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QCD phase diagram (a sketch)
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® Models (and lattice) suggest the transition becomes 1st order at some u 5.

® Can we observe the critical point in heavy ion collisions, and how?
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Critical point(s) in known liquids

Most liquids have a critical point (seen, e.g., by critical opalescence).

Water:
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Does QCD “perfect liquid” have one?
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What do we need to discover the critical point?
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® Key: scan phase diagram by changing collision energy.
Experiments: RHIC, NA61(SHINE), FAIR/GSI, NICA

® Reliable lattice predictions, understanding of systematic errors
(tackle “sign problem”).

® Find experimental signatures most sensitive to the critical point.
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Critical fluctuations: theory
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® Why does CP defy the central limit theorem?

Because, correlation length ¢ — oo. This is a collective phenomenon.

The magnitude of fluctuations (o) ~ £2.
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Fluctuation signatures

Experiments measure multiplicities N, N,, ..., 10 FAarmi 200 eV e o
mean pr, etc. %105°-4<|§;:g;§<eev’°);::?m* 38;822
These quantities fluctuate event-by-event. Egizs *. ]
® Fluctuation magnitude is quantified by e.g., gloz -
((ON)*),((9pT)*). 2o
1R S L

What is the magnitude of these fluctuations 20 Netproton @iy

near the QCD C.P.? (Rajagopal-Shuryak-MS, 1998)

Universality tells us how it grows at the critical point: ((N)?) ~ &2.

Magnitude of £ is limited < O(2-3 fm) (Berdnikov-Rajagopal).

“Shape” of the fluctuations can be measured: non-Gaussian moments.
As ¢ — oo fluctuations become less Gaussian.

Higher cumulants show even stronger dependence on &
(PRL 102:032301,2009):

(BN)") ~ €7, ((BN)") = 3((ON)*)" ~ ¢

which makes them more sensitive signatures of the critical point.
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Higher moments (cumulants) and¢

® Consider probability distribution for the order-parameter field:
Plo] ~ exp{—-Q|o]/T},
2

s |1 o, My 2 A3 3 M 4 o
Q—/dx{z(Va) 20+30—|—40 +...] . = &=m,

® Moments (connected) of g = 0 mode oy = [d’z o(x):
Ko = <0‘2/> —VTE&*, K3 = (0%}) — 2V T? N\5 €%

ke = (0v)e = (ov) — 3(op ) = 6VT? [2(X38)* — A\a ] €°.

® Tree graphs. Each propagator gives £2.

e S WK

® Scaling requires “running” Az = X\sT(T€)~%/2 and Ay = M\ (T€)~ y

~

ks = (ow) = 2VT? 2 X3 €7 ka=6VT?[2(Xs)® — s €.
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Moments of observables

® Example: Fluctuation of multiplicity is the fluctuation of occup. numbers,

SN =) bnyp.
p

Any moment of the multiplicity distribution is related to a correlator of dny.

® n, fluctuates around n,(m), which also fluctuates: ém = gdo, i.e.,
on
np = ony +—2gdo .
Np np, + O goo

statistical .y
critical

(0np, Onp, 0Ny, )s = (Statistical) + 2)s ( g )3 V1 Vps Vps
e V2T \mg TYp1 Vp2 Tp3

Uz% =7p(1 £7p), vp = (dEp/dm)~!

3
® Since ((§N)?) scales as V' we suggest w3 (V) = % which is V°.

® Similarly for ((§N)*)..

® Note: n-th connected moment requires n-particle correlations.
Resonance decays 1 — 2 do not affect n > 2 as they do n = 2.
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Energy scan and fluctuation signatures: notes
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® Higher moments provide more sensitive signatures.

® As usual, there is a price:
® Harder to predict — more theoretical uncertainties.
$ Signal/noise is worse for higher moments.

® But there is more information in higher moments and one can, e.g., com-
bine various higher moments to optimize or eliminate uncertainties.
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Using ratios and mixed moments

Athanasiou, Rajagopal, MS (2010)
The dominant dependence on ug (i.e., on /s) is from
two sources & and ny, €.9., Kap ~ A3 g £45n3,
® ¢(up) has a peak at up = pgte?,
critical

® np ~el's /T determines the height of the peak;
® other factors: g§ and A3 depend on u weaker.

Leading dependence on p%'*'“®! can be cancelled in ratios. E.g.,

2
Kap [ Nx ~  3.45
~ A
N, (Np> 39p &

Unknown/poorly known coupling parameters g, or g. can be also cancelled
in ratios. E.g., no uncertainties in these ratios

2 3 4
/434p Kor /i4p K3
- - o = =
K’Qp Kan K’3p R47r

when critical fluctuations dominate. They are 1.

Mixed moments allow more possibilities. E.g.,

2
’{’2p27r

RapRar

Mixed moments have no trivial Poisson contribution.
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Negative kurtosis?

® Not only kurtosis becomes large, but it also changes sign rapidly
(PRL 107:052301,2011)

(SNYYe = (N) + (o). (%/pﬁ):

Tp
(ov)e = 6VT?[205 — M\a ] €".

® On the crossover line A5 = 0 by symmetry, while A4 &~ 4. > 0.

» P(Uv)Z A —>M

® Thus (o) <0and ws(N) < 1
on the crossover line. And around it.

® Universal Ising eq. of state M (H):
M = RPH, t=R(1-6%), H=RPhH

® here ky is ka(M) = (M*).

e ® inQCD M — ov,

"-04 -02 00 02 04 and (t, H) — (u — pcp, T — Tcp)
H
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Early data from RHIC energy scan
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® On the crossover side, for /s =19 GeV: wyp — 1 &= —O(1) at £ ~ 1.5 fm.
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A scenario
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® If the kurtosis stays significantly below Poisson value in 19 GeV data, the
logical place to take a closer look is between 19 and 11 GeV.
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® If the kurtosis stays significantly below Poisson value in 19 GeV data, the
logical place to take a closer look is between 19 and 11 GeV.
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Concluding remarks

® Critical point is a special singular point on the phase diagram, with unique
signatures. This makes its experimental discovery possible.

® [ocating the point is still a challenge for theory.

® The search for the critical point is on. New RHIC results for 2 points with
up > 200 MeV (/s = 11 and 7.7 GeV) were presented at QM.

® |f kurtosis stays significantly below Poisson value at /s = 19 GeV, then the
critical point could be close, to the right, on the phase diagram.
Then: /s = 15 GeV?
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