin(φe

π + φe
S) AC

T + |ST | sin(φe
π − φe

S) AS
T

}
Collins asymmetry: AC

T ∝ h1H
⊥
1

Sivers asymmetry: AS
T ∝ f⊥1TD1

HERMES has measured nonzero Collins and Sivers asymmetries
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Example 2: Collins asymmetry

dσ(e p→ e′πX)
dxdzdydφed 2qT

∝
{
1 + . . .+ |ST | sin(φ

C
) AC

T (QT )
}

The asymmetry’s analyzing power is given by

AC
T (QT ) =

∑
a e2a B(y) ha

1(x)H
⊥a
1 (z)∑

b e
2
b A(y) f b

1(x)D
b
1(z)

A(QT )
2M2

πR
2

A(QT ) = Mπ

∫
db b2 J1(bQT ) exp (−S(b∗)−SNP (b))∫
db b J0(bQT ) exp (−S(b∗)−Su

NP (b))

A(y)=(1−y+1
2y2), B(y)=(1−y)

At tree level: A(0)(QT ) =
MπQTR

4

R2
u

exp
(
−
[
R2 −R2

u

]
Q2

T/2
)

The asymmetry from the Y term not yet fully investigated (Ji, Ma, Yuan, forthcoming work)
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Numerical estimates

A(QT , Q)
Q = 30 GeV (upper)

Q = 60 GeV (middle)

Q = 90 GeV (lower)

A(QT , Q) ∼ Q−0.5 −Q−0.6 0
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A(QT , Q = 90) is considerably smaller
and broader than A(0)

Tree level estimates tend to
overestimate transverse momentum
dependent azimuthal spin asymmetries 0
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Sudakov result (x5)
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Projecting out asymmetries

Consider the cross sections integrated, but weighted with a function of the transverse
momentum of π:

〈W 〉 ≡
∫
d2P π

⊥ W
dσ[e p↑→e π X]

dx dy dz dφe dφe
π d|P π

⊥|2

where W = W (|P π
⊥|, φe

π) (Restrict to the case of |P π
⊥|2 � Q2)

If one weights with powers of the observed transverse momentum one obtains for
instance the following leading order expression〈

sin(φC) |P π
⊥|/Mπ

〉
[4π α2 s/Q4]

= |ST | (1−y)

∑
a,ā

e2a xh
a
1(x)zH

⊥(1)a
1 (z)

This particular moment is insensitive to Sudakov factors and suppression

Y term asymmetry is expected to be a decreasing function of |P π
⊥|, so not dominant

The same conclusions apply to the Sivers asymmetry
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Gauge invariant definition of TMDs

f1 ∝ F.T. 〈P |ψ(0)L[0, λ] γ+ψ(λn−)|P 〉

L[0, λ] = P exp

(
−ig

∫ λ

0

dη A+(ηn−)

)
In contrast:

h⊥1 ε
ij
T kTj ∝ F.T. 〈P |ψ(0)L[0, ξ] γiγ+γ5ψ(ξ)|P 〉

∣∣∣∣
ξ=(ξ−,0+,ξT )

Proper gauge invariant definition of h⊥1 in DIS contains a future pointing Wilson line,
whereas in Drell-Yan (DY) it is past pointing

ξ −

ξ T

ξ −

ξ T

Belitsky, Ji & Yuan, NPB 656 (’03) 165
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Process dependence

As a consequence (Collins, PLB 536 (’02) 43):

(h⊥1 )DIS = −(h⊥1 )DY

Derived for operator matrix elements, but the link structure itself was derived at O(α0
s)

At O(αs) Bomhof, Mulders, Pijlman (PLB 596 (’04) 277) find more complicated link structures
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Process dependence

This is relevant for factorization of low QT DY & SIDIS
Ji, Ma, Yuan, PRD 71 (’05) 034005 & PLB 597 (’04) 299

Assuming Wilson lines in TMDs and demonstrating consistency with factorization of
perturbative corrections is not the same as deriving the Wilson lines to all orders

Issue not settled yet, but probably no effect of Wilson lines in TMDs on Q2 dependence
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Conclusions

• Leading twist factorization at Q2
T � Q2 requires distribution and

fragmentation functions as a function of transverse momentum

• Sudakov factors need to be included – important for Q2 evolution

of azimuthal asymmetries

• In two examples this was numerically demonstrated:

• cos(2φ) asymmetry in Drell-Yan

• Collins effect sin(φC) asymmetry in e p↑ → e′ πX

• Rough rule of thumb:

• Asymmetries involving one TMD (e.g. Collins & Sivers asymmetries): ∼ 1/
√
Q

• Two TMDs (e.g. cos 2φ in DY): ∼ 1/Q

• Tree level estimates tend to overestimate transverse momentum

dependent azimuthal asymmetries with increasing Q2

• Wilson lines are not expected to affect these conclusions, but not demonstrated yet
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