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Introduction Formalism & Results Conclusions

Heavy ion collision modeling: state of the art

Heavy-ion collisions are understood in terms of:

Initial-state fluctuations e Hydrodynamical evolution
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Figure: Random nucleus Figure: hydro



Introduction Formalism & Results Conclusions

Role of fluctuations?

o At experiments, even small systems such as those produced in
proton-nucleus collisions seem to produce a fluid.

e Is the ridge seen in proton-proton collisions also due to the
formation of a fluid?

e The question arises:
What is the role of thermal fluctuations in such small systems?

Figure: System whose variations are large when zooming in on a small part.

Two different sources of fluctuations: initial and thermal ones.
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Initial-state fluctuations

e Quantum mechanical origin.

Different fluctuations

.

Formalism & Results

Conclusions

Thermal fluctuations

o Present in all systems with T > 0.

Brownian motion sendaticn in 20
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Fluctuations in the hydro evolution of a heavy-ion collision

e Hydrodynamics: 0, T = 0 & Equation of state

TH = T4

e TH¥ is the energy-momentum tensor
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Fluctuations in the hydro evolution of a heavy-ion collision

e Hydrodynamics: 0, T = 0 & Equation of state

0T
TH = TV 4 0TH 6T =4 dut
fluct. SH < T

TH¥ is the energy-momentum tensor
u* is the flow four-velocity

SHY is the noise tensor

[1#¥ is the stress tensor




Introduction Formalism & Results Conclusions

Fluctuations in the hydro evolution of a heavy-ion collision

e Hydrodynamics: 0, T = 0 & Equation of state

0T
TH = TV 4 0TH 6T =4 dut
fluct. SH < T

TH¥ is the energy-momentum tensor
u* is the flow four-velocity

SHY is the noise tensor

[1#¥ is the stress tensor

Solving linearized noisy hydro:

0, Ty =0 — analytically (Bjorken®, Gubser)
9,5TH =0

!Kapusta, Miiller, Stephanov 2012
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Fluctuation-dissipation theorem

Notation:
e 17)/s viscosity over entropy ratio
o AV At space-time volume
e A28 ynknown tensor

Thermal fluctuations are related to dissipations.

Thermal fluctuations are more significant in small systems.

The structure of A***5 may be involved.
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Characteristics of Gubser 2 hydro

Exact solution to the equations of hydrodynamics.

Conformal equation of state ¢ = 3p

Boost invariant longitudinal expansion (Bjorken)

Rotational sym. wrt. the beam axis (p-A and ultra-central A-A)

Finite transverse size & transverse expansion for 7 > 0

2Gubser and Yarom 2010
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Gubser hydro

Non-trivial analytic solution of hydro with transverse expansion.
e Conformal symmetry
= hydro egs are invariant under general coordinate transformations.

e Uniform fluid at rest in a certain geometry (dS3 x R)

Non-uniform expanding fluid in usual laboratory space-time.

e The two space-times are related by coordinate transformations:

(7—757 r7 qb) H (p7£7 97 ¢)

T is the proper time

r is the radius in the transverse plane
p is the de Sitter time

£ is the spatial rapidity

0, ¢ are the coordinates on the sphere

Denote all quantities in dS3 x R space-time by ‘hats’.
Rotational SO(3) symmetry in new coordinate system (6, ¢).
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Evolution of € and v, vs r for Pb-Pb (1/s = 0)

€ =energy density, v| = transverse velocity of fluid
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Gubser hydro and thermal noise
e Correlation of thermal noise in Gubser hydro, (X — (p, 0, ®,&))

(8057 (Xe)) o< TP PRo(X, = Xo)

e Tensor structure of $H is simplified, thanks to 4* = (1,0,0,0).
él—“/(X): W(p)f(x)ﬁlﬂj, ﬁl“’ :dlag[oal717_2] )

and we have the correlation of the scalar function

2v

— (X1 = X3), v=
vAvcosthlsinGl (4 2)

(Ffoe) =

Wl
w3

e Magnitude of thermal noise is constrained by w ~ multiplicity

Multiplicity more crucial than system size.

e Same conclusion for Bjorken case.
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Noisy Gubser flow
e We solve the Gubser flow mode by mode.

e Decompose thermal fluctuations into scalar and vector modes using
spherical symmetry in transformed coordinates (p, 0, ¢, §):

100,68 =T 3 [ Sl ke Yinlt, 2)e
80i(p, 0, 6,€) Z / [Vin(0: ke)D: Yim(8, 6) + vira(p. ke ) Pigim) (68, )] €<
Si.0.0.9 =3 [ S5V ke Yin(6. 0)e

0:0.6.9=3 [ S inli. ) Vim0, )¢
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Gubser hydro and thermal noise

Each mode evolves according to a Langevin—type equation (from
0,0 TH = 0):

Vi(p) = —T(p. 1, ke)Vip) + K(p, ke)
——

drag noise
51(0) tanh ph(p)
y . . - T tanh ph(p
Vi(p) = vis(p) , Tisa4 x4 matrix, K= 3T ik T (v)
vie(p) ~ Ty ramip 1P
V/v(p) 0

e Vector modes are decoupled, and NOT affected by thermal noise.
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Solving noisy Gubser flow

Ultra-central Pb-Pb, p-Pb and p-p.

The height (To) and width (g~ 1) of the Gubser solution are
determined using the multiplicity and transverse size.

PbPb | pPb | pp

To 73 | 3120
g X(fm)| 43 | 11 |11

Approximates system evolution during first several fm'’s.

ke = 0 mode:

- Long-range rapidity correlations.
- Further simplification with v¢ modes decoupled and indep. of noise
= 2 coupled egs.
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Evolution of temperature profile

T(7,x ) without and with thermal noise, one random event

e x, y are coordinates in the plane transverse to the collision axis.

T(GeV): 1 = 0.8 fm
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Evolution of temperature profile

T(7,%1) without and with thermal noise, one random event

e x, y are coordinates in the plane transverse to the collision axis.

T(GeV):t=0.8 fm
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Evolution of temperature profile

T(7,%1) without and with thermal noise, one random event

e x, y are coordinates in the plane transverse to the collision axis.

T(GeV):t=0.8 fm
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Hydro & experimental data

e Experimental signature of hydro:
2-particle correlations averaged over many events.

CMS pPb \[syy = 5.02 TeV, '™ > 110 ()
1<p, <3GeVic

e Hydro explains the long-range wave structure but not the
short-range peak.

e What is the role of hydro fluctuations for the long-range & the
short-range correlations?
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Making contact with data

Two-particle correlations are not directly calculable in hydro:

e No hadronization or freeze-out.

e Hydro behavior seen through the final particle spectrum.

What we CAN do, however, is to study an object similar to that of
two-particle correlations: The two-point correlator of radial flow.

e Radial flow because we are interested in the transverse expansion.

Experiments Theory

(N(&1, O)N(&2, 0 + A9))  ~  (ur(r, P)ur(r, ¢ + A))
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Solving the two-point function of noise
Formal solution:

(VV)) = Initial fluc. + Thermal fluc.

Initialization of numerics for short-range (1) & long-range (2)
initial fluctuations:

1) 6T(8,,p0,€&) = const. x 6(8 — 00)5(¢ — do) = Zall modes

or

2) 676, 6, po, &) = const. x | (~1)"—

5 Yanl0.6) + Yo o(0 q>)]

1
2
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Solving the two-point function of noise
Formal solution:

(VV)) = Initial fluc. + Thermal fluc.

Initialization of numerics for short-range (1) & long-range (2)
initial fluctuations:

1) 6T(8,,p0,€&) = const. x 6(8 — 00)5(¢ — do) = Zall modes

or

2) 5T(0, 6, po.€) = const. x [(—1)”\2 Yonl6, 6) + évn,_n(a, qs)]

n=2 n=3 =14 n=>5

£2(Pb-Pb)~ 0.05, e3(p-Pb)~ 0.15 & £5(p-p)~ 0.2 = gives const.
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Radial flow correlation

We choose an observable to characterize the correlation:

Cuu, (1,1, Ap) = (u (1, ry0)up (7, ry 0 + Ap)) — background
=cl, +c!

uruy uruyr

e Equal time (7) and equal radius (r).
e To see the effect of hydro noise we rescale as follows:
CT

Rescaled C,,,, = e lr

amplitude of C/ .

e Snapshot at 7 = 2.5 fm.
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Effect of noise on short-range correlations

Curur(r7 A(p)

1.75

(b) p-Pb
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Effect of noise on short-range correlations

Curur(r7 A(P)

1.75

(b) p-Pb
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Details of the near-side peak in C], vs A¢
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Effect of noise on long-range correlations
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Conclusions

Conclusions

The absolute amplitude of hydro noise in ultra-central heavy-ion
collisions is essentially determined by the multiplicity.

Long-range correlations — evolution of eccentricity:
e Additional contribution to eccentricity from noise.

e Stronger in p-p and higher-order harmonics.
o Effects are NOT sizeable.

Short-range correlations:
Noise contributes to the formation of a near-side peak on top of the
structure coming from initial state fluctuations:

e The height and width of the peak grow from Pb-Pb to p-p.

Outlook:
Longitudinal fluctuations along longitudinal direction, k¢ # 07

Second order viscous hydrodynamics?
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Coordinate transformation

o Weyl rescaling R13 — dS3 x R : g — & = gu /T2
Now the metric reads

. 1 4
ds? = > (—dr* +dxT) +dé*.
o Reparametrize dS3 by the mapping (7,r) — (p,0) :
1— q272 + ¢22
2qT

2qt
1+ q272 — g2r2

sinhp = —

tand =

so that the symmetry SO(1,1) x Z, x SO(3) is now manifest :

d$? = dp? + dé€? + cosh? p (d6? + sin® 6dg) .
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Temperatures and multiplicities

G L ( 345\
O_f*l/12 167 d¢

where f, = ¢/ T4 = 11 is extracted from lattice calculations and

ds dN,
2 75
d¢ dy

e Pb-Pb: \/syy = 2.76 TeV corresponding to dNg,/dy ~ 1600
e p-Pb: \/syny = 5.02 TeV corresponding to dN.,/dy ~ 150

e p-p: v/s =13 TeV corresponding to dN,/dy ~ 100
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